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Abstract

Weighted timed automata (WTA), introduced in [3], [11] are an extension of [1]
timed automata, a widely accepted formalism for the modelling and verification
of real time systems. Weighted timed automata extend timed automata by
allowing costs on the locations and edges. There has been a lot of interest
[16], [17], [12], [15] in studying the modelchecking problem of weighted timed
automata. The properties of interest are written using logic weighted CTL
(WCTL), an extension of CTL with costs. It has been shown [15] that the
problem of modelchecking for WTAs with a single clock and cost using WCTL
without external cost variables is decidable, while 3 clocks render the problem
undecidable [12]. The question of 2 clocks is open.

In this report, we give a short survey of the model checking results for WTAs
studied so far in literature. Further, we introduce a subclass of weighted timed
automata called weighted integer reset timed automata (WIRTA) and study the
model checking problem. We give a clock reduction technique for WIRTA. Given
a WIRTA A with n ≥ 1 clocks, we show that a single clock WIRTA A′ preserving
the paths and costs of A can be obtained. This gives us the decidability of
modelchecking WIRTA with n ≥ 1 clocks and m ≥ 1 costs using WCTL with no
external cost variables. We then show that for a restricted version of WCTL with
external cost variables, the model checking problem is undecidable for WIRTA
with 3 stopwatch costs and 1 clock.



1 Introduction

Timed automata [1] are a well-established model for real-time systems. One
of the most important properties of timed automata is that reachability is
decidable. This has paved the way for using timed automata in verification
and many tools viz., UPPAAL [10], KRONOS [19] and HyTech [5] were built
using this. Since their inception, several variants of timed automata have been
considered: [13], wherein new operations on clock updates were considered, [8]
where new kinds of guards were introduced, [20] where a set of clocks could be
freezed, [9], where silent transitions were studied, and [23], where new kinds of
updates along with additive and diagonal constraints were studied. However,
timed automata are not considered adequate enough for representing properties
of systems, since they are not closed under complementation, and their inclusion
problem is not decidable [1]. Hence, the quest for finding a more attractive
class of timed automata has been going on. Some of the interesting classes here
are : (i) [2] event clock automata, (ii) [22] open and closed automata, (iii) [4]
perturbed timed automata, (iv) [18] timed automata with periodic constraints,
(v) [26] one clock timed automata, and (vi) timed automata with integer resets
introduced in [25] and subsequently investigated in [27].

An extension of timed automata useful in applications like scheduling prob-
lems and controller synthesis is weighted timed automata (WTA) introduced
in [3], [11]. In this, cost variables are attached to locations and edges. The
costs are used only as observers, they cannot be compared or evaluated in the
automata. The behaviour of the automata is not influenced by these costs. This
has led to several decidability results for optimization problems like minimum
cost reachability, cost optimal schedules and so on. A generalization of these
questions is the model checking problem of WTAs using cost extended versions
of linear as well as branching time logics. The logics WCTL and WMTL are
considered as cost extensions of logics CTL and LTL (like TCTL, MTL which
are timed extensions of CTL, LTL) and are interpreted over WTAs. While it
is known [6] that TCTL model checking of timed automata is decidable, it has
already been shown that WCTL model checking of WTAs is not decidable [17],
[12]. [17] shows that with 3 stopwatch costs and 1 clock, model checking WCTL
with external cost variables is undecidable, while in the case of 2 clocks and
1 stopwatch cost or 2 stopwatch costs and 1 clock, it is possible to obtain an
infinite bisimulation. [12] has shown that if there are 3 clocks and 1 stopwatch
cost, model checking WCTL with no external cost variables is undecidable. The
case of model checking WTAs with 2clocks and 1 stopwatch cost has remained
an open problem.

In this report, we adress this issue by studying the model checking question
on a sub class of WTAs called weighted integer reset timed automata (WIRTA).
These are extensions of IRTAs introduced in [25]. It has been shown [25], [27]
(albeit with different complexities, non-primitive recursive [25] versus doubly
exponential [27]) that if A is a timed automaton and if B is an IRTA, then the



question L(A) ⊆ L(B)? is decidable. We show that it is possible to reduce the
number of clocks in a given WIRTA to one. This, along with the decidability
result [15] of model checking WCTL with no external cost variables on one
clock WTAs gives us the result that model checking WCTL with no external
cost variables is decidable for WIRTAs with n clocks and m costs, n,m ≥ 1.
We then investigate model checking WCTL with external cost variables on
WIRTAs. Here, we obtain an undecidability result with 3 stopwatch costs and
1 clock, on a restricted version of the logic (called WCTLr in [17]).

The organisation of the report is as follows as follows: Section 2 gives the
prerequisites, introduces WTAs and gives the syntax, semantics, expressiveness
and model checking results so far for logic WCTL, section 3 introduces WIRTA,
section 4 gives the clock reduction results and section 5 talks about the unde-
cidability result, and we conclude in section 6.



2 Prerequisites

For any set S, S∗ denotes the set of all strings over S. We consider as time
domain T the set Q+ or R+ of non-negative rationals or reals, and Σ a set
of actions. A time sequence over T is a non-decreasing sequence τ = (ti)i≥1

; for simplicity t0 is taken to be zero always. Let X be a set of clocks.
A clock valuation over X is a mapping ν : X → R+. We denote by RX

+

(or TX) the set of clock valuations over X . If ν ∈ TX and τ ∈ T, then
ν + τ is the clock valuation defined by (ν + τ)(x) = ν(x) + τ , for x ∈ X .
A guard or constraint over X is a conjunction of expressions of the form
x ∼ c where x ∈ X , c ∈ N and ∼∈ {<,≤, >,≥,=}. We denote by G(X) the
set of guards over X . The satisfaction relation for guards over clock valua-
tions is denoted as ν |= g whenever valuation ν satisfies guard g in the usual way.

Clock constraints allow us to test the values of clocks. To change the value
of a clock x we use clock resets. U0(X) denotes the set of resets φ ∈ U0(X)
defined as φ ⊆ X .

Let ν be a valuation and let upz be a simple reset over clock z. A valuation
ν′ is in upz(ν) if ν′(y) = ν(y), y 6= z and ν′(z) = 0. For φ ⊆ X , we use the
notation ν′ = ν[φ := 0] to denote ν′(z) = ν(z) for all z ∈ X\φ and ν′(y) = 0 for
all y ∈ φ.

2.1 Timed Automata

A timed automaton [1] is a tuple A = (L,L0, Σ,X,E, F ) where L is a set of
locations; L0 ⊆ L is a set of initial locations; Σ is a set of symbols; X is a set of
clocks; E ⊆ L× L×Σ × G(X)× U0(X) is the set of transitions and F ⊆ L is a
set of final locations. G(X) and U0(X) are the set of clock constraints and clock
resets as described above. An edge e = (l, l′, a, ϕ, φ) represents a transition from
l to l′ on symbol a, with the valuation ν ∈ TX satisfying the guard ϕ, and then
φ gives the resets of certain clocks.

A path is a finite (infinite) sequence of consecutive transitions. The path
is said to be accepting if it starts in an initial location (l0 ∈ L0) and
ends in a final location (or repeats a final location infinitely often). A run
through a path from a valuation ν′0 (with ν′0(x) = 0 for all x) is a sequence

(l0, ν
′
0)

t1−→ (l0, ν1)
(σ1,ϕ1,φ1)

−→ (l1, ν
′
1)

t2−→ (l1, ν2)
(σ2,ϕ2,φ2)

−→ (l2, ν
′
2) · · · (ln, ν

′
n). Note

that νi = ν′i−1 + (ti − ti−1), νi |= ϕi, and that ν′i = νi[φi := 0], i ≥ 1. A timed
word ρ is accepted by A iff there exists an accepting run (through an accepting
path) over A, the word corresponding to which is ρ. The timed language L(A)
accepted by A is defined as the set of all timed words accepted by A.

2.2 Region Automata

Given a set X of clocks, let R be a partitioning of TX . Each partition contains
a set (possibly infinite) of clock valuations. Given α ∈ R, the successors of α



represented by Succ(α) are defined as

α′ ∈ Succ(α) if ∃ν ∈ α, ∃t ∈ T such that ν + t ∈ α′

The partition R is said to be a set of regions iff

α′ ∈ Succ(α) ⇐⇒ ∀ν ∈ α, ∃t ∈ T such that ν + t ∈ α′.

A set of regions is consistent with time elapse if two valuations which are
equivalent (within the same partition) stay equivalent with time elapse. A
region α ∈ R is said to satisfy a clock constraint ϕ ∈ G(X) denoted as α |= ϕ,
if ∀ν ∈ α, ν |= ϕ. A clock reset φ ∈ U0(X) maps a region α to a regions
α[φ := 0] = α′ such that α′ ∩ ν[φ := 0] 6= ∅ for some ν ∈ α}.

A set of regions R is said to be compatible with a set of clock con-
straints G(X) iff ∀ ϕ ∈ G(X) and ∀α ∈ R either α |= ϕ or α |= ¬ϕ. A
set of regions R is said to be compatible with a set of clock resets U0(X) iff
α′ = α[φ := 0] ⇒ ∀ν ∈ α, ∃ν′ ∈ α′ such that ν′ ∈ ν[φ := 0].

Given a timed automaton A, and a set of regions R compatible with G(X)
and U0(X), the region automaton R(A) = (Q,Q0, Σ,E

′, F ′) is defined as
follows: Q = L × R the set of locations; Q0 = L0 × R ⊆ Q the set of initial
locations; F ′ = F × R ⊆ Q the set of final locations; E′ ⊆ (Q× Σ × Q) is the

set of edges. (l, α)
a
→ (l′, α′) if ∃α′′ ∈ R and a transition (l, l′, a, ϕ, φ) ∈ E such

that (a) α′′ ∈ Succ(α), (b) α′′ |= ϕ and (c) α′ = α′′[φ := 0].

The region automaton is an abstraction of the timed automaton accepting
Untime(L(A)) [1].

Theorem 1. Let A be a timed automaton. Then the problem of checking empti-
ness of L(A) is decidable.

2.3 Weighted Timed Automata

Let Σ be a set of atomic propositions. We recall the definition of WTAs [16].
A weighted timed automaton is a tuple A = (L,L0, X, Z,E, θ, η, C) where L

is a set of locations, L0 ⊆ L is a set of initial locations, X is a set of clocks,
Z is a set of costs where |Z| = m, E ⊆ L × G(X) × U0(X) × L is the set of
transitions. A transition e = (l, ϕ, φ, l′) ∈ E is a transition from l to l′ with
valuation ν ∈ TX satisfying the guard ϕ, and φ gives the set of clocks to be
reset. θ : L → 2Σ where θ is the labelling function which associates with each
location a subset of Σ. η : L → G(X) defines the invariants of each location.
C : L ∪ E → Nm is the cost function which gives the rate of growth of each
cost. Note that the costs are called stopwatches if C : L ∪ E → {0, 1}m. From
the nature of the costs and stopwatches, it is clear that stopwatches are re-
stricted costs. Hence, WTA with stopwatches form a subclass of WTA with costs.



The semantics of a WTA A = (L,L0X,Z,E, θ, η, C) is given by a labelled
timed transition system TA = (S,→) where S = L×TX×TZ and → is composed
of transitions

– Time elapse t in l: (l, ν, µ)
t

−→ (l′, ν′, µ′), t ∈ T. Then l′ = l, ν′ = ν + t,
µ′ = µ+ C(l) ∗ t and for all 0 ≤ t′ ≤ t, ν + t′ |= η(l).

– Location switch: (l, ν, µ)
(ϕ,φ)
−→ (l′, ν′, µ′) if there exists e = (l, ϕ, φ, l′) ∈ E,

such that ν |= ϕ, ν′ = ν[φ := 0] and µ′ = µ+C(e). Here, ν |= η(l), ν′ |= η(l′).

A path is a sequence of consecutive transitions in the transition system TA. A

path ρ starting at (l0, ν
′
0, µ

′
0) is denoted as ρ = (l0, ν

′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→

(l1, ν
′
1, µ

′
1)

t2−→ (l1, ν2, µ2)
(ϕ2,φ2)
−→ (l2, ν

′
2, µ

′
2) · · · (ln, ν

′
n, µ

′
n). Note that νi = ν′i−1 +

(ti − ti−1), νi |= ϕi, ν
′
i = νi[φ := 0] and µi = µ′

i−1 + C(li−1) ∗ (ti − ti−1),
µ′

i = µi +C(li−1, ϕi, φi, li). The ith state of the path is denoted as ρ[i] and ρ[≤ i]
indicates the prefix of the path till position i. We refer to an element l ∈ L of a
WTA A as a loction while we refer to an element (l, ν, µ) ∈ S of TA as a state.
The terms transition and edge are used interchangeably.

2.4 Weighted Computational Tree Logic(WCTL)

The logic weighted CTL (WCTL) extends CTL with constraints over costs. Let
Z be a set of costs. We now give the syntax of WCTL with external cost variables
as in [17]. Let Σ be the set of atomic propositions.

ψ ::= true | σ |π | z.ψ | ¬ψ | ψ ∨ ψ | E(ψUψ) | A(ψUψ)

where z ∈ Z, σ ∈ Σ, and π is a cost constraint of the form zi ∼ c or zi−zj ∼ c for
costs zi, zj ∈ Z and c ∈ N. When the cost constraints π are restricted to be only
of the form zi ∼ c, then the logic is denoted by WCTLr. The freeze quantifiers
z. allows us to reset costs, while the cost constraints z ∼ c allows us to test them.

The formulae are evaluated on a WTA. The sets Σ,Z are same for the
formula as well as for the WTA.

Given a WTA A, its transition system TA and a WCTL formula ψ, the
satisfication relation A,(l, ν, µ) |= ψ is defined as follows:

– A,(l, ν, µ) |= σ iff σ ∈ θ(l)
– A,(l, ν, µ) |= π iff µ |= π

– A,(l, ν, µ) |= ¬ψ iff A,(l, ν, µ) 6|= ψ

– A,(l, ν, µ) |= ψ1 ∨ ψ2 iff A,(l, ν, µ) |= ψ1 or A,(l, ν, µ) |= ψ2.
– A,(l, ν, µ) |= z.ψ iff A,(l, ν, µ[z := 0]) |= ψ where µ[z := 0] stands for µ with
z reset to zero.

– A,(l, ν, µ) |= Eψ1Uψ2 iff there exists a run ρ in the transition system TA
starting at (l, ν, µ), there exists a position i in ρ such that ρ[i] = (li, νi, µi) |=
ψ2 and forall j < i, ρ[j] |= ψ1.



– A, (l, ν, µ) |= Aψ1Uψ2 iff for any run ρ in the transition system TA starting
at (l, ν, µ), there exists a position i in ρ such that ρ[i] = (li, νi, µi) |= ψ2 and
forall j < i, ρ[j] |= ψ1.

Next, we define logic WCTL with no external cost variables [15].

ψ ::= true | σ | ¬ψ | ψ1 ∨ ψ2 | Eψ1Uz∼cψ2 | Aψ1Uz∼cψ2

with z ∈ Z, c ∈ N, σ ∈ Σ. Given a WTA A, its transition system TA, the
semantics of Eψ1Uz∼cψ2 and Aψ1Up∼cψ2 are given below. The semantics of
the other formulae are same as described above.

– A,(l, ν, µ) |= Eψ1Uz∼cψ2 iff there exists a run ρ in the transition system TA
starting at (l, ν, µ), there exists a position i in ρ, such that ρ[i] = (li, νi, µi) |=
ψ2 and forall j < i, ρ[j] |= ψ1, with µi(z) − µ(z) ∼ c.

– A,(l, ν, µ) |= Aψ1Uz∼cψ2 iff for any run ρ in the transition system TA start-
ing at (l, ν, µ), there exists a position i in ρ, such that ρ[i] = (li, νi, µi) |= ψ2

and forall j < i, ρ[j] |= ψ1, with µi(z) − µ(z) ∼ c.

Let us denote logic WCTL with no external variables byWCTL1, and WCTL
with external cost variables by WCTL2. The restriction of WCTL2 where cost
constraints zi−zj ∼ c are not allowed is denoted by WCTL2r. We now compare
the expressive power of the logics WCTL1,WCTL2.

Lemma 1. WCTL2r is more expressive than WCTL1.

Proof. We only give a proof sketch. Consider the WCTL2r formula ψ =
z.EF([a ∧ z ≤ 1] ∧ EG[z ≤ 1 ⇒ ¬b]), where a, b ∈ Σ. It can proved that
there is no WCTL1 formula equivalent to ψ using an argument similar to the
one used for showing that TPTL is more expressive than MTL [14]. ⊓⊔

Survey of model checking results
The Table 1 reports the results of model checking WCTL1, WCTL2 and
WCTL2r over WTAs with stopwatches. There has been no study of the model
checking problem over WTAs with costs which are not stopwatches except the
decidability result of [15].

Undecidablity Result : All the undecidability results in the Table 1 are
obtained by reducing the halting problem of two counter machine [24] to the
model checking problem over WTA.

Decidablity Result - WCTL2r over WTA with one clock and one
stopwatch: [16] shows that there exists a finite bisimulation for a WTA with
one clock and one stopwatch. This renders the model checking problem over
this subclass of WTA decidable.



Logic Clocks Stopwatches Result

WCTL1 1 ≥ 1 Decidable [15]

WCTL1 3 1 Undecidable [12]

WCTL1 2 1 Undecidable [21]

WCTL2 1 3 Undecidable [16]

WCTL2 0 3 Undecidable [16] (costs on edges)

WCTL2r 1 2 Infinite Bisimulation [16]

WCTL2r 2 1 Infinite Bisimulation [16]

WCTL2r 1 1 Decidable [16]

Table 1. Model checking over WTAs with stopwatches

Decidablity Result - WCTL1 over WTA with one clock and m costs:
Let the problem be model checking WCTL1 formula Φ over WTA A. [15] con-
siders a set of clock regions R over which the truth of Φ is uniform. R is given
by {[c], (c, c+ 1) | c ∈ {0 = a0, a1, · · ·an, an+1 = ∞}} such that

– n is finite,
– a0 < a1 < a2 · · ·an < an+1,
– a1, a2 · · · are integral multiples of 1/Ch(Φ)+1,
– C is the l.c.m of all costs labelling a location in A and
– h(Φ) is the maximum number of nested constrained modalities in Φ.

[Note that in the following argument, the cost valuation in states of
transition system of A is not given any importance as this information is
captured over the edges.]

The decidablity result follows from the construction of a graph G whose
vertices are (q, r) (q is a location in A and r ∈ R) and the edge lables are
intervals of costs between the vertices. G has additional vertices of the form
(q, ν(x), r) (ν(x) ∈ r) which indicate the start of a computation. The edges of G
are as follows

– edges from (q, ν(x), r) to (q, r) are labelled with the interval [0, c) if r =
(ai, ai+1) else the label is [0,0]. Here c cost accumulated due to ai+1 − ν(x)
time elapsed in location q.

– edges from (q, [ai]) to (q′, [ai+1]) : if q′ = q, then it is labelled with the cost
accumulated by 1 t.u elpased in q else it is labelled with the cost accumulated
over the path from (q, ai) to (q′, ai+1) in TA.

– edges incident with (q, (ai, ai+1)) are considered for reset transitions or to
finish the computation.



The graph G is such that ρ exists in G iff there is a path ρ′ from (q, ν(x)) to
(q′, ν′(x)) in TA such that ν(x) ∈ r, ν′(x) ∈ r′ and the accumulated cost over ρ′

is d ∈ s.

The problem (q, ν(x)) |= Φ is determined by the existence of a path ρ from
the vertex (q, ν(x), r), ν(x) ∈ r to an appropriate vertex (q′, r′) in G. The sum
s of all the cost intervals labelling edges in the path ρ is such that it satisfies the
constraints on the modality of Φ (other cases not involving modality are trivial).



3 Weighted Integer Reset Timed Automata (WIRTA)

In this section, we introduce a subclass of WTA called weighted integer reset
timed automata along the lines of IRTA introduced in [25]. In this subclass of
automata, the reset of clocks are restricted to happen only at integer time points.
An integer reset timed automaton (IRTA) is a timed automaton in which every
edge e = (l, l′, a, ϕ, λ) is such that λ is nonempty only if ϕ contains at least one
atomic constraint of the form x = c, for some clock x, c ∈ N.

Definition 1. A Weighted Integer Reset Timed Automaton (WIRTA) is a WTA
A = (L,L0, X, Z,E, θ, η, C) with the restriction that for all e = (l, ϕ, φ, l′) ∈ E

if φ 6= ∅ then ϕ consists of atleast one atomic clock constraint x = c for some
x ∈ X, c ∈ N.

The resriction on the resets ensure that the fractional parts of all clocks
remain the same at all points of time. For a clock valuation ν(x), let frac(ν(x))
denote the fractional part of ν(x) and int(ν(x)) denote the integral part. For
example, if ν(x) = 7.02, then int(ν(x)) = 7 and frac(ν(x)) = .02.

Example 1. The automaton A in the following figure is an IRTA.

s t

u

a, x = 1?x := 0

c, x = 1?y := 0a, x, y ≥ 1?

b

Fig. 3.0.1. An IRTA A

Lemma 2. Let A = (L,L0, Σ,X,E, F ) be an IRTA and ν be a clock valuation
in any given run in A. Then ∀x, y ∈ X, frac(ν(x)) = frac(ν(y)). [27]

3.1 IRTA Regions

In this section, we look at the regions R of an IRTA. Given a set X of clocks, let
R be a finite partitioning of TX . The notions successor of a region, compatibility
with guards and compatibility with updates are same as mentioned in Section
2.1.

Let cm ∈ N be the maximum constant occuring in the guards G(X) of the
IRTA A. For every clock x ∈ X , define a set of intervals Ix, as

Ix = {[c]|0 ≤ c ≤ cm} ∪ {(c, c+ 1)|0 ≤ c < cm} ∪ {(cm,∞)}

Let α be a tuple ((Ix)x∈X ,≺) where



1. Ix ∈ Ix and
2. ≺ is a total preorder on X0 = {x ∈ X | Ix is of the form (c, c+ 1)}.

The region associated with α is the set of valuations ν ∈ TX such that for all
x ∈ X , ν(x) ∈ Ix and for all x, y ∈ X0, x ≺ y iff frac(ν(x)) ≤ frac(ν(y)). By
Lemma 2, either X0 = X or X0 = ∅. For all x, y ∈ X , x ≺ y and y ≺ x. Thus we
can safely consider α to be α = ((Ix)x∈X). The set of all such tuples α partitions
TX and this is the set we consider to be R.

Definition 2 (Integral, Non-integral, Saturated region). Let α =
((Ix)x∈X) ∈ R and let Xm ⊆ X be such that ∀x ∈ Xm, Ix = (cm,∞).

– α is said to be saturated if Xm = X

– else α is said to be integral if ∀x ∈ X \Xm, Ix is of the form [c]
– else α is said to be non-integral if ∀x ∈ X \Xm, Ix is of the form (c, c+ 1)

Definition 3 (Immediate Successor). For every clock region α ∈ R, its im-
mediate successor αi is defined as ∀ν ∈ α, ∀t ∈ T if ν + t 6∈ α then ∃t′ ≤ t such
that ν + t′ ∈ αi.

Lemma 3. Every clock region α ∈ R has a unique immediate successor αi ∈ R.

Proof. Let α = ((Ix)x∈X) ∈ R. Let Xm ⊆ X such that ∀x ∈ Xm, Ix = (cm,∞).
Then ∀x ∈ Xm, I ′x = Ix = (cm,∞).

– If Xm = X then αi = α

– If α is non-integral i.e; Ix = (c, c + 1), ∀x ∈ X \ Xm and Xm ⊂ X then
I ′x = [c+ 1]

– If α is integral i.e; Ix = [c], ∀x ∈ X \Xm then I ′x = (c, c + 1) if c < cm else
I ′x = (cm,∞)

Thus there exists a unique immediate successor for a given clock region. ⊓⊔

Note that the immediate successor of an integral clock region is a non-integral
clock region and vice versa.

The following lemmas prove that R is indeed a set of regions and that it is
compatible with the set of clock constraints and resets. The proof is as in [13].

Lemma 4. Set R forms a set of regions.

This lemma follows from the proof of Lemma 3.

Lemma 5. The set of regions R is compatible with the set of clock constraints
G(X).

Lemma 6. The set of regions R is compatible with the set U0(X) of clock resets.



4 Clock Reduction and Decidability

In this section, we give a technique for reducing the number of clocks in a WIRTA
to one. The clock reduction is due to Lemma 2. This simplifies the region parti-
tioning to give regions which can be called integral, non-integral and saturated.

4.1 Untiming WIRTA

In this section, we look at some techniques for untiming a WIRTA A. The spirit
of these follow [27]. For simplicity, we consider WIRTAs where all the location
invariants are true. The component η which assigns true to all locations will
be omitted from the description of WIRTAs. All the results obtained can be
extended to the case of having general location invariants.

Definition 4. Let τ ∈ R+, and let int(τ) = k. Define

dt(τ) ,

{

(δX)k if τ is integral,

(δX)kδ if τ is non-integral.

Let τ1 ≤ τ2 be two real numbers. dte(τ1, τ2) is the δX-pattern that is to be right
concatenated to dt(τ1) to get dt(τ2). ⊓⊔

For example, if τ1 = 1.3 and τ2 = 2.9, then dt(τ1) = δXδ while dt(τ2) = δXδXδ.
Therefore, dte(τ1, τ2) = Xδ.

Proposition 1. Let t0t1 . . . tn and t′0t
′
1 . . . t

′
n be two sequences of time stamps

such that t0 = t′0 = 0, and dte(ti, ti−1) = dte(t′i, t
′
i−1) for all i ≥ 1. Then

int(ti) = int(t′i), and frac(ti) = 0 iff frac(t′i) = 0 for all i.

In the following, we assume that all runs begin from time 0, and that time
progresses in a weakly monotonic sense.

Definition 5. Let Σ = L × T where L is the set of loca-
tions of a given WIRTA. Define a language W over Σ as
W={(l0, t0)(l0, t1)(l1, t1)(l1, t2)(l2, t2) · · · (ln−1, tn)(ln, tn) | n ≥ 1, ti ≥ ti−1

for 1 ≤ i ≤ n}. Let f : W → (L ∪ {δ,X})∗ be a function defined as
f(w) = l0 dte(t1, t0) l1 dte(t2, t1)l2 . . . ln−1 dte(tn, tn−1)ln.

Let w = l0w1l1w2 . . . ln−1wnln be a word such that δ,X strictly alternate in each
wi ∈ {δ,X}∗ as well as in w1 . . . wn. Let li ∈ L.

Example 2. Let w = (l0, 0)(l0, 0.5)(l1, 0.5)(l1, 1.2)(l2, 1.2)(l2, 1.5)(l3, 1.5)(l3, 2.1)(l4, 2.1),
w′ = (l0, 0)(l0, 0.2)(l1, 0.2)(l1, 1.7)(l2, 1.7)(l2, 1.9)(l3, 1.9)(l3, 2.3)(l4, 2.3) and
w′′ = (l0, 2)(l0, 2.7)(l1, 2.7)(l1, 3.2)(l2, 3.2)(l2, 3.3)(l3, 3.3)(l3, 4.05)(l4, 4.05).
Then f(w) = f(w′) = f(w′′) = l0δl1Xδl2ǫl3Xδl4.

Definition 6. Two words w,w′ ∈ W are said to be f equivalent iff f(w) =
f(w′).



Let t0 = t′0 = 0. If w = (l0, t0)(l0, t1)(l1, t1)(l1, t2)(l2, t2) · · · (ln−1, tn)(ln, tn)
and w′ = (l0, t

′
0)(l0, t

′
1)(l1, t

′
1)(l1, t

′
2)(l2, t

′
2) · · · (ln−1, t

′
n)(ln, t

′
n) are f -equivalent,

then by Proposition 1, int(ti) = int(t′i) and frac(ti) = 0 iff frac(t′i) = 0.

Definition 7. Let A be a WTA and let l0 ∈ L0. Consider two paths ρ and ρ′

such that

1. l0l1l2 · · · ln is the sequence of locations constituting ρ such that li is visited
at time ti.

2. l0l1l2 . . . ln is the sequence of locations constituting ρ′ such that li is visited
at time t′i.

Define g(ρ) to be w = (l0, t0)(l0, t1)(l1, t1)(l1, t2) . . . (ln−1, tn−1)(ln−1, tn)(ln, tn).
(g(ρ′) is w′ = (l0, t

′
0)(l0, t

′
1)(l1, t

′
1)(l1, t

′
2) . . . (ln−1, t

′
n−1)(ln−1, t

′
n)(ln, t

′
n)). Then,

ρ and ρ′ are said to be equivalent (ρ ∼= ρ′) iff f(g(ρ)) = f(g(ρ′)).

Proposition 2. Let ρ and ρ′ be two paths visiting the sequence of locations
l0l1 . . . ln (m0m1 . . .mn) in order, such that li(mi) is visited at at times ti(t

′
i).

Then ρ ∼= ρ′ iff

1. li = mi for all i,
2. dte(ti, ti−1) = dte(t′i, t

′
i−1) for all i ≥ 1.

Proof. Let ρ ∼= ρ′ be two paths visiting the sequence of locations l0l1 . . . ln
(m0m1 . . .mn) in order, such that location li (mi) is visited at time ti(t

′
i).

1. Since ρ ∼= ρ′, we have f(g(ρ)) = f(g(ρ′)) = k0w0k1w1 . . . kn where wi ∈
{δ,X}∗. Clearly, li = mi = ki for all i.

2. Assume that j is the first index such that dte(tj , tj−1) 6= dte(t′j , t
′
j−1). Then

f(g(ρ)) would differ from f(g(ρ′)), contradicting the assumption that ρ ∼= ρ′.

Conversely, assume that for paths ρ, ρ′ visiting locations l0l1 . . . ln
(m0m1 . . .mn) in order, at times ti(t

′
i), we have li = mi and dte(ti, ti−1) =

dte(t′i, t
′
i−1) for all i ≥ 1. If ρ ≇ ρ′, then f(g(ρ)) 6= f(g(ρ′)). Since li = mi, the

only way they can differ is by dte(ti, ti−1) or dte(t′i, t
′
i−1) for some i. But this

also is ruled out by the assumption. Hence, it must be that ρ ∼= ρ′. ⊓⊔

Proposition 3. Let A be a WIRTA. Let ρ ∼= ρ′ be paths visiting the sequence
of locations l0l1 . . . ln in order, such that li is visited at time ti in ρ and at time
t′i in ρ′, with t0 = t′0 = 0. Then ρ is a path in TA iff ρ′ is a path in TA.

Proof. Let ρ ∼= ρ′. We prove the result by induction on the lengths of paths
ρ, ρ′. Let ρ, ρ′ visit the sequence of states l0, l1 at times t0 = 0, t1 and t′0 = 0, t′1
respectively. Since ρ ∼= ρ′, we have dt(t1) = dt(t′1). This implies that int(t1) =
int(t′1) and frac(t1) = 0 iff frac(t′1) = 0. The valuation of any clock x, ν1(x) after
time elapse t1 is int(t1) + frac(t1), while the valuation α1(x) after time elpase
t′1 is int(t′1) + frac(t′1). Clearly, int(ν1(x)) = int(α1(x)) and frac(ν1(x)) = 0 iff
frac(α1(x)) = 0. Thus, ν1(x) |= ϕ1 for a constraint ϕ1 iff α1(x) |= ϕ1 for any

clock x ∈ X (from 5). Therefore, if (l0, ν
′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→ (l1, ν

′
1, µ

′
1) is



a path in TA, then so will be (l0, ν
′
0, χ

′
0)

t′1−→ (l0, α1, χ1)
(ϕ1,φ1)
−→ (l1, α

′
1, χ

′
1), where

the costs µi, χi are calculated in the usual way.
Assume that the result holds for paths of length ≤ j − 1. Now let ρ ∼= ρ′

be paths of length j. Let r, r′ be subpaths of ρ, ρ′ obtained by visiting lo-
cations li, at times ti (t′i), 0 ≤ i ≤ j − 1. By the induction hypothe-

sis, r = (l0, ν
′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→ (l1, ν

′
1, µ

′
1)

t2−→ (l1, ν2, µ2)
(ϕ2,φ2)
−→

(l2, ν
′
2, µ

′
2) · · · (lj−2, νj−1, µj−1)

(ϕj−1,φj−1)
−→ (lj−1, ν

′
j−1, µ

′
j−1) is a path in TA

iff r′ = (l0, ν
′
0, χ

′
0)

t′1−→ (l0, α1, χ1)
(ϕ1,φ1)
−→ (l1, α

′
1, χ

′
1)

t′2−→ (l1, α2, χ2)
(ϕ2,φ2)
−→

(l2, α
′
2, χ

′
2) · · · (lj−2, αj−1, χj−1)

(ϕj−1,φj−1)
−→ (lj−1, α

′
j−1, χ

′
j−1) is.

Since location lj is visited at time tj , for any clock x, νj(x) = tj − tk where
k is the largest index less than j in r when x was reset (tk is integral), or
tk = 0 in which case x was never reset. Similarly, αj(x) = t′j − t′k with t′k
integral or αj(x) = t′j for r′. Hence, νj(x) = int(tj) + frac(tj) − tk, while
αj(x) = int(t′j) + frac(t′j) − t′k. Since dte(tj , tj−1) = dte(t′j , t

′
j−1) for all j ≥ 1,

we have dte(tj , tk) = dte(t′j , t
′
k). This implies that int(tj − tk) = int(t′j − t′k) and

frac(tj −tk) = 0 iff frac(t′j −t
′
k) = 0 (from Proposition 1). Hence, νj(x) |= ϕj iff

αj(x) |= ϕj for any constraint ϕj , x ∈ X . Thus, we can extend r, r′ by the tran-

sitions (lj−1, ν
′
j−1, µ

′
j−1)

tj

−→ (lj−1, νj , µj)
(ϕj,φj)
−→ (lj , ν

′
j , µ

′
j) (correspondingly,

(lj−1, α
′
j−1, χ

′
j−1)

t′j
−→ (lj−1, αj , χj)

(ϕj ,φj)
−→ (lj , α

′
j , χ

′
j)) so that the former is a

path in TA iff the latter is. ⊓⊔

Corollary 1. The above result is not true if A is a WTA but not a WIRTA.

Proof. Consider the following WTA.

l

1
m

1
n

1

y := 0 y < 1?

Consider paths ρ, ρ′ obtained by visiting the sequence of states l,m, n at
times t0 = 0, t1 = 0.3, t2 = 1.2 and t′0 = 0, t′1 = 0.3, t′2 = 1.5 respectively.
Clearly, dte(ti, ti−1) = dte(t′i, t

′
i−1) for i = 1, 2. f(g(ρ)) = f(g(ρ′)) = lδmXδn.

Hence, ρ ∼= ρ′.

Clearly, ρ = (l, 0, 0)
0.3
−→ (l, 0.3, 0.3)

y:=0
−→ (m, 0, 0.3)

1.2
−→ (m, 0.9, 1.2)

y<1?
−→

(n, 0.9, 1.2) is a path in the automaton. However, there is no path of the form

ρ′ = (l, 0, 0)
0.3
−→ (l, 0.3, 0.3)

y:=0
−→ (m, 0, 0.3)

1.5
−→ (m, 1.2, 1.5) −→ (n, 1.2, 1.5) in

the automaton. ⊓⊔

As a first step in obtaining a one clock WIRTA from A, we construct from
A, a marked automaton MA. The time elapse between integral and non-integral
regions in A is marked in MA using symbols δ and X. The locations we use
in MA are of the form (l, α) where l is a location of L, and α is a region for
the clocks X ∪ {n}, where n is a new clock that is reset only when a clock reset

happens in A. A time elapse transition in A of the form (l, ν)
t

−→ (l, ν+t) where



ν(x) is integral and ν(x) + t is non-integral for x ∈ X is represented in MA

as a discrete transition (l, α)
δ

−→ (l, αi) where αi is the immediate successor

of α. Similarly, a time elapse transition in A of the form (l, ν)
t

−→ (l, ν + t)
where ν(x) is non-integral and ν(x) + t is integral for x ∈ X is represented in

MA as a discrete transition (l, α)
X
−→ (l, αi). MA has an extra clock f that

keeps track of the progress of time between integral and non-integral regions.
A guard f ∈ (0, 1) should be satisfied on a δ transition, while a guard f = 1
should be satisfied on a X transition. f is reset to zero everytime it attains
the value of 1 on the X transition. A discrete transition (l, ϕ, φ, l′) of A is
represented by marked discrete transitions from (l, α) to (l′, α′) on ǫ such that
α |= ϕ, f = 0 if α is integral, and f ∈ (0, 1) if α is non-integral, and α′ is
obtained from α by resetting the clocks in φ (if any) and n. If φ = ∅, then α′ = α.

The only possible time elapse transitions in MA are of the form ((l, α), ζ)
t

−→
((l, α), ζ + t) where ζ(f) is the valuation of clock f . Due to the guards on the
δ,X, ǫ transitions, the possible time t elapsed should satisfy one of the following:

1. ζ(f) = 0, 0 < ζ(f) + t < 1,
2. 0 < ζ(f), ζ(f) + t < 1,
3. 0 < ζ(f) < 1, ζ(f) + t = 1.

We now give the formal definition of MA.

Definition 8. Given a WIRTA A= (L,L0, X, Z,E, θ, C), we construct a
marked weighted timed automaton MA corresponding to A as MA =
(Q,Q0, {f}, Z, Em, θm, Cm) where

– Q = L×R where R is the set of regions defined for X ∪ {n} where n 6∈ X,
– Q0 = L0 × {α0} such that α0 = {ν0}, ν0(x) = 0 for all x ∈ X ∪ {n},
– Z is the set of costs as in A,
– Em ⊆ Q×{δ,X, ǫ}×G({f})×U0({f})×Q is the set of edges. For q = (l, α)

and q′ = (l′, α′), an edge em = (q, a, ϕm, φm, q
′) ∈ Em is such that

1. if α(x) = (cm,∞) for all x ∈ X∪{n}, then q = q′, a ∈ {δ,X}, ϕm :: true
and φm = φ,

2. if l = l′, α is integral and α′ = αi, then a = δ, ϕm :: 0 < f < 1 and
φm = ∅,

3. if l = l′, α′ is integral and α′ = αi, then a = X, ϕm :: f = 1 and
φm = {f},

4. For a discrete transition (l, ϕ, φ, l′) ∈ E, there exists a
transition((l, α), ǫ, ϕm, ∅, (l′, α′)) ∈ Em such that
(1) α |= ϕ, (2) α′ = α[φ∪{n}] if φ 6= ∅, else α′ = α, and (3) ϕm :: f = 0
if α is integral, else ϕm :: 0 < f < 1,

– θm : Q→ 2Σ such that θm(q) = θ(l) for q = (l, α),
– Cm : Q ∪ Em → N|Z| such that

1. Cm(q) = C(l) if q = (l, α),
2. Cm(em) = C(e) if em = (q, ǫ, ϕm, φm, q

′), e = (l, ϕ, φ, l′), q = (l, α) and
q′ = (l′, α′),



3. Cm(em) = 0 if em = (q, δ, ϕm, φm, q
′) or em = (q,X, ϕm, φm, q

′) where
q = (l, α) and q′ = (l, α′).

The semantics of MA=(Q,Q0, Z, Em, θm, Cm) is given by a labelled timed
transition system TM just as in the case of A.

A path is a finite(infinite) sequence of consecutive transitions in
the transition system TM. A path ρm starting at ((l0, α0), γ0, χ0) with

γ0 = 0 and χ0(z) = 0, ∀z ∈ Z is denoted as r = ((l0, α0), γ0, χ0)
t1,1

−→

((l0, α0), γ1, χ1)
δ

−→ ((l0, α1), γ1, χ1)
t1,2

−→ ((l0, α1), γ2, χ2)
X
−→

((l0, α2), 0, χ2) . . .
t1,k+1

−→ ((l0, αk), γk+1, χk+1)
a

−→ ((l0, αk+1), γ
′
k+1, χk+1)

ǫ
−→

((l1, α
′
k+1), γ

′
k+1, χ

′
k+1) . . .

ǫ
−→ ((ln, α

′
m), γ′m, χ

′
m), where a = δ iff 0 < γk+1 < 1

and a = X iff γ′k+1 = 0. Note that the value of χj and γj in a state
((li, αj−1), γj , χj) are given by χj = χj−1 + Cm(li, αj−1) ∗ (ti+1,j − ti+1,j−1)
and γj = γj−1 + ti+1,j − ti+1,j−1. The values of χ′

j and γ′j in ((li+1, α
′
j), γ

′
j , χ

′
j)

after a transition ((li, αj), γj , χj)
ǫ

−→ ((li+1, α
′
j), γ

′
j , χ

′
j) are given by

χ′
j = χj + Cm((li, αj), ǫ, (li+1, α

′
j)) and γ′j = γj . γj does not change due

to δ or ǫ transitions while after a X, it is zero as f is reset.

Note: It should be noted that due to the loop consisting of both δ and X over
locations with regions α such that α(x) = (cm,∞) for all x, the paths might
contain arbitrary sequences of δ,X. We restrict TM to only those paths where
δ,X strictly alternate.

Lemma 7. For every path ρ from ((l0, α0), γ0, χ0) to ((ln, α
′
m), γ′m, χ

′
m) in TM ,

there exists an equivalent path ρ′ from ((l0, α0), γ0, χ0) to ((ln, α
′
m), γ′m, χ

′
m) in

which all the ǫ transitions immediately follow a δ or X transition (without any
time elapse in between).

Proof. By construction of MA, the guard f = 0 or 0 < f < 1 must be satisfied
for an ǫ transition. It is clear that f = 0 only when it gets reset by a X transi-
tion. Hence, for the case f = 0, an ǫ transition happens immediately after a X

transition.
Lets now consider the case 0 < f < 1 while taking an ǫ transition. Consider

a sequence ρp of transitions in ρ in which there is time elpase between a δ

transition and the succeeding ǫ transition. Let ρp =
a

−→ ((li, αj), 0, χj)
ti,j+1

−→

((li, αj), γj+1, χj+1)
δ

−→ ((li, αj+1), γj+1, χj+1)
ti,j+2

−→ ((li, αj+1), γj+2, χj+2)
ǫ

−→
((li+1, α

′
j+1), γ

′
j+2, χ

′
j+2), a ∈ {ǫ,X}. Note that γ′j+2 = ti,j+1+ti,j+2 and χj+2 =

χj + k1 and χ′
j+2 = χj+2 + k2 where k1, k2 are the costs accumulated due to

time elpase ti,j+1 + ti,j+2 in li and the ǫ transition respectively.

Since the ǫ transition satisfies 0 < f < 1, we know that 0 < ti,j+1 + ti,j+2 <

1. It is easy to see that the sequence ρ′p of transitions given by ρ′p =
a

−→

((li, αj), 0, χj)
ti,k+1

−→ ((li, αj), γk+1, χk+1)
δ

−→ ((li, αk+1), γk+1, χk+1)
ǫ

−→
((li+1, α

′
k+1), γ

′
k+1, χ

′
k+1) can be taken in place of ρp with ti,k+1 = ti,j+1 + ti,j+2.



The δ transition only demands that the guard 0 < f < 1 holds good -
this is clearly satisfied. Further, by the construction of MA, we have γ′k+1 =
ti,j+1 + ti,j+2 = γ′j+2, χk+1 = χj + k1 and χ′

k+1 = χk+1 + k2.
⊓⊔

Henceforth, we consider only those paths in which all the ǫ transitions im-
mediately follow the δ or X transitions.

Let ρ be a path in TM. Let ρ′ be a subpath of ρ from (l, α) to (l, αk+1) having
one of the following forms:

1. ρ′ is a prefix of ρ from (l, α) to (l, αk+1) ((l, α) is the initial location) such
that (l, αk+1) is the source of an ǫ transition in ρ,

2. ρ′ is a subpath of ρ of the form
ǫ

−→ ((l, α), γ, χ)
t1,1

−→ ((l, α), γ1, χ1)
δ

−→

((l, α1), γ1, χ1)
t1,2

−→ ((l, α1), γ2, χ2)
X
−→ ((l, α2), 0, χ2) . . .

t1,k+1

−→

((l, αk), γk+1, χk+1)
a

−→ ((l, αk+1), γk+1, χk+1)
ǫ

−→ ((l′, β), γ′k+1, χ
′
k+1),

a ∈ {δ,X}.

Note that there are no ǫ transitions in the path between (l, α) to (l, αk+1). Let
w ∈ {δ,X}∗ be a word obtained by concatenating the δ’s and X’s appearing on
the edges between the two locations (l, α), (l, αk+1). Let h(ρ) denote the word
l0w1l1w1 . . . ln−1wnln where wi+1 is the word over {δ,X} between (li, α) and
(li, αki+1) in subpaths ρ′ of ρ of the above mentioned form.

Proposition 4. Let (l, α) and (l, α′) be two locations in MA. Let (l, α′) be
reachable in MA from (l, α) by a sequence of time elapse and δ,X transitions.
Then for a word w ∈ {δ,X}∗ leading (l, α) to (l, α′), we have

1. δ,X strictly alternate in w,
2. w = dte(t′, t) such that t ∈ α(n), t′ ∈ α′(n).

Proof. Let (l, α′) be reachable in MA from (l, α) on reading a word w ∈ {δ,X}∗.
Let α(n) = [c] and α′(n) = (c+ k, c+ k+ 1), k ≥ 0. By construction of MA, we

have the sequence of transitions (l, α)
δ

−→ (l, α1)
X
−→ . . .

δ
−→ (l, α′) such that

if a δ transition is taken then n becomes non-integral, and if a X transition is
taken then n becomes integral. Since α′(n) = (c+ k, c+ k + 1) and α(n) = [c],
it is clear that the number of X’s seen is k and the number of δ’s seen is k + 1.
It is easy to see that 1,2 hold good.

A similar argument can be given when α(n) ∈ Ix \ {cm,∞} ⊓⊔

Definition 9 (Consistency). Given a WIRTA A and its marked automaton
MA, two paths ρ ∈ TA and ρ′ ∈ TM are said to be consistent iff f(g(ρ)) = h(ρ′).

Lemma 8. Let A=(L,L0X,Z,E, θ, C) be a WIRTA and let
MA=(Q,Q0, {f}, Z, Em, θm, Cm) be its marked automaton.

1. For every path ρ of TA, there exists a path ρm of TM such that ρ, ρm are
consistent.



2. For every path ρm of TM where the δ,X strictly alternate, there exists a path
ρ of TA such that ρ, ρm are consistent.

3. Let ρ be a path in TA consistent with a path ρ′ in TM. Then all paths ρ′′ in
TA such that ρ′′ ∼= ρ will be consistent with ρ′.

Proof. 1. We prove by induction on the lengths of paths. For the base case,

consider a path ρ = (l0, ν
′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→ (l1, ν

′
1, µ

′
1) in TA. Let

int(t1) = k. Then by construction of MA, corresponding to (l0, ν
′
0, µ

′
0)

t1−→

(l0, ν1, µ1), there exists a path r = ((l0, α
′
0), γ

′
0, χ

′
0)

t1,1

−→ ((l0, α
′
0), γ

′
1, χ

′
1)

δ
−→

((l0, α
′
1), γ

′
1, χ

′
1)

t1,2

−→ ((l0, α
′
1), γ

′
2, χ

′
2)

X
−→ ((l0, α

′
2), 0, χ

′
2) . . .

t1,2k+1

−→

((l0, α
′
2k), γ′2k+1, χ

′
2k+1)

δ
−→ ((l0, α

′
2k+1), γ

′
2k+1, χ

′
2k+1) if frac(t1) 6= 0,

[or r = ((l0, α
′
0), γ

′
0, χ

′
0)

t1,1

−→ ((l0, α
′
0), γ

′
1, χ

′
1)

δ
−→ ((l0, α

′
1), γ

′
1, χ

′
1)

t1,2

−→

((l0, α
′
1), γ

′
2, χ

′
2)

X
−→ ((l0, α

′
2), 0, χ

′
2) . . .

t1,2k

−→ ((l0, α
′
2k−1), γ

′
2k, χ

′
2k)

X
−→

((l0, α
′
2k), 0, χ′

2k) if frac(t1) = 0] such that

(a) 0 < ti,j < 1, 1 ≤ j ≤ 2k + 1, t1 = t1,2k+1 (t1,2k if frac(t1) = 0),
(b) The region α′

2i+1 = ((Ix)x∈X∪{n}) is such that Ix = (i, i+ 1) whenever
α′

2i = (I ′x)x∈X∪{n} with I ′x = [i] for i ≥ 0 and α′
2i = ((Ix)x∈X∪{n}) is

such that Ix = [i+ 1] whenever α′
2i−1 = (I ′x)x∈X∪{n} with I ′x = (i, i+ 1)

for i ≥ 1,
(c) The cost χ′

i = χ′
i−1 + C(l0) ∗ (t1,i − t1,i−1) for all i. Since t1 = t1,2k+1,

we have χ′
2k+1 = µ1 (respectively, χ′

2k = µ1 in the case frac(t1) = 0),
(d) γ′i = γ′i−1 + t1,i − t1,i−1 or γ′i = 0 + t1,i − t1,i−1, for all i,
(e) The number of Xs in r is k. The number of δs is k if frac(t1) = 0 and

is k + 1 if frac(t1) 6= 0.
(f) ν1(x) ∈ α′

2k+1(x) or ν1(x) ∈ α′
2k(x) for all x ∈ X depending on whether

frac(t1) is non-zero or not.

From the above, it is clear that α′
2k+1 |= ϕ1 (α′

2k |= ϕ1) iff ν1(x) |= ϕ1

for all x ∈ X . Hence, corresponding to ρ, we have in TM the path ρ′

obtained from r by adding the transition on ǫ from the last state of r
as ((l0, α

′
2k+1), γ

′
2k+1, χ

′
2k+1)

ǫ
−→ ((l1, α2k+2), γ2k+2, χ2k+2) if frac(t1) 6= 0

or ((l0, α
′
2k), γ′2k, χ

′
2k)

ǫ
−→ ((l1, α2k+1), γ2k+1, χ2k+1) if frac(t1) = 0. Here,

α2k+2 = α′
2k+1[φ1 ∪ {n}] if φ1 6= ∅, (otherwise, α′

2k+1 = α2k+2), γ
′
2k+1 =

γ2k+2 and χ2k+2 = χ′
2k+1 + C(e) = µ′

1 where e = (l0, ϕ1, φ1, l1).

[Similarly, α2k+1 = α′
2k[φ1 ∪ {n}] if φ1 6= ∅, else, α2k+1 = α′

2k, γ2k+1 = γ′2k

and χ2k+1 = χ′
2k + C(e) = µ′

1 where e = (l0, ϕ1, φ1, l1)].

It is clear that g(ρ) = (l0, t0)(l0, t1)(l1, t1), f(g(ρ)) = l0wl1 where w =
dte(t1, t0). Also, h(ρ′) = l0w

′l1 where w′ is the word over {δ,X} leading from
(l0, α

′
0) to (l0, α

′
2k+1) (or from (l0, α

′
0) to (l0, α

′
2k) when frac(t1) = 0). By

Proposition 4, we have w = dte(t′1, t
′
0) where t′1 ∈ α′

2k+1(n), t′0 ∈ α′
0(n) = 0.

Since we know that t1 = ν1(x) ∈ α′
2k+1(x) and since α′

2k+1(n) = α′
2k+1(x)

for all x ∈ X , we have w′ = dte(t′1, t
′
0) = dte(t1, t0) = w. Hence, ρ, ρ′ are

consistent.



Assume that for every path ρ of length ≤ j − 1 in TA, we have a path ρ′ in
TM consistent with ρ. Consider a path ρ of length j in TA.

Let ρ = (l0, ν
′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→ (l1, ν

′
1, µ

′
1)

t2−→ (l1, ν2, µ2)
(ϕ2,φ2)
−→

(l2, ν
′
2, µ

′
2) · · · (lj−2, ν

′
j−2, µ

′
j−2)

tj−1

−→ (lj−2, νj−1, µj−1)
(ϕj−1,φj−1)

−→

(lj−1, ν
′
j−1, µ

′
j−1)

tj

−→ (lj−1, νj , µj)
(ϕj ,φj)
−→ (lj , ν

′
j , µ

′
j).

Breaking ρ into paths ρ1 and ρ2 of lengths j − 1 and one and using the
inductive hypothesis, it is easy to find paths ρ′1, ρ

′
2 in MA consistent with

ρ1, ρ2 such that the accumulated costs in the locations of ρ1, ρ2 agree with
those of ρ′1, ρ

′
2.

The path ρ′ obtained by joining ρ′1, ρ
′
2 in MA is a path consistent with ρ.

2. Similar to 1.
3. Let ρ be a path in TA consistent with the path ρ′ in TM. For any path ρ′′

in TA such that ρ ∼= ρ′′, we have f(g(ρ)) = f(g(ρ′′)). Since f(g(ρ)) = h(ρ′),
we also have f(g(ρ′′)) = h(ρ′). Hence, ρ′′ is also consistent with ρ′.

⊓⊔

Corollary 2. In the case of a WTA which is not a WIRTA, the 3rd property
listed in the above theorem need not hold good due to Corollary 1.

s

(0, 1)
t

(1, 0)

x = 1?x := 0

(0, 1)

y ≥ 2?

(2, 2)

Fig. 4.1.1. W-IRTA A.

4.2 One clock WIRTA

In this section, we give a construction to obtain a single clock WIRTA A′ from
MA such that for every run ρ ∈ A′, there exists a run ρ′ ∈ A preserving the
costs.

Definition 10 (δ − X sequence). Let (l, α) be a location in MA. A
δ − X sequence starting at (l, α) is a sequence of locations lα =
(l, α0)(l, α1) . . . (l, αn) such that α0 = α and ∀j ≥ 0, αj+1 = αi

j such
that any path in TM consisting of only these locations is of the form

((l, α0), γ0, χ0)
t1,1

−→ ((l, α0), γ1, χ1)
a

−→ ((l, α1), γ1, χ1)
t1,2

−→ ((l, α1), γ2, χ2)
a′

−→

((l, α2), γ2, χ2) . . .
t1,k+1

−→ ((l, αk), γk+1, χk+1)
δ

−→ ((l, αk+1), γk+1, χk+1) where

1. a, a′ ∈ {δ,X},
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(1, 2+, 1)

s, (0, 1)

(1+, 2+, 1+)

s, (0, 1)
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Fig. 4.1.2. Marked Weighted Automaton M corresponding to the W-IRTA of Fig-
ure 4.1.1. Locations of M are of the form (l, α, r) Where l is a location in A,
α = (Ix, Iy, In) ∈ R the set of regions for the set X ∪ {n} and r ∈ N|Z| is the
cost of the location. Intervals of α are represented as follows: c for [c], c+ for (c, c+ 1)
if c < cm (here cm =2) else c+ stands for (cm,∞). Also note that for readability, some
of the states have been replicated and the resets and guards of f associated with δ

and X edges are not shown. s(0,0,0) stands for the δ − X sequence starting at location
(s, (0, 0, 0)).
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n = 1?

n := 0

n ≥ 0?
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(1, 1)
n = 1?

n := 0

Fig. 4.1.3. Single clock W-IRTA A′ corresponding to MWA M of Figure 4.1.

2. The δ,X moves strictly alternate,
3. The location (l, αk+1) has a self loop on δ,X in MA.

Let L′ = {lα | (l, α) ∈ L×R}. The one clock WIRTA is built by considering L′

as the set of locations. Recall that the locations of MA were of the form (l, α)
where α was a region for X ∪{n}. α(n) was made zero after an ǫ transition only
whenever some clock x ∈ X was reset as part of the transition in A. Thus, the
clock n records the time elpased between 2 reset transitions of A. Here, we use
this clock n as the only clock of A′. The initial location will be sα0

, where s ∈ L0

and α0 is the region (0, 0, . . . , 0). Treating a sequence lα as a location, we can
enable transitions from lα whenever there was a transition from (l, αi) in MA.
The guard to be satisfied on such a transition is that the value of n agrees with
αi(n).

The discrete transitions in A′ are defined as follows: a transition is taken from
a location lα to a location l′α′ on (ϕ, {n}) with ϕ defined as n ∈ αi(n) whenever
there is an ǫ transition in MA from (l, αi) to (l′, α′

j) such that (l, αi) (respectively
(l′, α′

j)) is a location in the sequence lα (respectively l′α′). The transition does
not reset n if α′

j(n) 6= 0 else if α′
j(n) = 0 then it resets n. Formally, the definition

of the one clock WIRTA is given below.

Definition 11. Let MA = (Q,Q0, {f}, Z, Em, θm, Cm) be the marked automa-
ton corresponding to a WIRTA A. Construct the one clock WIRTA A′ =
(L′, L′

0, {n}, Z, E
′, θ′, C′) as follows:

– L′ = {lα | (l, α) ∈ Q},
– L′

0 = {sα | (s, α) ∈ Q0},
– Z= the set of costs as in MA,
– E′ ⊆ L′ ×G(X ′)×U0(X

′)×L′ consists of transitions e = (lα, ϕ, φ, l
′
α′) ∈ E′

iff there exists em = ((l, αi), ǫ, (l
′, α′

j)) ∈ Em with ϕ defined as n ∈ αi(n)
and φ = {n} iff α′

j(n) = 0, lα[i] = (l, αi) and l′α′ [j] = (l′, α′
j)



– θ′ : L′ → 2Σ is given as θ(lα) = θm(l, α), where (l, α) ∈ Q,
– C′ : L′ ∪ E′ → N|Z| is defined as C′(lα) = Cm(l, α) where (l, α) ∈ Q,
C′(e) = Cm(em) where e ∈ E′ is the edge defined above corresponding to an
edge em of Em.

The semantics of A′ are given by the labelled timed transition system TA′ in the
usual way.

A path ρ in TA′ is a finite(infinite) sequence of consecutive transitions of the

form (lα, ν0, µ0)
t1−→ (lα, ν1, µ1)

(ϕ,φ)
−→ (l′α′ , ν2, µ2) . . .

(ϕ′,φ′)
−→ (lnβ , νm, µm). Recall

that g(ρ) = (lα, t0)(lα, t1)(l
′
α′ , t1) . . . (l

n
β , tn). Simplifying notation, we say that

g(ρ) = (l, t0)(l, t1)(l
′, t1) . . . (l

n, tn).

Lemma 9. Let MA=(Q,Q0, {f}, Z, Em, θm, Cm) be the marked automaton ob-
tained from a WIRTA A and let A′=(L′, L′

0, {n}, Z, E
′, θ′, C′) be its one clock

WIRTA.

1. For every path ρm of TM where the δ,X strictly alternate, there exists a path
ρ of TA′ such that ρ, ρm are consistent.

2. For every path ρ of TA′ , there exists a path ρm of TM such that ρ, ρm are
consistent.

3. Let ρ be a path in TA′ consistent with a path ρ′ in TM. Then all paths ρ′′ in
TA′ such that ρ′′ ∼= ρ will be consistent with ρ′.

Proof. 1. We prove by induction on the number of ǫ transitions in a path ρ of
TM with strictly alternating δ,X. For the base case, consider a path ρ from

the initial state given by ρ = ((l, α0), γ0, χ0)
t1,1

−→ ((l, α0), γ1, χ1)
δ

−→

((l, α1), γ1, χ1)
t1,2

−→ ((l, α1), γ2, χ2)
X
−→ ((l, α2), 0, χ2) . . .

t1,k+1

−→

((l, αk−1), γk, χk)
δ

−→ ((l, αk), γk, χk)
ǫ

−→ ((l′, α′), γ′, χ′) with k X’s
and k + 1 δ’s. Clearly, 0 < ti,j − ti,j−1 < 1 for 1 ≤ j ≤ k + 1, α0(n) = 0,
αk+1(n) ∈ (k, k + 1). Also, α′(n) = αk+1(n). By construction of A′,

there exists a transition lα0

ϕ,∅
−→ l′α′ where ϕ is defined as n ∈ (k, k + 1).

Therefore, there is a path ρ′ = (lα0
, ν0, µ0)

t1,k+1

−→ (lα0
, ν′0, µ

′
0)

ϕ,φ
−→ (l′α′ , ν1, µ1)

in TA′ such that ν0(n) ∈ α0(n), ν′0(n) ∈ αk+1(n), and ν1(n) ∈ α′(n).
Also, since the cost of locations lα is same as that of (l, α), we have
χ0 = µ0, χk = χ0 + Cm(l, α) ∗ t1,k+1 = µ0 + C′(lα) ∗ t1,k+1 = µ′

0 and
µ1 = µ′

0 + C(lα, ϕ, φ, l
′
α′) = χk + Cm((l, α), ǫ, (l′, α′)) = χ′. Therefore, we

have a path in TA′ which preserves the cost.

Now, g(ρ′) = (l, 0)(l, t1,k+1)(l
′, t1,k+1), f(g(ρ′)) = l dte(t1,k+1, 0) l′. Using

Proposition 4, we have h(ρ) = l dte(t1,k+1, 0) l′. Thus, f(g(ρ′)) = h(ρ).
The cases when the last discrete move in ρ before the ǫ happens on a X can
be handled similarly.
For the inductive hypothesis, assume that for all paths ρ in MA having ≤ j−
1 ǫ transitions, there exist paths ρ′ in TA′ consistent with ρ. Consider a path
ρ in MA having j ǫ transitions. We can break ρ into 2 paths ρ1, ρ2 having



j − 1 ǫ transitions and one ǫ transition respectively. Using the inductive
hypothesis, we obtain paths ρ′1, ρ

′
2 in TA′ consistent with ρ1, ρ2. Then the

path ρ′ in TA′ obtained by joining ρ′1 and ρ′2 will be such that h(ρ′) = f(g(ρ)).
2. Can be proved similar to 1.
3. This is same as in Lemma 8.

⊓⊔

Theorem 2. Let A be a WIRTA and let A′ be the one clock WIRTA obtained
from MA. Then for every path ρ ∈ TA, there is a path ρ′ in TA′ such that
ρ ∼= ρ′. Further, the accumulated costs in the corresponding locations of ρ, ρ′ are
identical.

Proof. The proof follows from Lemmas 8 and 9. ⊓⊔

Complexity

Let cm be the highest constant that is used in the guards of a WIRTA A =
(L,L0, X, Z,E, θ, C). Then for each x ∈ X , the number of intervals Ix is 2 ∗
(cm + 1). Thus the number of regions of A is (2 ∗ (cm + 1))|X|. The number of
locations in the marked automaton MA = (Q,Q0, {f}, Xm, Z, Em, θm, Cm) is
|Q| = |L| × (2 ∗ cm + 2)|X|+1. Each δ − X sequence lα is a location in A′. The
number of δ−X sequences is |L′| = |L| × (2 ∗ cm + 2)|X|+1. Thus, starting from
a WIRTA A with |L| locations, we can obtain a one clock path preserving, cost
preserving single clock WIRTA A′ with number of locations |L|×(2∗cm+2)|X|+1.

Theorem 3. Modelchecking WCTL1 on WIRTA is decidable.

Proof. Combine the proof of Theorem 2 with the decidability of modelchecking
WCTL1 on WTAs [15]. ⊓⊔



5 Undecidability Result

In this section, we describe two undecidability results: one for showing that
WCTL2r model checking is undecidable on WIRTAs with 3 stopwatch costs
and 1 clock, and the second for showing the undecidability of WCTL1 model
checking on WTAs with 2 clocks and 1 stopwatch cost.

Deterministic Two Counter Machine :

A deterministic two counter machine M consists of a two counters C1 and C2

and a finite sequence of labelled instructions. For a counter C ∈ {C1, C2}, the
permitted instructions are as follows :

1. li : goto lk
2. li : C = C + 1
3. li : C = C − 1
4. li : if C = 0 goto l1i else goto l

2
i

5. li : halt

Without loss of generality, assume that the instructions are labelled l1, . . . , ln
where ln = HALT (a special instruction) and that in the initial configuration,
both counters have value zero. The behavior of the machine is described by a pos-
sibly infinite sequence of configurations 〈l1, 0, 0〉, 〈l1, C1

1 , C
1
2 〉, . . . 〈lk, C

k
1 , C

k
2 〉 . . .

where Ck
1 and Ck

2 are the respective counter values and lk is the label of the kth
instruction. The halting problem of such a machine is known to be undecidable
[24].

In the following sections, we show that model checking of some of
the subclasses of the logics introduced in the Section 2.3 over WTA is
undeciable. Some of the results are over W-IRTA and due to the re-
sult of Section 3.1, only a single clock has been considered. Note that in
the following sections we shall represent the state (l, ν, µ) of a WTA as
(l, 〈ν(x1), ν(x2) · · · ν(xn)〉, 〈µ(z1), µ(z2) · · ·µ(zm)〉). To indicate that the value
of a component is not important, a special symbol − would be used. Addi-
tionally, transitions representing elpase of time t in a location are shown as

(l, ν, µ)
t

−→ (l, ν′, µ′).

Lemma 10. Model checking WCTL2 on WIRTA with 1 clock and 3 stopwatch
costs is undecidable.

The proof given in [17] holds for a WRITA with minimal modifications. The
constraint x = 1? is replaced by x = 1?x := 0 while x = 0? is the constraint over
all the other edges.

Model checking WCTL2r on WIRTAs with 1 clock and 3
stopwatch costs

A WIRTA A=(L, {l1}, X, Z,E, θ, C) and a WCTL2r formula Ψ are used to
simulate a deterministic counter machine M . X = {x}, Z = {z1, z2, z3} where



zi, 1 ≤ i ≤ 3 is a stopwatch and θ(li) = li. The normal form of the vairables
is x = 0, z3 = 0, z1 = 1 − 1

2n1∗3n2
and z2 = 1 − 1

2n3∗3n4
where 1 ≤ i ≤

4, ni ≥ 0 encode the counters of M as C1 = n1 − n2 and C2 = n3 − n4. Each
instruction li of M is simulated by a sub-automaton Ai and a WCTL2r formula.
Ai (which is a WIRTA) is built such that the initial location of Ai is labelled
li. For the last instruction ln :: HALT , the sub-automata has a single state
with the label HALT . The values of all the variables are in their respective
normal forms in each li. Also the stopwatch z3 and clock constraint x = 0?
ensure that no time elapses in certain locations. Now, the final formula is given
by Ψ :: z1.z2.z3.E ψall U (HALT ∧ z3 = 0), ψall will be given at the end of
this section. The final WIRTA A is obtained by connecting all the sub-automata
Ai such that the locations li in the automata Ai−1 and Ai coincide. The initial
values are C1 = 0, C2 = 0 in M . Thus n1 = n2 = 0 and n3 = n4 = 0. Hence all
the variables are in their normal form in the start location l1. The module for
instruction li :: goto lk is given in Figure 5.0.1.

li
(0, 0, 0)

lk
(0, 0, 0)

x = 0? x = 0?

Fig. 5.0.1. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module for instruc-
tion li :: goto lk.

The instructions of M are simulated as follows.

1. Increment C1 : Increment n1 by adding 1
2n1+1∗3n2

to z1 = 1 − 1
2n1∗3n2

.

2. Decrement C2 : Increment n2 by adding 2
3 ∗ 1

2n1∗3n2
to z1 = 1 − 1

2n1∗3n2
.

3. Checking if C1 is zero : C1 = 0 iff n1 = n2. This is achieved by multipying the
value 1

2n1∗3n2
by 6 an integral number of times till it becomes 1. Multiplying

1
2n1∗3n2

by 6 once decrements both n1 and n2.
4. Identical operations can be performed with respect to counter C2 by revers-

ing the roles of z1 and z2 in all the modules pertaining to C1.

The module to increment C1 is given in Figure 5.0.2. The formula ψI1 :: I1 =⇒
E I1 U (¬I1 ∧ z3 = 0 ∧ ψcheck z 2c) ensures that the amount of time spent in
the location q1 is 1

2 ∗ (1 − z1).

Lemma 11. In the module Ai given in the Figure 5.0.2, there exists a path from
(li, 0, 〈1 − 1

2n1∗3n2
, 1 − 1

2n3∗3n4
, 0〉) to (li+1, 0, 〈1 − 1

2n1∗3n2
+ t, 1 − 1

2n3∗3n4
, 0〉)

witnessing ψI1 iff t = 1
2n1+1∗3n2

. (Due to the final formula Ψ , z3 = 0 in li+1 .)

Proof. Consider a path ρinc from (li, 0, 〈1−
1

2n1∗3n2
, 1− 1

2n3∗3n4
, 0〉) to (li+1, 0, 〈1−

1
2n1∗3n2

+ t, 1 − 1
2n3∗3n4

, 0〉). ρinc = (li, 0, 〈1 − 1
2n1∗3n2

, 1 − 1
2n3∗3n4

, 0〉)
x=0?
−→

(q1, 0, 〈1−
1

2n1∗3n2
, 1− 1

2n3∗3n4
, 0〉)

t
−→ (q1, t, 〈1−

1
2n1∗3n2

+ t, 1− 1
2n3∗3n4

, 0〉) −→

(I1, t, 〈1−
1

2n1∗3n2
+t, 1− 1

2n3∗3n4
, 0〉) −→ (q2, t, 〈1−

1
2n1∗3n2

+t, 1− 1
2n3∗3n4

, 0〉)
1−t
−→

(q2, 1, 〈1 − 1
2n1∗3n2

+ t, 1 − 1
2n3∗3n4

, 0〉)
x=1?x:=0
−→ (li+1, 0, 〈1 − 1

2n1∗3n2
+ t, 1 −



li
(0, 0, 0)

p1

(1, 0, 0)
I1

(0, 0, 1)
p2

(0, 0, 0)
li+1

(0, 0, 0)

check z 2c

x = 0? x = 0?x = 0?

x ≤ 1

x = 1?

x := 0

Fig. 5.0.2. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module Ai and
ψI1 :: I1 =⇒ E I1U(¬ I1 ∧ z3 = 0 ∧ ψcheck z 2c) to increment C1. Module check z 2c
is given in Figure 5.0.3.

1
2n3∗3n4

, 0〉).
It is clear that ρinc is a witness of ψI1 iff (I1, t, 〈1−

1
2n1∗3n2

+ t, 1− 1
2n3∗3n4

, 0〉) |=
ψI1 . From Lemma 15, it follows that ψI1 holds at (I1, t, 〈1 − 1

2n1∗3n2
+ t, 1 −

1
2n3∗3n4

, 0〉) iff t = 1
2n1+1∗3n2

. ⊓⊔

Lemma 12. In the module get2x in Figure 5.0.3, there exists a path from
(q1, t, 〈−, 0, 0〉) to (q2, t

′, 〈−, 1, t′〉) iff t′ = t.

Follows from simple calculations.

Lemma 13. In the module Add in Figure 5.0.3, there exists a path from
(a1,−, 〈δ1, δ2, 0〉) to (A, ta, 〈δ1, δ2 + ta, 0〉) witnessing ψA iff ta = δ1.

Proof. Consider a path ρA from (a1,−, 〈δ1, δ2, 0〉) to (A, ta, 〈δ1, δ2 + ta, 0〉). The
value of x is the time ta spent in a2 iff no time elpases in A. It is clear from
the module that (A, ta, 〈δ1, δ2 + ta, 0〉) |= ψA iff ta = δ1 as upon reaching AF ,
z1 = δ1 + t′ = 1 and x = ta + t′ = 1. Here t′ is the time spent in location a3. ⊓⊔

Lemma 14. In the module check in Figure 5.0.3, if the initial values were z1 =
1 − α+ t, z2 = t3 and z3 = t then ψC2

holds iff t3 = α.

Proof. Consider a path ρC2
from (C1, ζ, 〈1 − α + t, t3, t〉) to location C2F .

ψC2
= (C1, ζ, 〈1 − α + t, t3, t〉)

2−ζ
−→ (C1, 2, 〈1 − α + t, t3, t〉)

x=2?x:=0
−→

(C2, 0, 〈1 − α + t, t3, t〉)
t22−→ (C2, t22, 〈1 − α + t + t22, t3, t〉) −→

(C3, t22, 〈1−α+ t+ t22, t3, t〉)
1−t22−→ (C3, 1, 〈1−α+ t+ t22, t3 +1− t22, t〉)

x=1?x:=0
−→

(C4, 0, 〈1−α+t+t22, t3+1−t22, t〉)
1

−→ (C4, 1, 〈1−α+t+t22, t3+1−t22, t+1〉) −→

(C5, 1, 〈1−α+ t+ t22, t3+1− t22, t+1〉)
t25−→ (C5, 1+ t25, 〈1−α+ t+ t22+ t25, t3+

1− t22, t+1+ t25〉) −→ (C2F , 1+ t25, 〈1−α+ t+ t22+ t25, t3 +1− t22, t+1+ t25〉).

ρC2
is a witness of ψC2

iff z1 = 1 − α + t + t22 + t25 = 2 and
z2 = t3 + 1 − t22 = 1 and z3 = t + 1 + t25 = 2. Thus t22 = t3 and
t25 = 1 − t and 1 − α + t + t3 + 1 − t = 2 ⇐⇒ t3 = α. It follows from simple
calculations that ρC2

is a witness of ψC2
iff t3 = α.

Thus this module checks if the value in z2 is 1 − z1 + z3. ⊓⊔



q1
(0, 1, 0)
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Module get2x

x = 1?
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Module Add
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x = 1
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c5
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Module check

x = 2?

x := 0

x = 1?

x := 0

x = 1?
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C1

(0, 0, 0)
q3

(0, 1, 0)
C2

(0, 0, 0)

check

Add Add
CF

(0, 0, 0)

Module check z 2c

Fig. 5.0.3. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module Add and
formula ψA :: (A ∧ z3 = 0) =⇒ E ¬AF U (AF ∧ z1 = 1 ∧ z3 = 0) ensure that time
spent in location a2 is the same as the value in z1. Module check is associated with
the formula ψC2

:: C2 =⇒ E ¬C2F U (C2F ∧ z2 = 1 ∧ z1 = 2 ∧ z3 = 2). Module
check z 2c is associated with the formula ψcheck z 2c :: z2.z3. E ¬C1 U [C1 ∧ z2 =
1 ∧ z2. E ¬C2 U {C2 ∧ ψC2

∧ z3. E (¬CF ∧ ψA) U (CF ∧ z2 = 2 ∧ z3 = 0)}]



Lemma 15. In the module check z 2c in Figure 5.0.3, if the initial values were
z1 = 1−α+ t and x = t then ψcheck z 2c holds iff t = α

2 . (Note that 0 ≤ α, t ≤ 1)

Proof. In the module check z 2c, along a path from location q1 to CF , the value
in z2 = α before entering the first Add module (from Lemmas 12 and 14). Due to
Lemma 13, the value in z2 = α+1−α+ t+1−α+ t when CF is reached. Such a
path is a witness of ψcheck z 2c iff z2 = α+1−α+t+1−α+t = 2 ⇐⇒ t = α

2 . ⊓⊔

Proof. Consider a path ρcheck z 2c from (q1, t, 〈1 − α + t, 0, 0〉) to location CF .

ρcheck z 2c = (q1, t, 〈1 − α + t, 0, 0〉)
1−t
−→ (q1, 1, 〈1 − α + t, 1 − t, 0〉)

x=1?x:=0
−→

(q2, 0, 〈1 − α + t, 1 − t, 0〉)
t′

−→ (q2, t
′, 〈1 − α + t, 1 − t + t′, t′〉) −→ (C1, t

′, 〈1 −
α+ t, 1− t+ t′, t′〉) · · · . ρcheck z 2c is a witness of ψcheck z 2c iff 1− t+ t′ = 1 and
(C1, t

′, 〈1−α+t, 0, t′〉) |= E ¬C2 U {C2 ∧ ψC2
∧ z3. E (¬CF ∧ ψA) U (CF ∧ z2 =

2 ∧ z3 = 0)}. From Lemma 12, it follows that t′ = t.

Consider a path ρC1
starting from (C1, t, 〈1 − α + t, 0, t〉). As it is not

going to affect the stopwatch costs, let the time spent in locations C1 and

C2 be 0. ρC1
= (C1, t, 〈1 − α + t, 0, t〉) −→ (q3, t, 〈1 − α + t, 0, t〉)

t3−→
(q3, t+ t3, 〈1 − α+ t, t3, t〉) −→ (C2, t+ t3, 〈1 − α+ t, t3, t〉). ρC1

is a witness of
E ¬C2 U {C2 ∧ ψC2

∧ z3. E (¬CF ∧ ψA) U (CF ∧ z2 = 2 ∧ z3 = 0)}
iff (C2, t + t3, 〈1 − α + t, t3, t〉) |= ψC2

and (C2, t + t3, 〈1 − α + t, t3, 0〉) |=
E (¬CF ∧ ψA) U (CF ∧ z2 = 2 ∧ z3 = 0). From Lemma 14, it is clear that t3 = α.

Consider a path ρCF
from (C2, t + α, 〈1 − α + t, α, 0〉) to location CF .

ρCF
= (C2, t+ α, 〈1 − α+ t, α, 0〉) −→ (a1, t+ α, 〈1 − α+ t, α, 0〉)ρA(A, 1 − α+

t, 〈1−α+t, α+1−α+t, 0〉)ρA(A, 1−α+t, 〈1−α+t, α+1−α+t+1−α+t, 0〉)−→
(CF , 1−α+t, 〈1−α+t, α+1−α+t+1−α+t, 0〉). ρA is the path as in Lemma 13.

ρCF
is a witness of E (¬CF ∧ ψA) U (CF ∧ z2 = 2 ∧ z3 = 0) iff

z2 = α + 1 − α + t + 1 − α + t = 2 ⇐⇒ t = α
2 . (Note that no time elapse has

been considered in locations A as z3 = 0 upon reaching CF .)

Thus for the module check z 2c if the initial values were z1 = 1 − α+ t and
x = t then ψcheck z 2c holds iff t = α

2 . ⊓⊔

In module check z 2c of Figure 5.0.3, it is important to ensure that the
value of x does not go beyond 1 (2) before the reset x = 1?x := 0 (x = 2?x := 0)
even when it is not accounted for in the calculations. From Figure 5.0.2, it is
clear that when the module check z 2c is entered, 0 ≤ x ≤ 1. Thus the total
time elpased in locations q2 and q3 is atmost 2. Similar argument holds in all
the resets in other modules too.

Module to increment n2 is similar to that in Figure 5.0.2 with the I1 replaced
by D1, check z 2c replaced by another module check z 3c. This module is
obtained from check z 2c by an additional Add before location CF . The formula
ψcheck z 3c would compare z2 = 3 instead of z2 = 2 as in ψcheck z 2c. As a



consequence of this modification z2 = α+ 1 − α+ t+ 1 − α+ t+ 1 − α+ t = 3
when CF is reached, which in turn ensures that t = 2

3 ∗ α. Thus the formula
to decrement counter C1 is ψD1

:: D1 =⇒ E D1 U (¬D1 ∧ z3 = 0 ∧ ψcheck z 3c).

li
(0, 0, 0)

l11
(0, 0, 0)

l21
(0, 0, 0)

l1i
(0, 0, 0)

l2i
(0, 0, 0)

check n1 = n2

check n1 = n2

x = 0?

x = 0?

x = 0?

x = 0?

x = 0?

Fig. 5.0.4. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module Az and
formula ψZ1

check if counter C1 is zero. ψZ1
:: (l11 =⇒ ψcheck n1=n2

) ∧ (l21 =⇒
¬ψcheck n1=n2

). Module check n1 = n2 is given in Figure 5.0.5

The module Az given in Figure 5.0.4 and the formula ψZ1
together ensure

that C1 is zero iff location q1i is reached (else q2i is reached). From the encoding
of C1 as n1 − n2 it follows that C1 = 0 iff n1 = n2. One way of checking
whether n1 = n2 is to simultaneousy decrement both n1 and n2 and check if
both of them are zero after each step. As both n1 and n2 are encoded by the
stopwatch z1 = 1 − 1

2n1∗3n2
, simultaneous decrement of n1 and n2 is achieved

by first extracting 1
2n1∗3n2

into stopwatch z2 and adding to z2 its own value to
decrement n1 and then adding 2 ∗ z2 to decrement n2. Thus decrementing n1

and n2 once, leaves z2 with 6 ∗ 1
2n1∗3n2

= 1
2n1−1∗3n2−1 . This is done in a loop

untill z2 = 1. After i loops, if z2 = 1 then 6i ∗ 1
2n1∗3n2

= 1, thus indicating
that n1 = n2. The module check n1 = n2 = i in Figure 5.0.5 does the above
calculation.

Lemma 16. In the module check z2 = 1−z1 in Figure 5.0.5, if the initial values
were z1 = 1 − α, z2 = t and z3 = 0 then ψM1

holds iff t = α.

Proof. Consider a path ρM1
= (m1,−, 〈1 − α, t, 0〉)

t11−→ (m1,−, 〈1 − α, t +

t11, t11〉) −→ (m2,−, 〈1 − α, t + t11, t11〉)
t12−→ (m2,−, 〈1 − α + t12, t + t11, t11 +

t12〉) −→ (M1F ,−, 〈1 − α+ t12, t+ t11, t11 + t12〉).

ρM1
is a witness of ψM1

iff z1 = 1 − α + t12 = 1 and z2 = t + t11 = 1 and
z3 = t11 + t12 = 1. Thus t = α. ⊓⊔
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M1F
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M0

(0, 1, 0)
M1

(0, 0, 0)

check z2 = 1 − z1

Dec n1 Dec n2
MF

(0, 0, 0)

Module check n1 = n2

x = 0?

Fig. 5.0.5. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module
check n1 = n2 checks if n1 = n2 with the help of the formula ψcheck n1=n2

::
z2.z3. E (¬MF ∧ ψM1

∧ ψDn1
∧ ψDn2

)U(MF ∧ z3 = 0 ∧ z2 = 1). Here
ψM1

:: M1 =⇒ E ¬M1F U(M1F ∧ z2 = 1 ∧ z3 = 1 ∧ z1 = 1) pertains to the
module check z2 = 1 − z1. The formulae ψDn1

:: Dn1
=⇒ E Dn2

U(¬Dn2
∧ z3 =

0 ∧ ψcheck 2∗x=z2
) and ψDn2

:: Dn2
=⇒ E Dn1

U(¬Dn1
∧ z3 = 0 ∧ ψcheck 3∗x=2∗z2

)
ensure that n1 and n2 are decremented respectively. Module check 3 ∗ x = 2 ∗ z2 is
given in Figure 5.0.7 and Module check 2 ∗ x = z2 is in Figure 5.0.6.



Lemma 17. In the module Dec n1 in Figure 5.0.5, there exists a path from
(d11,−, 〈−, α, 0〉) to (Dn1

, td1, 〈−, α+ td1, 0〉) witnessing ψDn1
iff td1 = α.

In the module Dec n2 in Figure 5.0.5, there exists a path from (d21,−, 〈−, β, 0〉)
to (Dn2

, td1, 〈−, β + td2, 0〉) witnessing ψDn2
iff td2 = 2 ∗ β.

Proof. As no time elpases in locations Dn1
and Dn2

(due to ψDn1
and ψDn2

),
td1 = α and td2 = 2 ∗ β follow from Lemmas 20 and 23. ⊓⊔

Lemma 18. In the module check n1 = n2 in Figure 5.0.5, if the initial values
were z1 = 1 − 1

2n1∗3n2
then ψcheck n1=n2

holds iff n1 = n2 (that is iff C1 = 0).

Proof. For simplicity of argument assume that no time elpases in locations Dn1

and Dn2
. Note that this only simplifies the paths we consider without affecting

the correctness of the argument. (z3 = 0 clause in ψcheck n1=n2
upon reaching

MF ensures that no time elpases in these locations anyways.) Also as it does
not affect our computations in assume that no time elpases in location M1 too.

Let α = 1
2n1∗3n2

. Consider a path ρcheck n1=n2
from (M0, 0, 〈1 − α, 0, 0〉) to

location MF . ρcheck n1=n2
= (M0, 0, 〈1 − α, 0, 0〉)

t
−→ (M0, t, 〈1 − α, t, 0〉) −→

(M1, t, 〈1 − α, t, 0〉)ρend.
ρcheck n1=n2

is a witness of ψcheck n1=n2
iff

1. (M1, t, 〈1 − α, t, 0〉) |= ψM1
⇐⇒ t = α from Lemma 16.

2. For every occurence of locations Dn1
and Dn2

, (Dn1
, td1, 〈1−α, t+ td1, 0〉) |=

ψDn1
and (Dn2

, td2, 〈1− α, t+ td1 + td2, 0〉) |= ψDn2
⇐⇒ t+ td1 = 2 ∗ α and

t+ td1 + td2 = 2 ∗ α+ 2 ∗ (2 ∗ α) = 6 ∗ α from Lemma 17.
3. ρend = (MF , t, 〈1 − α, t, 0〉) (if n1 = n2 = 0 then t = α = 1) or

ρend = (d11, t, 〈1−α, t, 0〉)
ρd1

99K (Dn1
, td1, 〈1−α, t+ td1, 0〉) −→ (d21, td1, 〈1−

α, t + td1, 0〉)
ρd2

99K (Dn2
, td2, 〈1 − α, t + td1 + td2, 0〉)ρend. (Here ρd1 and ρd2

are paths in modules Dec n1 and Dec n2 respectively.)
Thus after looping i times if (MF ,−, 〈1 − α, 1, 0〉) is reached then 6i ∗ α =
1 ⇐⇒ n1 = n2.

⊓⊔

Lemma 19. In the module check x = z3 in Figure 5.0.6, if the initial values
were z3 = t, z1 = 0 and x = t2 then ψcheck x=z3

holds iff t2 = α.

Follows from simple calculations.

Lemma 20. In the module check 2 ∗x = z2 in Figure 5.0.6, if the initial values
were z2 = α+ t and x = t then ψcheck 2∗x=z2

holds iff t = α.

Proof. Consider a path ρcheck 2∗x=z2
from (q1, t, 〈0, α + t, 0〉) to location

BF . ρcheck 2∗x=z2
= (q1, t, 〈0, α + t, 0〉)

ρ
get1x

99K (B1, t
′, 〈1 − t + t′, α + t, t′〉).

Then ρcheck 2∗x=z2
is a witness of ψcheck 2∗x=z2

iff z1 = 1 − t + t′ = 1 and
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Fig. 5.0.6. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module check 2 ∗
x = z2 and formula ψcheck 2∗x=z2

check if t = α given that x = t and z2 = α + t

while entering the module. Here ψcheck 2∗x=z2
:: z1.z3. E ¬B1 U [B ∧ z1 =

1 ∧ z1. E(¬BF ∧ ψcheck x=z3
) U (BF ∧ z1 = 1 ∧ z2 = 1 ∧ z3 = 1)] and

ψcheck x=z3
:: (B3 ∧ z1 = 0) =⇒ E ¬B3F U (B3F ∧ z3 = 1 ∧ z1 = 0).

(B1, t
′, 〈0, α+t, t′〉) |= E(¬BF ∧ ψcheck x=z3

) U (BF ∧ z1 = 1 ∧ z2 = 1 ∧ z3 = 1).
From argument similar to Lemma 12, it is clear that t′ = t.

Consider a path ρBF
from (B1, t, 〈0, α + t, t〉) to location BF .

ρBF
= (B1, t, 〈0, α+t, t〉)

1−t
−→ (B1, 1, 〈0, α+t, t〉)

x=1?x:=0
−→ (B2, 0, 〈0, α+t, t〉)

t12−→

(B2, t12, 〈0, α+t, t〉) −→ (B3, t12, 〈0, α+t, t〉)
t13−→ (B3, t12+t13, 〈t13, α+t, t〉) −→

(B4, t12 + t13, 〈t13, α + t, t〉)
t14−→ (B4, t12 + t13 + t14, 〈t13, α + t + t14, t〉)

x=1?
−→

(B5, 1, 〈t13, α + t + t14, t〉)
t15−→ (B5, 1 + t15, 〈t13 + t15, α + t + t14, t + t15〉) −→

(BF , 1 + t15, 〈t13 + t15, α+ t+ t14, t+ t15〉).

ρBF
is a witness of E(¬BF ∧ ψcheck x=z3

) U (BF ∧ z1 = 1 ∧ z2 = 1 ∧ z3 = 1)
iff

1. (B3, t12, 〈0, α+ t, t〉) |= ψcheck x=z3
and

2. t12 + t13 + t14 = 1 (x = 1? transition from B4 to B5) z1 = t13 + t15 = 1 and
z2 = α+ t+ t14 = 1 and z3 = t+ t15 = 1.

From Lemma 19 and the above equations it is clear that ρBF
is a witness iff

t = α. ⊓⊔

Lemma 21. In the module check z1 = z2 − z3 in Figure 5.0.7, if the initial
values were z2 = β + t, z3 = t and z1 = t2 then ψcheck z1=z2−z3

holds iff t2 = β.
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Fig. 5.0.7. WCTL2r and WIRTA with 1 clock and 3 stopwatches : Module check 3 ∗
x = 2∗z2 and formula ψcheck 3∗x=2∗z2

ensure that t = 2∗β given that the initial values
were x = t and z2 = β+t. The formula is ψcheck 3∗x=2∗z2

:: z1.z3. E ¬H1 U [H1 ∧ z1 =
1 ∧ z1. E ¬H4 U {H4 ∧ ψcheck z1=z2−z3

∧ z2. E(¬HF ∧ ψcheck x=z1
) U (HF ∧ z1 =

1 ∧ z2 = 1 ∧ z3 = 1)}]. Here ψcheck z1=z2−z3
:: H4 =⇒ E ¬H4F U (H4F ∧ z1 = 1 ∧ z2 =

1 ∧ z3 = 1) and ψcheck x=z1
:: (H5 ∧ z2 = 0) =⇒ E H5 U (H5F ∧ z1 = 1 ∧ z2 = 0).

Module get1x is in Figure 5.0.6.



Proof. Let ρcheck z1=z2−z3
be the path from (h1, 0, 〈t22, β + t, t〉) to location

H4F . ρcheck z1=z2−z3
= (h1, 0, 〈t22, β + t, t〉)

t′1−→ (h1, t
′
1, 〈t22 + t′1, β + t, t〉) −→

(h2, t
′
1, 〈t22 + t′1, β + t, t〉)

t′2−→ (h2, t
′
1 + t′2, 〈t22 + t′1, β + t, t + t′2〉)

x=1?
−→

(h3, 1, 〈t22 + t′1, β+ t, t+ t′2〉)
t′3−→ (h3, 1 + t′3, 〈t22 + t′1 + t′3, β+ t+ t′3, t+ t′2〉) −→

(H4F , 1 + t′3, 〈t22 + t′1 + t′3, β + t+ t′3, t+ t′2〉).

ρcheck z1=z2−z3
is a witness of ψcheck z1=z2−z3

iff t′1 + t′2 = 1 (due to x = 1
transition from location h2 to h3) and z1 = t22+t′1+t

′
3 = 1 and z2 = β+t+t′3 = 1

and z3 = t+ t′2 = 1. Thus ψcheck z1=z2−z3
holds iff t22 = β.

Lemma 22. In the module check x = z1 in Figure 5.0.7, if the initial values
were z1 = t2, z2 = 0 and x = t4 then ψcheck x=z1

holds iff t2 = t4.

Follows from simple calculations.

Lemma 23. In the module check 3 ∗ x = 2 ∗ z2 in Figure 5.0.7, if the initial
values were z2 = β + t and x = t then ψcheck 3∗x=2∗z2

holds iff t = 2 ∗ β.

Proof. Consider a path ρcheck 3∗x=2∗z2
from (q1, t, 〈0, β + t, 0〉)

to location HF . ρcheck 3∗x=2∗z2
= (q1, t, 〈0, β + t, 0〉)

ρ
get1x
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(H1, t
′, 〈1 − t + t′, β + t, t′〉). Then ρcheck 3∗x=2∗z2

is a witness of
ψcheck 3∗x=2∗z2

iff z1 = 1 − t + t′ = 1 and (H1, t
′, 〈0, β + t, t′〉) |=

E ¬H4 U {H4 ∧ ψcheck z1=z2−z3
∧ z2. E(¬HF ∧ ψcheck x=z1

) U (HF ∧ z1 =
1 ∧ z2 = 1 ∧ z3 = 1)}. From argument similar to Lemma 12, it is clear that t′ = t.

Consider a path ρH4
from (H1, t, 〈0, β + t, t〉) to location

H4. ρH4
= (H1, t, 〈0, β + t, t〉) −→ (H2, t, 〈0, β + t, t〉)

t22−→

(H2, t + t22, 〈t22, β + t, t〉)(H3, t + t22, 〈t22, β + t, t〉)
2−(t+t22)
−→

(H3, 2, 〈t22, β + t, t〉)
x=2?x:=0
−→ (H4, 0, 〈t22, β + t, t〉). ρH4

is a witness of
E ¬H4 U {H4 ∧ ψcheck z1=z2−z3

∧ z2. E(¬HF ∧ ψcheck x=z1
) U (HF ∧ z1 =

1 ∧ z2 = 1 ∧ z3 = 1)} iff (H4, 0, 〈t22, β + t, t〉) |= ψcheck z1=z2−z3
and

(H4, 0, 〈t22, 0, t〉) |= E(¬HF ∧ ψcheck x=z1
) U (HF ∧ z1 = 1 ∧ z2 = 1 ∧ z3 = 1).

From Lemma 22 we know that t22 = β.

Let ρHF
be a path from (H4, 0, 〈β, 0, t〉) to location HF . ρHF

=

(H4, 0, 〈β, 0, t〉)
t24−→ (H4, t24, 〈β, 0, t〉) −→ (H5, t24, 〈β, 0, t〉)

t25−→ (H5, t24 +

t25, 〈β, t25, t〉) −→ (H6, t24 + t25, 〈β, t25, t〉)
t26−→ (H6, t24 + t25 + t26, 〈β, t25, t +

t26〉)
x=1?
−→ (H7, 1, 〈β, t25, t + t26〉)

t27−→ (H7, 1 + t27, 〈β + t27, t25 + t27, t +
t26〉) −→ (HF , 1 + t27, 〈β + t27, t25 + t27, t + t26〉). This path is a witness of
E(¬HF ∧ ψcheck x=z1

) U (HF ∧ z1 = 1 ∧ z2 = 1 ∧ z3 = 1) iff

1. (H5, t24, 〈β, 0, t〉) |= ψcheck x=z1
⇐⇒ t24 = β from Lemma 22.

2. t24 + t25 + t26 = 1 and z1 = β + t27 = 1 and z2 = t25 + t27 = 1 and
z3 = t+ t26 = 1.



Thus ψcheck x=z1
holds iff t = 2 ∗ β. ⊓⊔

Now, we shall describe the final formula which will ensure that
all the modules are associated with their respective formulae. Ψ ::
z1.z2.z3.E ψall U (HALT ∧ z3 = 0) where ψall ::

∧

i=1,2 ψIi
∧ ψDi

∧ ψZi
.

Theorem 4. If M is the two counter machine represented by A and Ψ then
A, (l1, 0, 〈0, 0, 0〉) |= Ψ iff M halts.

Proof. We show that if A, (l1, 0, 〈0, 0, 0〉) |= Ψ then M halts by building the
halting computation of M .

Let ρ be the path witnessing Ψ . Then ρ = (l0, 0, 〈0, 0, 0〉)
x=0?
−→ · · ·

x=0?
−→

(HALT,−, 〈−,−, 0〉) such that ψall holds in all the states.

From the construction we know that the sub-automaton starting at
(li, 0, 〈−,−, 0〉) simulates the instruction li in M . Let s be a state occuring in ρ.

– If s = (li, 0, 〈−,−, 0〉) or s = (lj ,−, 〈−,−, 0〉) then it trivially satisfies ψall.
– If s = (I1, t, 〈1 − 1

2n1∗3n2
+ t,−, 0〉) then it satifies ψall iff it satisfies ψI1 .

From Lemma 11, we know that if s |= ψI1 then t = 1
2 ∗ 1

2n1∗3n2
. Thus n1 has

been incremented. Thus s = (I1,
1

2n1+1∗3n2
, 〈1 − 1

2n1+1∗3n2
,−, 0〉).

– Similarly if s = (D1, t, 〈1−
1

2n1∗3n2
+ t,−, 0〉) or s = (I2, t, 〈−, 1−

1
2n3∗3n4

+
t, 0〉) or s = (D2, t, 〈−, 1 − 1

2n3∗3n4
+ t, 0〉), then n2 or n3 or n4 have been

incremented respectively.
– If s = (l11, 0, 〈1−

1
2n1∗3n2

,−, 0〉) then s |= ψZ1
and thus satisfies ψcheck n1=n2

.
From Lemma 18 it follows that n1 = n2. Similarly if s = (l21, 0, 〈1 −

1
2n1∗3n2

,−, 0〉) then n1 6= n2.

From the construction of A, we know that locations labelled li coincide
in the sub-automaton. Also, it is clear from A and Ψ that no time elpases
in locations li, Ij, Dj, l

1
j and l2j , ∀i and j ∈ {1, 2}. Consider the case where

s = (I1, t, 〈1 − 1
2n1∗3n2

+ t,−, 0〉) is a state in ρ. As no time elapses in I1, there
is a single instance of I1 between two consecutive occurences of li and li+1 and
s |= ψI1 . Hence the state (li+1,

1
2n1+1∗3n2

, 〈1 − 1
2n1+1∗3n2

,−, 0〉) is reached after
s. This ensures that values of stopwatch costs updated by the module Ai+1 are
indeed the result of the instruction li simulated by Ai. Thus A and Ψ simulateM .

From the argument above it is clear that there is a single occurence of state
(li, 0, 〈−,−,−〉) in ρ, ∀i. Associate a tuple (li, (n

i
1 − ni

2), (n
i
3 − ni

4)) with each
state (li, 0, 〈1−

1

2ni
1∗3ni

2

, 1− 1

2ni
3∗3ni

4

, 0〉) in ρ. Now the path ρ gives a sequence of

tuples (l1, 0, 0)(l2,−,−) · · · (HALT,−,−). This sequence represents the halting
computation of M .

To show that if M halts then A, (l1, 〈0, 0, 0〉) |= Ψ we construct a path ρ′

witnessing Ψ using the halting computation of M .



Without loss of generality, let (l1, 0, 0)(l2, 1,−) · · · (li, Ci
1, C

i
2) · · · (HALT,−,−)

be the halting computation of M . Construct another sequence of tuples
(l1, (0−0), (0−0))(l2, (1−0), (0−0)) · · · (li, (n

i
1−n

i
2), (n

i
3−n

i
4)) · · · (HALT,−,−)

such that ∀i, ni
1 − ni

2 = Ci
1 and ni

3 − ni
4 = Ci

2. Now construct a
path ρ′ in A such that ρ′ = (l1, 0, 〈0, 0, 0〉) 99K (I1,

1
2 , 〈

1
2 , 0, 0〉) 99K

(l2, 0, 〈
1
2 , 0, 0〉) · · · (li, 0, 〈1 − 1

2ni
1∗3ni

2

, 1 − 1

2ni
3∗3ni

4

, 0〉) · · · (HALT,−, 〈−,−, 0〉).

Additionally, if the instruction li corresponds to checking if C1 = 0 then select
state (l11, 0, 〈−,−,−〉) after (li, 0, 〈−,−,−〉) if Ci

1 = ni
1 − ni

2 = 0 else choose
(l21, 0, 〈−,−,−〉).

It is clear from ρ′ that no time elpases in locations li, Ij, Dj,
l1j and l2j , ∀i and j ∈ {1, 2}. From Lemma 11 it follows that ∀i,

(I1,
1

2ni
1
+1∗3ni

2

, 〈1 − 1

2ni
1
+1∗3ni

2

,−, 0〉) |= ψI1 . Similar argument holds for locations

I2, D1, D2. Also from Lemma 18 if Ci
1 = 0 then (l11, 0, 〈−,−,−〉) |= ψZ1

else
(l21, 0, 〈−,−,−〉) |= ¬ψZ1

. Thus ρ′ is a witness of Ψ as ψall holds in all states in ρ′.

Thus A, (l1, 0, 〈0, 0, 0〉) |= Ψ iff M halts. ⊓⊔

Theorem 5. The WCTL2r modelchecking problem on WIRTAs with 1 clock
and 3 stopwatch costs is undecidable.

This result follows from the construction of A, WCTL2r formula Ψ and Theorem
4.



6 Conclusion

In this report, we have studied of the WCTL model checking problem on WTAs.
We have identified a subclass of WTAs on which WCTL1 model checking is de-
cidable, irrespective of the number of clocks and costs. The question forWCTL2r

is undecidable with WIRTAs having 3 stopwatch costs and 1 clock. Some inter-
esting questions that need to be answered are (i) The decidability question for
model checking WCTL2 on WIRTA (ii) Model checking WCTL1 with multi-
constrained modalities.

6.1 Future work

We propose to continue the study of model checking with the following open
problems.

1. WCTL2 over WIRTA.
2. WCTL2r over WIRTA with costs.
3. WCTL1 with multi constrained modalities.
4. Reducing the number of stopwatches in the undecidability result.

Additionally, we would like to investigate other interesting subclasses of WTA
and variations of WCTL.
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