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Abstract

Much recent work focuses on formal in-
terpretation of natural question utterances,
with the goal of executing the resulting
structured queries on knowledge graphs
(KGs) such as Freebase. Here we address
two limitations of this approach when ap-
plied to open-domain, entity-oriented Web
queries. First, Web queries are rarely well-
formed questions. They are “telegraphic”,
with missing verbs, prepositions, clauses,
case and phrase clues. Second, the KG is
always incomplete, unable to directly an-
swer many queries. We propose a novel
technique to segment a telegraphic query
and assign a coarse-grained purpose to
each segment: a base entity e1, a rela-
tion type r, a target entity type t2, and
contextual words s. The query seeks en-
tity e2 ∈ t2 where r(e1, e2) holds, fur-
ther evidenced by schema-agnostic words
s. Query segmentation is integrated with
the KG and an unstructured corpus where
mentions of entities have been linked to
the KG. We do not trust the best or any
specific query segmentation. Instead, evi-
dence in favor of candidate e2s are aggre-
gated across several segmentations. Ex-
tensive experiments on the ClueWeb cor-
pus and parts of Freebase as our KG, us-
ing over a thousand telegraphic queries
adapted from TREC, INEX, and Web-
Questions, show the efficacy of our ap-
proach. For one benchmark, MAP im-
proves from 0.2–0.29 (competitive base-
lines) to 0.42 (our system). NDCG@10
improves from 0.29–0.36 to 0.54.

∗Work done as Masters student at IIT Bombay

1 Introduction

A majority of Web queries mention an entity or
type (Lin et al., 2012), as users increasingly ex-
plore the Web of objects using Web search. To
better support entity-oriented queries, commercial
Web search engines are rapidly building up large
catalogs of types, entities and relations, popu-
larly called a “knowledge graph” (KG) (Gallagher,
2012). Despite these advances, robust, Web-scale,
open-domain, entity-oriented search faces many
challenges. Here, we focus on two.

1.1 “Telegraphic” queries
First, the surface utterances of entity-oriented Web
queries are dramatically different from TREC-
or Watson-style factoid question answering (QA),
where questions are grammatically well-formed.
Web queries are usually “telegraphic”: they are
short, rarely use function words, punctuations
or clausal structure, and use relatively flexible
word orders. E.g., the natural utterance “on the
bank of which river is the Hermitage Museum lo-
cated” may be translated to the telegraphic Web
query hermitage museum river bank. Even
on well-formed question utterances, 50% of in-
terpretation failures are contributed by parsing or
structural matching failures (Kwiatkowski et al.,
2013). Telegraphic utterances will generally be
even more challenging.

Consequently, whereas TREC-QA/NLP-style
research has focused on parsing and precise in-
terpretation of a well-formed query sentence to
a strongly structured (typically graph-oriented)
query language (Kasneci et al., 2008; Pound et
al., 2012; Yahya et al., 2012; Berant et al., 2013;
Kwiatkowski et al., 2013), the Web search and in-
formation retrieval (IR) community has focused
on telegraphic queries (Guo et al., 2009; Sarkas
et al., 2010; Li et al., 2011; Pantel et al., 2012; Lin
et al., 2012; Sawant and Chakrabarti, 2013). In
terms of target schema richness, these efforts may
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appear more modest. The act of query ‘interpre-
tation’ is mainly a segmentation of query tokens
by purpose. In the example above, one may re-
port segments “Hermitage Museum” (a located ar-
tifact or named entity), and “river bank” (the target
type). This is reminiscent of record segmentation
in information extraction (IE). Over well-formed
utterances, IE baselines are quite competitive (Yao
and Van Durme, 2014). But here, we are interested
exclusively in telegraphic queries.

1.2 Incomplete knowledge graph

The second problem is that the KG is always
work in progress (Pereira, 2013), and connec-
tions found within nodes of the KG, between the
KG and the query, or the KG and unstructured
text, are often incomplete or erroneous. E.g.,
Wikipedia is considered tiny, and Freebase rather
small, compared to what is needed to answer all
but the “head” queries. Google’s Freebase an-
notations (Gabrilovich et al., 2013) on ClueWeb
(ClueWeb09, 2009) number fewer than 15 per
page to ensure precision. Fewer than 2% are to
entities in Freebase but not in Wikipedia.

It may also be difficult to harness the KG for
answering certain queries. E.g., answering the
query fastest odi century batsman, the intent of
which is to find the batsman holding the record for
the fastest century in One Day International (ODI)
cricket, may be too difficult for most KG-only sys-
tems, but may be answered quite effectively by a
system that also utilizes evidence from unstruc-
tured text.

There is a clear need for a “pay-as-you-go” ar-
chitecture that involves both the corpus and KG. A
query easily served by a curated KG should give
accurate results, but it is desirable to have a grace-
ful interpolation supported by the corpus: e.g., if
the relation r(e1, e2) is not directly evidenced in
the KG, but strongly hinted in the corpus, we still
want to use this for ranking.

1.3 Our contributions

Here, we make progress beyond the above frontier
of prior work in the following significant ways.
We present a new architecture for structural in-
terpretation of a telegraphic query into these seg-
ments (some may be empty):

• Mention/s ê1 of an entity e1,
• Mention r̂ of a relation type r,
• Mention t̂2 of a target type t2, and

• Other contextual matching words s (some-
times called selectors),

with the simultaneous intent of finding and rank-
ing entities e2 ∈ t2, such that r(e1, e2) is likely
to hold, evidenced near the matching words in un-
structured text.

Given the short, telegraphic query utterances,
we limit our scope to at most one relation mention,
unlike the complex mapping of clauses in well-
formed questions to twig and join style queries
(e.g., “find an actor whose spouse was an Italian
bookwriter”). On the other hand, we need to deal
with the unhelpful input, as well as consolidate
the KG with the corpus for ranking candidate e2s.
Despite the modest specification, our query tem-
plate is quite expressive, covering a wide range of
entity-oriented queries (Yih et al., 2014).

We present a novel discriminative graphical
model to capture the entity ranking inference task,
with query segmentation as a by-product. Ex-
tensive experiments with over a thousand entity-
seeking telegraphic queries using the ClueWeb09
corpus and a subset of Freebase show that we can
accurately predict the segmentation and intent of
telegraphic relational queries, and simultaneously
rank candidate responses with high accuracy. We
also present evidence that the KG and corpus have
synergistic salutary effects on accuracy.
§2 explores related work in more detail. §3

gives some examples fitting our query template,
explains why interpreting some of them is nontriv-
ial, and sets up notation. §4 presents our core tech-
nical contributions. §5 presents experiments. Data
can be accessed at http://bit.ly/Spva49
and http://bit.ly/WSpxvr.

2 Related work

The NLP/QA community has traditionally as-
sumed that question utterances are grammatically
well-formed, from which precise clause structure,
ground constants, variables, and connective rela-
tions can be inferred via semantic parsing (Kas-
neci et al., 2008; Pound et al., 2012; Yahya et
al., 2012; Berant et al., 2013; Kwiatkowski et
al., 2013) and translated to lambda expressions
(Liang, 2013) or SPARQL style queries (Kasneci
et al., 2008), with elaborate schema knowledge.
Such approaches are often correlated with the as-
sumption that all usable knowledge has been cu-
rated into a KG. The query is first translated to a
structured form and then “executed” on the KG. A

1105



Telegraphic query ê1 r̂ t̂2 s

first african american nobel prize winner
nobel prize winner african american first
nobel prize - winner first african american

- - winner first african american nobel prize

dave navarro first band
dave navarro band - first
dave navarro band band first

merril lynch headquarters
merril lynch headquarters - -
merril lynch - headquarters -

spanish poet died in civil war
spanish died in poet civil war
civil war died - spanish poet
spanish in poet died civil war

first american in space - - - first american in space
- - american first, in space

Figure 1: Example queries and some potential segmentations.

large corpus may be used to build relation expres-
sion models (Yao and Van Durme, 2014), but not
as supporting evidence for target entities.

In contrast, the Web and IR community gener-
ally assumes a free-form query that is often tele-
graphic (Guo et al., 2009; Sarkas et al., 2010; Li
et al., 2011). Queries being far more noisy, the
goal of structure discovery is more modest, and of-
ten takes the form of a segmentation of the query
regarded as a token sequence, assigning a broad
purpose (Pantel et al., 2012; Lin et al., 2012) to
each segment, mapping them probabilistically to
a relatively loose schema, and ranking responses
in conjunction with segmentations (Sawant and
Chakrabarti, 2013). To maintain quality in the face
of noisy input, these approaches often additionally
exploit clicks (Li et al., 2011) or a corpus that has
been annotated with entity mentions (Cheng and
Chang, 2010; Li et al., 2010). The corpus provides
contextual snippets for queries where the KG fails,
preventing the systems from falling off the “struc-
ture cliff” (Pereira, 2013).

Our work advances the capabilities of the lat-
ter class of approaches, bringing them closer to
the depth of the former, while handling telegraphic
queries and retaining the advantage of corpus evi-
dence over and above the KG. Very recently, (Yao
et al., 2014) have concluded that for current bench-
marks, deep parsing and shallow information ex-
traction give comparable interpretation accuracy.
The very recent work of (Yih et al., 2014) is simi-
lar in spirit to ours, but they do not unify segmen-
tation and answer inference, along with corpus ev-
idence, like we do.

3 Notation and examples

We use e1, r, t2, e2 to represent abstract nodes and
edges (MIDs in case of Freebase) from the KG,

and ê1, r̂, t̂2 to represent their textual mentions or
hints, if any, in the query. s is a set of uninterpreted
textual tokens in the query that are used to match
and collect corpus contexts that lend evidence to
candidate entities.

Figure 1 shows some telegraphic queries
with possible segmentation into the above
parts. Consider another example: dave
navarro first band. ‘Band’ is a hint for
type /music/musical group, so it com-
prises t̂2. Dave Navarro is an entity, with men-
tion words ‘dave navarro’ comprising ê1. r̂ is
made up of ‘band’, and represents the relation
/music/group member/membership. Fi-
nally, the word first cannot be mapped to any sim-
ple KG artifact, so are relegated to s (which makes
the corpus a critical part of answer inference). We
use s and ŝ interchangeably.

Generally, there will be enough noise and uncer-
tainty that the search system should try out several
of the most promising segmentations as shown in
Figure 1. The accuracy of any specific segmenta-
tion is expected to be low in such adversarial set-
tings. Therefore, support for an answer entity is
aggregated over several segmentations. The ex-
pectation is that by considering multiple interpre-
tations, the system will choose the entity with best
supporting evidence from corpus and knowledge
base.

4 Our Approach

Telegraphic queries are usually short, so we enu-
merate query token spans (with some restrictions,
similar to beam search) to propose segmentations
(§4.1). Candidate response entities are lined up
for each interpretation, and then scored in a global
model along with query segmentations (§4.2).
§4.3 describes how model parameters are trained.
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1: input: query token sequence q
2: initialize segmentations I = ∅
3: E1 = (entity, mention) pairs from linker
4: for all (e1, ê1) ∈ E1 do
5: assign label E1 to mention tokens ê1
6: for all contiguous span v ⊂ q \ ê1 do
7: label each word w ∈ v as T2R
8: label other words w ∈ q \ ê1 \ v as S
9: add segments (E1, T2R,S) to I

10: end for
11: end for
12: return candidate segmentations I

Figure 2: Generating candidate query segmenta-
tions.

4.1 Generating candidate query
segmentations

Each query token can have four labels,
E1, T2, R, S, corresponding to the mentions
of the base entity, target type, connecting relation,
and context words. We found that segments
hinting at T2 and R frequently overlapped
(e.g., ‘author’ in the query zhivago author).
In our implementation, we simplified to three
labels, E1, T2R,S, where tokens labeled T2R
are involved with both t2 and r, the proposed
structured target type and connecting relation.
Another reasonable assumption was that the base
entity mention and type/relation mentions are
contiguous token spans, whereas context words
can be scattered in multiple segments.

Figure 2 shows how candidate segmentations
are generated. For step 3, we use TagMe (Ferrag-
ina and Scaiella, 2010), an entity linker backed by
an entity gazette derived from our KG.

4.2 Graphical model

Based on the previous discussion, we assume that
an entity-seeking query q is a sequence of tokens
q1, q2, . . ., and this can be partitioned into different
kinds of subsequences, corresponding to e1, r, t2
and s, and denoted by a structured (vector) label-
ing z = z1, z2, . . .. Given sequences q and z, we
can separate out (possibly empty) token segments
ê1(q, z), t̂2(q, z), r̂(q, z), and ŝ(q, z).

A query segmentation z becomes plausible in
conjunction with proposals for e1, r, t2 and e2
from the KG. The probability Pr(z, e1, r, t2, e2|q)
is modeled as proportional to the product of sev-
eral potentials (Koller and Friedman, 2009) in a

graphical model. In subsequent subsections, we
will present the design of specific potentials.

• ΨR(q, z, r) denotes the compatibility be-
tween the relation hint segment r̂(q, z) and
a proposed relation type r in the KG (§4.2.1).
• ΨT2(q, z, t2) denotes the compatibility be-

tween the type hint segment t̂2(q, z) and a
proposed target entity type t2 in the KG
(§4.2.2).
• ΨE1,R,E2,S(q, z, e1, r, e2) is a novel corpus-

based evidence potential that measures how
strongly e1 and e2 appear in corpus snippets
in the proximity of words in ŝ(q, z), and ap-
parently related by relation type r (§4.2.3).
• ΨE1(q, z, e1) denotes the compatibility be-

tween the query segment ê1(q, z) and entity
e1 that it purportedly mentions (§4.2.4).
• ΨS(q, z) denotes selector compatibility. Se-

lectors are a fallback label, so this is pinned
arbitrarily to 1; other potentials are balanced
against this base value.
• ΨE1,R,E2(e1, r, e2) is A if the relation
r(e1, e2) exists in the KG, and is B > 0 oth-
erwise, for tuned/learnt constants A > B >
0. Note that this is a soft constraint (B > 0);
if the KG is incomplete, the corpus may be
able to supplement the required information.
• ΨE2,T2(e2, t2) is 1 if e2 belongs to t2 and

zero otherwise. In other words, candidate e2s
must be proposed to be instances of the pro-
posed t2 — this is a hard constraint, but can
be softened if desired, like ΨE1,R,E2 .

Figure 3 shows the relevant variable states as
circled nodes, and the potentials as square factor
nodes. To rank candidate entities e2, we pin the
node E2 to each entity in turn. With E2 pinned,
we perform a MAP inference over all other hidden
variables and note the score of e2 as the product of
the above potentials maximized over choices of all
other variables: score(e2) =

maxz,t2,r,e1ΨT2(q, z, t2)ΨR(q, z, r)
ΨE1(q, z, e1)ΨS(q, z)
ΨE2,T2(e2, t2)ΨE1,R,E2(e1, r, e2)
ΨE1,R,E2,S(q, z, e1, r, e2). (1)

We rank candidate e2s by decreasing score, which
is estimated by max-product message-passing
(Koller and Friedman, 2009).

As noted earlier, any of the relation/type, or
query entity partitions may be empty. To handle
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Figure 3: Graphical model for query segmentation and entity scoring. Factors/potentials are shown as
squares. A candidate e2 is observed and scored using equation (1). Query q is also observed but not
shown to reduce clutter; most potentials depend on it.

this case, we allow each of the entity, relation or
target type nodes in the graphical to take the value
⊥ or ‘null’. To support this, the value of the fac-
tor between the query segmentation node Z and
ΨE1(q, z, e1), ΨT2(q, z, t2), and ΨR(q, z, r)) are
set to suitable low values.

Next, we will describe the detailed design of
some of the key potentials introduced above.

4.2.1 Relation language model for ΨR

Potential ΨR(q, z, r) captures the compatibility
between r̂(q, z) and the proposed relation r.
E.g., if the query is steve jobs death rea-
son, and r̂ is (correctly chosen as) death rea-
son, then the correct candidate r is /people/
deceased_person/cause_of_death. An
incorrect r is /people/deceased_person/
place_of_death. An incorrect z may lead to
r̂(q, z) being jobs death.

Using corpus: Considerable variation may exist
in how r is represented textually in a query. The
relation language model needs to build a bridge
between the formal r and the textual r̂, so that
(un)likely r’s have (small) large potential. Many
approaches (Berant et al., 2013; Berant and Liang,
2014; Kwiatkowski et al., 2013; Yih et al., 2014)
to this problem have been intensely studied re-
cently. Given our need to process billions of Web
pages efficiently, we chose a pattern-based ap-
proach (Nakashole et al., 2012): with each r, dis-
cover the most strongly associated phrase patterns

from a reference corpus, then mark these patterns
into much larger payload corpus.

We started with the 2000 (out of approximately
14000) most frequent relation types in Freebase,
and the ClueWeb09 corpus annotated with Free-
base entities (Gabrilovich et al., 2013). For each
triple instance of each relation type, we located all
corpus sentences that mentioned both participat-
ing entities. We made the crude assumption that
if r(e1, e2) holds and e1, e2 co-occur in a sen-
tence then this sentence is evidence of the rela-
tionship. Each such sentence is parsed to obtain
a dependency graph using the Malt Parser (Hall
et al., 2014). Words in the path connecting the
entities are joined together and added to a candi-
date phrase dictionary, provided the path is at most
three hops. (Inspection suggested that longer de-
pendency paths mostly arise out of noisy sentences
or botched parses.) 30% of the sentences were
thus retained. Finally, we defined

ΨR(q, z, r) =
n(r, r̂(q, z))∑

p′ n(r, p′)
, (2)

where p′ ranges over all phrases that are known to
hint at r, and n(r, p) denotes the number of sen-
tences where the phrase p occurred in the depen-
dency path between the entities participating in re-
lation r.

Assuming entity co-occurrence implies evi-
dence is admittedly simplistic. However, the pri-
mary function of the relation model is to retrieve
top-k relations that are compatible with the type/s
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of e1 and the given relation hint. Moreover, the
remaining noise is further mitigated by the collec-
tive scoring in the graphical model. While we may
miss relations if they are expressed in the query
through obscure hints, allowing the relation to be
⊥ acts as a safety net.

Using Freebase relation names: As mentioned
earlier, queries may express relations differently as
compared to the corpus. A relation model based
solely on corpus annotations may not be able to
bridge that gap effectively, particularly so, because
of sparsity of corpus annotations or the rarity of
Freebase triples in ClueWeb. E.g., for the Freebase
relation /people/person/profession, we
found very few annotated sentences. One way
to address this problem is to utilize relation type
names in Freebase to map hints to relation types.
Thus, in addition to the corpus-derived relation
model, we also built a language model that used
Freebase relation type names as lemmas. E.g., the
word ‘profession’ would contribute to the relation
type /people/person/profession.

Our relation models are admittedly simple. This
is mainly because telegraphic queries may ex-
press relations very differently from natural lan-
guage text. As it is difficult to ensure precision of
query interpretation stage, our models are geared
towards recall. The system generates a large num-
ber of interpretations and relies on signals from
the corpus and KG to bring forth correct interpre-
tations.

4.2.2 Type language model for ΨT2

Similar to the relation language model, we need
a type language model to measure compatibil-
ity between t2 and t̂2(q, z). Estimating the tar-
get entity type, without over-generalizing or over-
specifying it, has always been important for QA.
E.g., when t̂2 is ‘city’, a good type language model
should prefer t2 as /location/citytown
over /location/location while avoiding
/location/es_autonomous_city.

A catalog like Freebase suggests a straight-
forward method to collect a type language model.
Each type is described by one or more phrases
through the link /common/topic/alias. We
can collect these into a micro-‘document’ and
use a standard Dirichlet-smoothed language model
from IR (Zhai, 2008). In Freebase, an entity
node (e.g., Einstein, /m/0jcx) may be linked
to a type node (e.g. /base/scientist/

physicist) using an edge with label /type/
object/type.

But relation types provide additional clues to
types of the endpoint entities. Freebase relation
types have the form /x/y/z, where x is the
domain of the relation, and y and z are string
representations of the type of the entities partic-
ipating in the relation. E.g., the (directed) re-
lation type /location/country/capital
connects from from /location/country to
/location/citytown. Therefore, “capital”
can be added to the set of descriptive phrases of
entity type /location/citytown.

It is important to note that while we use Free-
base link nomenclature for relation and type lan-
guage models, our models are not incompati-
ble with other catalogs. Indeed, most catalogs
have established ways of deriving language mod-
els that describe their various structures. For ex-
ample, most YAGO types are derived from Word-
Net synsets with associated phrasal descriptions
(lemmas). YAGO relations also have readable
names such as actedIn, isMarriedTo, etc. which
can be used to estimate language models. DB-
Pedia relations are mostly derived from (mean-
ingfully) named attributes taken from infoboxes,
hence they can be used directly. Furthermore, oth-
ers (Wu and Weld, 2007) have shown how to asso-
ciate language models with such relations.

4.2.3 Snippet scoring

The factor ΨE1,R,E2,S(q, z, e1, r, e2) should be
large if many snippets contain a mention of e1 and
e2, relation r, and many high-signal words from s.
Recall that we begin with a corpus annotated with
entity mentions. Our corpus is not directly anno-
tated with relation mentions. Therefore, we get
from relations to documents via high-confidence
phrases. Snippets are retrieved using a combined
entity + word index, and scored for a given e1, r,
e2, and selectors ŝ(q, z).

Given that relation phrases may be noisy and
that their occurrence in the snippet may not nec-
essarily mean that the given relation is being ex-
pressed, we need a scoring function that is cog-
nizant of the roles of relation phrases and enti-
ties occurring in the snippets. In a basic ver-
sion, e1, p, e2, ŝ are used to probe a combined en-
tity+word index to collect high scoring snippets,
with the score being adapted from BM25. The sec-
ond, refined scoring function used a RankSVM-
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style (Joachims, 2002) optimization.

min
λ,ξ
‖λ‖2 + C

∑
e+,e− ξe+,e− s.t.

∀e+, e− : λ · f(q,De+ , e
+) + ξe+,e− (3)

≥ λ · f(q,De− , e
−) + 1.

where e+ and e− are positive and negative enti-
ties for the query q and f(q,De, e) represents the
feature map for the set of snippets De belonging
to entity e. The assumption here is that all snip-
pets containing e+ are “positive” snippets for the
query. f consolidates various signals like the num-
ber of snippets where e occurs near query entity
e1 and a relation phrase, or the number of snippets
with high proportion of query IDF, hinting that e
is a positive entity for the given query. A partial
list of features used for snippet scoring is given in
Figure 4.

Number of snippets with distance(e2, ê1) < k1 (k1 = 5, 10)
Number of snippets with distance(e2, relation phrase) < k2

(k2 = 3, 6)
Number of snippets with relation r = ⊥
Number of snippets with relation phrases as prepositions
Number of snippets covering fraction of query IDF > k3

(k3 = 0.2, 0.4, 0.6, 0.8)

Figure 4: Sample features used for learning
weights λ to score snippets.

4.2.4 Query entity model
Potential ΨE1(q, z, e1) captures the compatibil-
ity between ê1(q, z) (i.e., the words that mention
e1) and the claimed entity e1 mentioned in the
query. We used the TagMe entity linker (Fer-
ragina and Scaiella, 2010) for annotating enti-
ties in queries. TagMe annotates the query with
Wikipedia entities, which we map to Freebase, and
use the annotation confidence scores as the poten-
tial ΨE1(q, z, e1).

4.3 Discriminative parameter training with
latent variables

We first set the potentials in (1) as explained in
§4.2 (henceforth called ‘Unoptimized’), and got
encouraging accuracy. Then we rewrote each po-
tential as

Ψ•(· · · ) = exp
(
w• · φ•(· · · )

)
(4)

or log
∏
•Ψ•(· · · ) =

∑
•w• · φ•(· · · ),

with w• being a weight vector for a specific poten-
tial •, and φ• being a corresponding feature vector.

During inference, we seek to maximize

max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e2), (5)

for a fixed w, to find the score of each candidate
entity e2. Here all w• and φ• have been collected
into unified weight and feature vectors w, φ. Dur-
ing training of w, we are given pairs of correct and
incorrect answer entities e+2 , e

−
2 , and we wish to

satisfy constraints of the form

max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e+2 ) + ξ (6)

≥ 1 + max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e−2 ),

because collecting e+2 , e
−
2 pairs is less work than

supervising with values of z, e1, t2, r, e2 for each
query. Similar distant supervision problems were
posed via bundle method by (Bergeron et al.,
2008), and (Yu and Joachims, 2009), who used
CCCP (Yuille and Rangarajan, 2006). These are
equivalent in our setting. We use the CCCP style,
and augment the objective with an additional en-
tropy term as in (Sawant and Chakrabarti, 2013).
We call this LVDT (latent variable discriminative
training) in §5.

5 Experiments

5.1 Testbed

Corpus and knowledge graph: We used the
ClueWeb09B (ClueWeb09, 2009) corpus contain-
ing 50 million Web documents. This corpus
was annotated by Google with Freebase enti-
ties (Gabrilovich et al., 2013). The average page
contains 15 entity annotations from Freebase. We
used the Freebase KG and its links to Wikipedia.

Queries: We report on two sets of entity-seeking
queries. A sample of about 800 well-formed
queries from WebQuestions (Berant et al., 2013)
were converted to telegraphic utterances (such as
would be typed into commercial search engines)
by volunteers familiar with Web search. We call
this WQT (WebQuestions, telegraphic). Queries
are accompanied by ground truth entities. The
second data set, TREC-INEX, from (Sawant and
Chakrabarti, 2013) has about 700 queries sam-
pled from TREC and INEX, available at http:
//bit.ly/WSpxvr. These come with well-
formed and telegraphic utterances, as well as
ground truth entities.
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There are some notable differences between
these query sets. For WQT, queries were gener-
ated by using Google’s query suggestions inter-
face. Volunteers were asked to find answers using
single Freebase pages. Therefore, by construction,
queries retained can be answered using the Free-
base KG alone, with a simple r(e1, ?) form. In
contrast, TREC-INEX queries provide a balanced
mix of t2 and r hints in the queries, and direct an-
swers from triples is relatively less available.

5.2 Implementation details

On an average, the pseudocode in Figure 2
generated 13 segmentations per query, with
longer queries generating more segmentations
than shorter ones.

We used an MG4J (Boldi and Vigna, 2005)
based query processor, written in Java, over en-
tity and word indices on ClueWeb09B. The in-
dex supplies snippets with a specified maximum
width, containing a mention of some entity and
satisfying a WAND (Broder et al., 2003) predi-
cate over words in ŝ. In case of phrases in the
query, the WAND threshold was computed by
adding the IDF of constituent words. The index
returned about 330,000 snippets on average for
WAND threshold of 0.6.

We retained the top 200 candidate entities from
the corpus; increasing this horizon did not give
benefits. We also considered as candidates for e2
those entities that are adjacent to e1 in the KG
via top-scoring r candidates. In order to gener-
ate supporting snippets for an interpretation con-
taining entity annotation e, we need to match e
with Google’s corpus annotations. However, re-
lying solely on corpus annotations fails to retrieve
many potential evidence snippets, because entity
annotations are sparse. Therefore we probed the
token index with the textual mention of e1 in the
query; this improved recall.

We also investigated the feasibility of our pro-
posals for interactive search. There are three major
processes involved in answering a query - gener-
ating potential interpretations, collecting/scoring
snippets, and inference (MAP for Unoptimized
and wφ(·) for LVDT). For the WQT dataset, av-
erage time per query for each stage was approx-
imately - 0.2, 16.6 and 1.3 seconds respectively.
Our (Java) code did not optimize the bottleneck
at all; only 10 hosts and no clever load balancing

were used. We believe commercial search engines
can cut this down to less than a second.

5.3 Research questions

In the rest of this section we will address these
questions:

• For telegraphic queries, is our entity-relation-
type-selector segmentation better than the
type-selector segmentation of (Sawant and
Chakrabarti, 2013)?
• When semantic parsers (Berant et al., 2013;

Kwiatkowski et al., 2013) are subjected to
telegraphic queries, how do they perform
compared to our proposal?
• Are the KG and corpus really complementary

as regards their support of accurate ranking of
candidate entities?
• Is the prediction of r and t2 from our ap-

proach better than a greedy assignment based
on local language models?

We also discuss anecdotes of successes and fail-
ures of various systems.

5.4 Benefits of relation in addition to type

Figure 5 shows entity-ranking MAP, MRR, and
NDCG@10 (n@10) for two data sets and vari-
ous systems. “No interpretation” is an IR baseline
without any KG. Type+selector is our implemen-
tation of (Sawant and Chakrabarti, 2013). Unopti-
mized and LVDT both beat “no interpretation” and
“type+selector” by wide margins. (Boldface im-
plies best performing formulation.) There are two
notable differences between S&C and our work.
First, S&C do not use the knowledge graph (KG)
and rely on a noisy corpus. This means S&C fails
to answer queries whose answers are found only
in KG. This can be seen from WQT results; they
perform only slightly better than the baseline. Sec-
ond, even for queries that can be answered through
the corpus alone, S&C miss out on two important
signals that the query may provide - namely the
query entity and the relation. Our framework not
only provides a way to use a curated and high pre-
cision knowledge graph but also attempts to pro-
vide more reachability to corpus by the use of re-
lational phrases.

In case of TREC-INEX, LVDT improves upon
the unoptimized graphical model, where for WQT,
it does not. Preliminary inspection suggests this is
because WQT has noisy and incomplete ground
truth, and LVDT trains to the noise; a non-convex
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Dataset Formulation map mrr n@10
No interpretation .205 .215 .292

TREC Type+selector .292 .306 .356
-INEX Unoptimized .409 .419 .502

LVDT .419 .436 .541
No interpretation .080 .095 .131

WQT Type+selector .116 .152 .201
Unoptimized .377 .401 .474

LVDT .295 .323 .406

Figure 5: ‘Entity-relation-type-selector’ segmen-
tation yields better accuracy than ‘type-selector’
segmentation.

objective makes matters worse. The bias in our
unoptimized model circumvents training noise.

5.5 Comparison with semantic parsers

For TREC-INEX, both unoptimized and LVDT
beat SEMPRE (Berant et al., 2013) convinc-
ingly, whether it is trained with Free917 or Web-
Questions (Figure 6).

SEMPRE’s relatively poor performance, in this
case, is explained by its complete reliance on the
knowledge graph. As discussed previously, the
TREC-INEX dataset contains a sizable proportion
of queries that may be difficult to answer using
a KG alone. When SEMPRE is compared with
our systems with a telegraphic sample of Web-
Questions (WQT), results are mixed. Our Unop-
timized model still compares favorably to SEM-
PRE, but with slimmer gains. As before, LVDT
falls behind.

Dataset Formulation map mrr n@10
SEMPRE(Free917) .154 .159 .186

TREC SEMPRE(WQ) .197 .208 .247
-INEX Unoptimized .409 .419 .502

LVDT .419 .436 .541
SEMPRE(Free917) .229 .255 .285

WQT SEMPRE(WQ) .374 .406 .449
Unoptimized .377 .401 .474

Jacana .239 .256 .329
LVDT .295 .323 .406

Figure 6: Comparison with semantic parsers.

Our smaller gains over SEMPRE in case of
WebQuestions is explained by how WebQuestions
was assembled (Berant et al., 2013). Although
Google’s query suggestions gave an eclectic pool,
only those queries survived that could be answered

using a single Freebase page, which effectively re-
duced the role of a corpus. In fact, a large frac-
tion of WQT queries cannot be answered well us-
ing the corpus alone, because FACC1 annotations
are too sparse and rarely cover common nouns and
phrases such as ‘democracy’ or ‘drug overdose’
which are needed for some WQT queries.

For WQT, our system also compares favorably
with Jacana (Yao and Van Durme, 2014). Given
that they subject their input to natural langauge
parsing, their relatively poor performance is not
unsurprsing.

5.6 Complementary benefits of KG & corpus

Figure 7 shows the synergy between the corpus
and the KG. In all cases and for all metrics, using
the corpus and KG together gives superior perfor-
mance to using any of them alone. However, it
is instructive that in case of TREC-INEX, corpus-
only is better than KG-only, whereas this is re-
versed for WQT, which also supports the above
argument.

Data Formulation map mrr n@10

T
R

E
C

-I
N

E
X

Unoptimized (KG) .201 .209 .241
Unoptimized (Corpus) .381 .388 .471
Unoptimized (Both) .409 .419 .502

LVDT (KG only) .255 .264 .293
LVDT (Corpus) .267 .272 .315
LVDT (Both) .419 .436 .541

W
Q

T

Unoptimized (KG) .329 .343 .394
Unoptimized (Corpus) .188 .228 .291
Unoptimized (Both) .377 .401 .474

LVDT (KG only) .257 .281 .345
LVDT (Corpus only) .170 .210 .280

LVDT (Both) .295 .323 .406

Figure 7: Synergy between KB and corpus.

5.7 Collective vs. greedy segmentation

To judge the quality of interpretations, we asked
paid volunteers to annotate queries with an appro-
priate relation and type, and compared them with
the interpretations associated with top-ranked en-
tities. Results in Figure 8 indicate that in spite
of noisy relation and type language models, our
formulations produce high quality interpretations
through collective inference.

Figure 9 demonstrates the benefit of collective
inference over greedy segmentation followed by
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Formulation Type Relation Type/Rel
Unoptimized (top 1) 23 49 60
Unoptimized (top 5) 29 57 68
LVDT (top 1) 25 52 61
LVDT (top 5) 33 61 69

Figure 8: Fraction of queries (%) with correct in-
terpretations of t2, r, and t2 or r, on TREC-INEX.

evaluation. Collective inference boosts absolute
MAP by as much as 0.2.

Dataset Formulation map mrr n@10
Unoptimized (greedy) .343 .347 .432

TREC Unoptimized .409 .419 .502
-INEX LVDT (greedy) 205 .214 .259

LVDT .419 .436 .541
Unoptimized (greedy) .246 .271 .335

Unoptimized .377 .401 .474
WQT LVDT (greedy) .212 .246 .317

LVDT .295 .323 .406

Figure 9: Collective vs. greedy segmentation

5.8 Discussion

Closer scrutiny revealed that collective infer-
ence often overcame errors in earlier stages
to produce a correct ranking over answer en-
tities. E.g., for the query automobile com-
pany makes spider the entity disambiguation
stage fails to identify the car Alfa Romeo Spi-
der (/m/08ys39). However, the interpretation
stage recovers from the error and segments the
query with Automobile (/m/0k4j) as the query
entity e1, /organization/organization
and /business/industry/companies as
target type t2 and relation r respectively (from the
relation/type hint ‘company’), and spider as se-

Figure 10: Comparison of various approaches for
NDCG at rank 1 to 10, TREC-INEX dataset

Figure 11: Comparison of various approaches for
NDCG at rank 1 to 10, WQT dataset

lector to arrive at the correct answer Alfa Romeo
(/m/09c50). The corpus features also play a cru-
cial role for queries which may not be accurately
represented with an appropriate logical formula.
For the query meg ryan bookstore movie, the
textual patterns for the relation ActedIn in con-
junction with the selector word ‘bookstore’ cor-
rectly identifies the answer entity You’ve Got Mail
(/m/014zwb).

We also analyzed samples of queries where
our system did not perform particularly well.
We observed that one of the recurring themes
of these queries was that their answer enti-
ties had very little corpus support, and the
type/relation hint mapped to too many or no
candidate type/relations. For example, in the
query south africa political system, the rel-
evant type/relation hint ‘political system’ could
not be mapped to /government/form_of_
government and /location/country/
form_of_government respectively.

6 Conclusion and future work

We presented a technique to partition telegraphic
entity-seeking queries into functional segments
and to rank answer entities accordingly. While
our results are favorable compared to strong prior
art, further improvements may result from relax-
ing our model to recognize multiple e1s and rs. It
may also help to deploy more sophisticated para-
phrasing models (Berant and Liang, 2014) or word
embeddings (Yih et al., 2014) for relation hints.
It would also be interesting to supplement entity-
linked corpora and curated KGs with extracted
triples (Fader et al., 2014). Another possibility is
to apply the ideas presented here to well-formed
questions.
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