Streaming Adaptation of Deep Forecasting Models using Adaptive Recurrent Units

Prathamesh Deshpande

Timeseries Forecasting

- Given a history of values of a variable of interest, predict its future values
 - Forecasting product sales.
 - Forecasting traffic congestions at a location.
- Challenges -
 - Forecast for multiple timeseries: forecast sales of all products a company makes.
 - Forecast congestions at all locations in a city.
 - Long term forecasting is another challenge

RNN based Global Models

Encoder size = 3, Decoder size = 4

RNN based Global Models

Global Models and its Challenges

- Useful to capture information common across timeseries.
- Local information about outputs y captured in RNN state
 - Capacity limited by state size
 - Even harder when timeseries are heterogeneous

Solution: Local Adaptation

Local / Domain Adaptation

- Setup Multiple tasks T_1 , T_2 , ..., $T_N \sim p(T)$ drawn from a task distribution.
- Objective Train a shared model with parameters θ such that
 - for a new task T_i , it can update the parameters to θ_i by looking at only few instance of T_i

Domain Adaptation can be used for Timeseries Forecasting.

Adaptive Recurrent Unit (ARU)

- Exploits closed form solution of least squares.
- No need to train local parameters through gradient updates.
- Makes fully local predictions.
- Output of ARU can be easily combined with global model
 - Provides fully local signals to global model.
 - Does not affect dynamics of global model.
- ARU state maintained for each timeseries.

The ARU RNN

- Given a decoder input *x* , ARU returns a fully local prediction of output.
- Local prediction is combined with RNN state and passed to next layers.
- Because ARU is closed form, gradient flow is stopped at ARU cell.

The ARU States and Equations

- ARU states are sufficient statistics required to evaluate closed form solution.
- maintained online, updates as timeseries unfolds through time axis.

 $\mathbf{g}_T^i = RNN([y_{t-1}^i, \mathbf{x}_t^i] : t = 1 \dots T | \boldsymbol{\theta}_{enc})$ Global $\mathbf{h}_t^i = FF([\mathbf{g}_T^i, \mathbf{x}_t^i] : t = T + 1 \dots T + K | \theta_{dec})$ Model $\mu_t^i = \theta_{\mu}[\mathbf{h}_t^i, 1], \quad \sigma_t^i = \log(1 + \exp(\theta_{\sigma}[\mathbf{h}_t^i, 1]))$ $\mathbf{sxx}_t^i = \boldsymbol{\alpha} \mathbf{sxx}_{t-1}^i + [\mathbf{h}_t^i \ 1]^{\mathrm{T}}[\mathbf{h}_t^i \ 1]$ ARU **States** $\mathbf{sxy}_t^i = \boldsymbol{\alpha} \, \mathbf{sxy}_{t-1}^i + [\mathbf{h}_t^i \, 1]^{\mathrm{T}}(\mathbf{y}_t^i)$ $\boldsymbol{\theta}_{t,\,\mu}^{i} = (\mathbf{sxx}_{t}^{i} + \lambda I)^{-1} \mathbf{sxy}_{t}^{i},$ Local Prediction $\mathbf{m}_t^i = \boldsymbol{\theta}_{t,\mu}^i [\mathbf{h}_t^i \mathbf{1}],$ $\mu_t^i = \theta_\mu(FF2[\mathbf{h}_t^i, \mathbf{m}_t^i, 1])$ Final Prediction

Some Related Work

SNAIL: A Domain Adaptation Model

- Captures depedency on entire history of the sequence using
 - Dialated Causal Convolution
 - Self attention layers
- O(log N) convolution layers where N is length of the sequence.
- Self attention layers interleaved with conv layers.

Deepstate

- Based on State Space Models (SSM)
- Each timeseries has a local state space model
- A global RNN-based model is used to directly predict the parameters of the local model.

Synthetic Experiment

- Why is deepstate not a good model?
 - Similar to Deepstate, we use RNN to compute local weights of the ARU.

Weights ϵ [-1, 1]

Weights c [-20, 20]

Datasets

Dataset	No. of Timeseries	Length of each timeseries	Forecast Horizon	Encoder Length	No. of Features
Rossman	1115	1600	16	16	39
Walmart	3331	143	8	8	16
Electricity	370	44000	24	168	5
Traffic	963	2100	24	168	3
Parts	2246	52	8	8	1

Anecdotes on Rossman Dataset

Results on Datasets

Dataset	Method	Normalized	RMSE
		Deviation (ND)	
Rossman	Baseline	0.094	983.2
	DeepAR	0.245	2389.0
	SNAIL	0.093	972.6
	ARU	0.089	934.9
Walmart	Baseline	0.137	4548.6
	DeepAR	0.233	6704.0
	SNAIL	0.144	4690.5
	ARU	0.114	3938.6
Electricity	ARU Baseline	0.114 0.136	3938.6 416.7
Electricity	ARU Baseline DeepAR	0.114 0.136 0.172	3938.6 416.7 544.0
Electricity	ARU Baseline DeepAR SNAIL	0.114 0.136 0.172 0.135	3938.6 416.7 544.0 400.6
Electricity	ARU Baseline DeepAR SNAIL ARU	0.114 0.136 0.172 0.135 0.127	3938.6 416.7 544.0 400.6 396.4
Electricity Traffic	ARU Baseline DeepAR SNAIL ARU Baseline	0.114 0.136 0.172 0.135 0.127 0.170	3938.6 416.7 544.0 400.6 396.4 0.0224
Electricity Traffic	ARU Baseline DeepAR SNAIL ARU Baseline DeepAR	0.114 0.136 0.172 0.135 0.127 0.170 0.170 0.145	3938.6 416.7 544.0 400.6 396.4 0.0224 0.0216
Electricity	ARU Baseline DeepAR SNAIL ARU Baseline DeepAR SNAIL	0.114 0.136 0.172 0.135 0.135 0.127 0.170 0.145 0.165	3938.6 416.7 544.0 400.6 396.4 0.0224 0.0216 0.0227

- ARU most effective on Rossman and Walmart datasets.
- Traffic dataset has little local information.

Inference Time

Dataset	Baseline	ARU	SNAIL
Electricity	1.0458	1.1788	3.0754
Traffic	2.0740	2.3383	5.7673
Walmart	0.7034	0.9434	1.2693
Rossman	0.4379	0.6717	2.2837

Table 7: Inference time (in seconds)

• SNAIL slower due to additional overhead of self-attention.

Summary

- ARU is a light-weight, parameter-less local model
- Can be easily coupled with the global model Does not disturb dynamics of the global learning.
- Unlike existing local models which are memoryintensive, ARU only needs fixed-sized state.
- Found most effective in retail forecasting setting.

Traffic Congestion Prediction

Joint work with Avinash Modi, M. Tech. 2, CSE.

Problem Setup

• Given a history of congestions at a location -

$$(t_1, d_1), (t_2, d_3), (t_3, d_3), \dots, (t_N, d_N)$$

- Where (t_i, d_i) denote
 - time of congestion occurrence and,
 - duration of congestion
- Predict the time and duration of $(N+1)^{th}$ to $(N+k)^{th}$ congestion.
- OR predict all the congestions likely occur in the next day.

Challenges and Formulations

- An irregular timeseries interval between consecutive observations not consistent.
- Timeseries Forecasting:
 - Unfold history into a "bitmap". Each bit represents a congestion state 1->congestion, 0-> no congestion.

$$(t_1 = 10, d_1 = 4), (t_2 = 18, d_2 = 6), (t_3 = 35, d_3 = 3)$$

 $|0|0|0|0|0|0|0|0|0|1|1|1|1|0|0|0|0|1|1|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|1|1|\dots$

Challenges and Formulations

- Bitmap can be created with sutaible time granularity (e.g. 5 *mins*)
- and used to train any recurrent model
- Skewed ratio of 1s and 0s.
- Solution: Undersampling of *0* label bits.

- At each step, predicts next few bits.
- Number of bits to be predicted can be set based on the requirement.

Current Progress on RNN model

- Does not generalize well when number of bits to be predicted is large such as 288 (congestion states of entire next day).
- Continuity loss Impose a constraint on consecutive predictions.
- Loss = $|(\hat{y}_t \hat{y}_{t-1}) + (y_t y_{t-1})|$
- Currently investigating better formulations of continuity loss

Thank You!