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Timeseries Forecasting
● Given a history of values of a variable of interest, predict its 

future values
– Forecasting product sales.
– Forecasting traffic congestions at a location.

● Challenges - 
– Forecast for multiple timeseries: forecast sales of all products a 

company makes.
– Forecast congestions at all locations in a city.
– Long term forecasting is another challenge
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RNN based Global Models 

Seq2Seq Model

Encoder size = 3, Decoder size = 4
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RNN based Global Models

Hybrid Model

● Predicts outputs at all decoder timesteps together.
Encoder size = 3, Decoder size = 4
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Global Models and its Challenges
● Useful to capture information common across 

timeseries.
● Local information about outputs y captured in 

RNN state
– Capacity limited by state size
– Even harder when timeseries are heterogeneous

Solution: Local Adaptation
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Local / Domain Adaptation
● Setup – Multiple tasks T1 , T2 , ..., TN   ~ p(T) 

drawn from a task distribution.
● Objective – Train a shared model with 

parameters θ such that 
– for a new task Ti  , it can update the 

parameters to θi  by looking at only few 
instance of Ti

Domain Adaptation can be used for 
Timeseries Forecasting.
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Adaptive Recurrent Unit (ARU)
● Exploits closed form solution of least squares.
● No need to train local parameters through gradient 

updates.
● Makes fully local predictions.
● Output of ARU can be easily combined with global model

– Provides fully local signals to global model.
– Does not affect dynamics of global model.

● ARU state maintained for each timeseries.
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The ARU RNN
● Given a decoder input x , 

ARU returns a fully local 
prediction of output.

● Local prediction is 
combined with RNN state 
and passed to next layers.

● Because ARU is closed 
form, gradient flow is 
stopped at ARU cell.
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The ARU States and Equations

● ARU states are 
sufficient statistics 
required to evaluate 
closed form solution.

● maintained online, 
updates as timeseries 
unfolds through time 
axis.

Global 
Model

ARU 
States

Final 
Prediction

Local 
Prediction
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Some Related Work
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SNAIL: A Domain Adaptation Model
● Captures depedency on 

entire history of the 
sequence using 
– Dialated Causal Convolution
– Self attention layers

● O(log N) convolution layers 
where N is length of the 
sequence.

● Self attention layers 
interleaved with conv 
layers.
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Deepstate
● Based on State Space Models (SSM)
● Each timeseries has a local state space model
● A global RNN-based model is used to directly 

predict the parameters of the local model.
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Synthetic Experiment
● Why is deepstate not a good model?

– Similar to Deepstate, we use RNN to compute local 
weights of the ARU.
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Weights ϵ [-20, 20] Weights ϵ [-1, 1]

with
time-series id

Without
time-series id
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Datasets
Dataset No. of 

Timeseries
Length of 
each 
timeseries

Forecast 
Horizon

Encoder 
Length

No. of 
Features

Rossman 1115 1600 16 16 39

Walmart 3331 143 8 8 16

Electricity 370 44000 24 168 5

Traffic 963 2100 24 168 3

Parts 2246 52 8 8 1
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Anecdotes on Rossman Dataset
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Results on Datasets
● ARU most effective 

on Rossman and 
Walmart datasets.

● Traffic dataset has 
little local information.
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Inference Time
● SNAIL slower due to 

additional overhead of 
self-attention.
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Summary
● ARU is a light-weight, parameter-less local 

model
● Can be easily coupled with the global model – 

Does not disturb dynamics of the global learning.
● Unlike existing local models which are memory-

intensive, ARU only needs fixed-sized state.
● Found most effective in retail forecasting setting.
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Traffic Congestion Prediction

Joint work with Avinash 
Modi, M. Tech. 2, CSE.
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Problem Setup
● Given a history of congestions at a location - 

(t1, d1), (t2, d3), (t3, d3), .....,(tN, dN)

● Where (ti, di) denote 
– time of congestion occurrence and,
– duration of congestion

● Given a history of congestions at a location - 

● Predict the time and duration of (N+1)th to (N+k)th congestion.
● OR predict all the congestions likely occur in the next day.
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Challenges and Formulations
● An irregular timeseries – interval between consecutive 

observations not consistent.
● Timeseries Forecasting:

– Unfold history into a “bitmap”. Each bit represents a 
congestion state – 1->congestion, 0-> no congestion.
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Challenges and Formulations
● Bitmap can be created with sutaible time 

granularity (e.g. 5 mins)
● and used to train any recurrent model
● Skewed ratio of 1s and 0s.
● Solution: Undersampling of 0 label bits.
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RNN based Model

● At each step, predicts next few bits.
● Number of bits to be predicted can be set 

based on the requirement.
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Current Progress on RNN model
● Does not generalize well when number of bits 

to be predicted is large such as 288 (congestion 
states of entire next day).

● Continuity loss – Impose a constraint on 
consecutive predictions.

● Loss = |(ŷt – ŷt-1) + (yt – yt-1)|
● Currently investigating better formulations of 

continuity loss
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Thank You!
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