
Hashing Meets Statistical Estimation and Inference:
Adaptive Sampling at the cost of random sampling.

Anshumali Shrivastava
with Ryan, Beidi, Chen, Tharun, Ben (Ph.D.),

Yiqiu, Jonathan, (Masters)
Frankie, Scarlett (Undergrads).

anshumali@rice.edu

IIT Bombay

28th June 2019

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 1 / 46

Motivating Problem: Stochastic Gradient Descent

θ∗ = arg min
θ

F (θ) = arg min
θ

1

N

N∑
i=1

f (xi , θ) (1)

Standard GD

θt = θt−1 − ηt
1

N

N∑
i=1

∇f (xj , θt−1) (2)

SGD, pick a random xi , and

θt = θt−1 − ηt∇f (xj , θt−1) (3)

SGD Preferred over GD in Large-Scale Optimization.

Slow Convergence per epoch.

Faster Epoch, O(N) times and hence overall faster convergence.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 2 / 46

Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (4)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights (e.g. works by Rachel
Ward)

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi)||xi ||2
∣∣,

changes in every iteration.

Can we Break this Chicken-and-Egg Loop? Can we get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD?

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 3 / 46

Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (4)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights (e.g. works by Rachel
Ward)

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi)||xi ||2
∣∣,

changes in every iteration.

Can we Break this Chicken-and-Egg Loop? Can we get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD?Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 3 / 46

Outline of the Talk

1 Algorithmic Perspective of Probabilistic Hashing

Fast Near Neighbor Search (Classical LSH algorithm)

2 Hashing as Efficient Adaptive Sampling.

A New Efficient Class of Samplers and Unbiased Estimators.
Speeding up Stochastic Gradient Estimation.
Scalable and Sustainable Deep Learning via Hashing

3 What more?

Sub-Linear Memory Anomaly Detection and Near-Neighbors

4 Other Relevant Projects

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 4 / 46

Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data object (say x ∈ RD) to an
integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):

if x = y then h(x) = h(y)

if x 6= y then h(x) 6= h(y)

Think of Java HashMaps (dictionary).

Problem: Given an array of n integers. Remove duplicates.

Naive Solution: O(n2), with sorting O(n log n)

With HashMaps (or Dictionary): O(n)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 5 / 46

Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data object (say x ∈ RD) to an
integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):

if x = y then h(x) = h(y)

if x 6= y then h(x) 6= h(y)

Think of Java HashMaps (dictionary).

Problem: Given an array of n integers. Remove duplicates.

Naive Solution: O(n2), with sorting O(n log n)

With HashMaps (or Dictionary): O(n)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 5 / 46

Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data object (say x ∈ RD) to an
integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):

if x = y then h(x) = h(y)

if x 6= y then h(x) 6= h(y)

Think of Java HashMaps (dictionary).

Problem: Given an array of n integers. Remove duplicates.

Naive Solution: O(n2), with sorting O(n log n)

With HashMaps (or Dictionary): O(n)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 5 / 46

Probabilistic Fingerprinting (Hashing)
Hashing: Function (Randomized) h that maps a given data object (say
x ∈ RD) to an integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a
discrete fingerprint.

Locality Sensitive Property:

if x = y Sim(x,y) is high then h(x) = h(y) Pr(h(x) = h(y)) is high.
if x 6= y Sim(x,y) is low then h(x) 6= h(y) Pr(h(x) = h(y)) is low.

Similar points are more likely to have the same hash value (hash collision)
compared to dissimilar points.

0

1

2

3

Likely Unlikely

h

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 6 / 46

Probabilistic Fingerprinting (Hashing)
Hashing: Function (Randomized) h that maps a given data object (say
x ∈ RD) to an integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a
discrete fingerprint.

Locality Sensitive Property:

if x = y Sim(x,y) is high then h(x) = h(y) Pr(h(x) = h(y)) is high.
if x 6= y Sim(x,y) is low then h(x) 6= h(y) Pr(h(x) = h(y)) is low.

Similar points are more likely to have the same hash value (hash collision)
compared to dissimilar points.

0

1

2

3

Likely Unlikely

h

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 6 / 46

Popular Hashing Scheme: SimHash (SRP)

𝜃

hr (x) =

{
1 if rT x ≥ 0

0 otherwise
r ∈ RD ∼ N(0, I)

Prr (hr (x) = hr (y)) = 1− 1

π
cos−1(θ), monotonic in θ (Cosine Similarity)

A classical result from Goemans-Williamson (95)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 7 / 46

Popular Hashing Scheme: SimHash (SRP)

𝒓𝑻𝒙 > 0
𝒓𝑻𝒙 < 0

 𝑟

𝜃

hr (x) =

{
1 if rT x ≥ 0

0 otherwise
r ∈ RD ∼ N(0, I)

Prr (hr (x) = hr (y)) = 1− 1

π
cos−1(θ), monotonic in θ (Cosine Similarity)

A classical result from Goemans-Williamson (95)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 7 / 46

Some Popular Measures that are Hashable

Many Popular Measures.

Jaccard Similarity (MinHash)

Cosine Similarity (Simhash and also MinHash if Data is Binary)

Euclidian Distance

Earth Mover Distance, etc.

Recently, Un-normalized Inner Products1

1 With bounded norm assumption.

2 Allowing Asymmetry.

1SL [NIPS 14 (Best Paper), UAI 15, WWW 15], APRS [PODS 16].
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 8 / 46

Sub-linear Near-Neighbor Search

Given a query q ∈ RD and a giant collection C of N vectors in RD , search
for p ∈ C s.t.,

p = arg max
x∈C

sim(q, x)

Worst case O(N) for any query. N is huge.

Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 9 / 46

Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00

00 01

00 10

… …

11 11

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 10 / 46

Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00

00 01

00 10

… …

11 11

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 10 / 46

Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 10 / 46

Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 10 / 46

Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 10 / 46

The Classical LSH Algorithm

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏 Buckets

00 … 00 …

00 … 01 …

00 … 10 Empty

… … … …

11 … 11 …

Table 1

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 11 / 46

The Classical LSH Algorithm

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏 Buckets

00 … 00 …

00 … 01 …

00 … 10 Empty

… … … …

11 … 11 …

𝒉𝟏
𝑳 … 𝒉𝑲

𝑳 Buckets

00 … 00 …

00 … 01 …

00 … 10

… … … …

11 … 11 Empty

…

Table 1 Table L

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 11 / 46

The Classical LSH Algorithm

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏 Buckets

00 … 00 …

00 … 01 …

00 … 10 Empty

… … … …

11 … 11 …

𝒉𝟏
𝑳 … 𝒉𝑲

𝑳 Buckets

00 … 00 …

00 … 01 …

00 … 10

… … … …

11 … 11 Empty

…

Table 1 Table L

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 11 / 46

The Classical LSH Algorithm

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏 Buckets

00 … 00 …

00 … 01 …

00 … 10 Empty

… … … …

11 … 11 …

𝒉𝟏
𝑳 … 𝒉𝑲

𝑳 Buckets

00 … 00 …

00 … 01 …

00 … 10

… … … …

11 … 11 Empty

…

Table 1 Table L

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 11 / 46

Success of LSH

Similarity Search or Related (Reduce n)

Similarity Search or related.

Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

Basically JL (Johnson-Lindenstrauss) or Random Projections does
most of the job!!

Similarity Estimation. (Usually not optimal in Fisher Information
Sense)

Non-Linear SVMs in Learning Linear Time 2.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.

Are there other Fundamental Problems?

2Li et. al. NIPS 2011
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 12 / 46

Success of LSH

Similarity Search or Related (Reduce n)

Similarity Search or related.

Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

Basically JL (Johnson-Lindenstrauss) or Random Projections does
most of the job!!

Similarity Estimation. (Usually not optimal in Fisher Information
Sense)

Non-Linear SVMs in Learning Linear Time 2.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.

Are there other Fundamental Problems?

2Li et. al. NIPS 2011
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 12 / 46

A Step Back

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

Is LSH really a search algorithm?

Given the query q, LSH samples x from the dataset, with probability
exactly py = 1− (1− p(q, x)K)L.

LSH is considered a black box for near-neighbor search.

Adaptive Sampling is being converted into an algorithm for high
similarity search.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 13 / 46

New View: Hashing is an Efficient Adaptive Sampling in Disguise.
With Ryan Spring, Beidi Chen, and Scarlett Xu.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 14 / 46

Partition Function in Log-Linear Models

P(y |x , θ) =
eθy ·x

Zθ

θy is the weight vector

x is the (current context) feature vector (word2vec).

Zθ =
∑

y∈Y eθy ·x is the partition function

Issues:

Zθ is expensive. |Y | is huge. (billion word2vec)

Change in context x requires to recompute Zθ.

Question: Can we reduce the amortized cost of estimating Zθ?

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 15 / 46

Importance Sampling (IS)

Summation by expectation: But sampling y ∝ eθy ·x = f (y) is equally
harder.

Importance Sampling

Given a normalized proposal distribution g(y) where
∑

y g(y) = 1.

We have an unbiased estimator
E
[
f (y)
g(y)

]
=
∑

y g(y) f (y)
g(y) =

∑
y f (y) = Zθ

Draw N samples yi ∼ g(y) for i = 1 . . .N. we can estimate

Zθ = 1
N sum

N
i=1

f (yi)
g(yi)

.

Chicken and Egg Loop:

Does not really work if g(y) is not close to f (y).

Getting g(y) which is efficient and close to f (y) is not known.

No efficient choice in literature. Random sampling or other heuristics.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 16 / 46

Detour: LSH as Samplers

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

(K , L) parameterized LSH algorithm is an efficient sampling:

Given the query x , LSH samples θy from the dataset, with probability
exactly py = 1− (1− p(x , θy)K)L.

Not Quite Importance Sampling:

It is not normalized
∑

y py 6= 1

Samples are correlated.

It turns out, we can still make them work!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 17 / 46

Detour: LSH as Samplers

𝒉𝟏 𝒉𝟐 Buckets
(pointers only)

00 00 …

00 01 …

00 10 Empty

… … …

11 11 …

𝒉𝟏

𝒉𝟐
𝑅𝐷

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 → {𝟎, 𝟏, 𝟐, 𝟑}

(K , L) parameterized LSH algorithm is an efficient sampling:

Given the query x , LSH samples θy from the dataset, with probability
exactly py = 1− (1− p(x , θy)K)L.

Not Quite Importance Sampling:

It is not normalized
∑

y py 6= 1

Samples are correlated.

It turns out, we can still make them work!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 17 / 46

Beyond IS: The Unbiased LSH Based Estimator
Procedure:

For context x , report all the retrieved yi s from the (K , L)
parameterized LSH Algorithm. (just one NN query)

Report Ẑθ =
∑

i
eθyi ·x

1−(1−p(x ,θyi)K)L

Properties:

E [Ẑθ] = Zθ (Unbiased)

Var [Ẑθ] =
∑
i

f (yi)
2

pi
−

N∑
i=1

f (yi)
2

+
∑
i 6=j

f (yi)f (yj)

pipj
Cov(1[yi∈S] · 1[yj∈S])

Correlations are mostly negative (favorable) with LSH.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 18 / 46

MIPS Hashing is Adaptive for Log-Linear Models

Theorem

For any two states y1 and y2:

P(y1|x ; θ) ≥ P(y2|x ; θ) ⇐⇒ p1 ≥ p2

where
pi = 1− (1− p(θyi · x)K)L

P(y |x , θ) ∝ eθy ·x

Corollary

The modes of both the sample and the target distributions are identical.

For the first time we break the Chicken-and-Egg-Loop! Sampling time is
near-constant.

Efficient as well as similar to target (Adaptive).

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 19 / 46

How does it works? (PTB and Text8 Datasets)

0 200 400 600 800 1000
#Samples

0

1

2

3

4

5

6

7

8

M
AE

PTB Uniform
LSH
Exact Gumbel
MIPS Gumbel

Running Time:

Samples Uniform LSH Exact Gumbel MIPS Gumbel
50 0.13 0.23 531.37 260.75
400 0.92 1.66 3,962.25 1,946.22
1500 3.41 6.14 1,4686.73 7,253.44
5000 9.69 17.40 42,034.58 20,668.61

Final Perplexity of Language Models

Standard LSH Uniform Exact
Gumbel

MIPS
Gumbel

91.8 98.8 524.3 91.9 Diverged
140.7 162.7 1347.5 152.9

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 20 / 46

Note the Efficiency of Sampling

Sampling

Even 1 table will work.

No Candidate filtering. Random Sampling From Buckets.

Near-Neighbors

Many tables, Large L

Bucket aggregation, Candidate Generation, and Candidate Filtering.

Sampling is significantly efficient (1-2 memory lookups). Candidate
Filtering is wasteful.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 21 / 46

Exact Same Story with Adaptive Sampling for SGD

θ∗ = arg min
θ

F (θ) = arg min
θ

1

N

N∑
i=1

f (xi , θ) (5)

Standard GD

θt = θt−1 − ηt
1

N

N∑
i=1

∇f (xj , θt−1) (6)

SGD, pick a random xi , and

θt = θt−1 − ηt∇f (xj , θt−1) (7)

SGD Preferred over GD in Large-Scale Optimization.

Slow Convergence per epoch.

Faster Epoch, O(N) times and hence overall faster convergence.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 22 / 46

Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (8)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights.

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi)||xi ||2
∣∣,

changes in every iteration.

LSH Sampling Breaks this Chicken-and-Egg Loop. We get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 23 / 46

Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (8)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights.

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi)||xi ||2
∣∣,

changes in every iteration.

LSH Sampling Breaks this Chicken-and-Egg Loop. We get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 23 / 46

LSH Gradient Estimators

One Time Cost

Preprocess < xi ||xi ||, yi ||xi || > into Inner Product Hash Tables. (Data
Reading Cost)

Per Iteration

Query hash tables with < θt−1,−1 > for sample xi . (1-2 Hash
Lookups)

Estimate Gradient as ∇f (xi ,θt−1)
N×SamplingProbability

Can show: Unbiased and better variance than SGD.

Per iterations cost is 1.5 times that of SGD, but superior variance.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 24 / 46

LSH Gradient Estimators

One Time Cost

Preprocess < xi ||xi ||, yi ||xi || > into Inner Product Hash Tables. (Data
Reading Cost)

Per Iteration

Query hash tables with < θt−1,−1 > for sample xi . (1-2 Hash
Lookups)

Estimate Gradient as ∇f (xi ,θt−1)
N×SamplingProbability

Can show: Unbiased and better variance than SGD.

Per iterations cost is 1.5 times that of SGD, but superior variance.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 24 / 46

Quality of Samples

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 25 / 46

Beating SGD on Wall Clock Time

0 50000 100000 150000 200000 250000 300000
Time (ms)

101

102

103

104

Tr
ai

ni
ng

 O
bj

ec
tiv

e

LSD+adaGrad Train
LSD+adaGrad Test
SGD+adaGrad Train
SGD+adaGrad Test

(a) Ada Time

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (ms)

101

102

103

104

Tr
ai

ni
ng

 O
bj

ec
tiv

e

LSD Train
LSD Test
SGD Train
SGD Test

(b) Plain Time

0 10 20 30 40 50
Epoch

101

102

103

104

Tr
ai

ni
ng

 O
bj

ec
tiv

e

LSD+adaGrad Train
LSD+adaGrad Test
SGD+adaGrad Train
SGD+adaGrad Test

(c) Ada Epoch

0 5 10 15 20 25 30
Epoch

101

102

103

104

Tr
ai

ni
ng

 O
bj

ec
tiv

e

LSD Train
LSD Test
SGD Train
SGD Test

(d) Plain Epoch

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 26 / 46

What Fundamental Problem Did We Solve?

Problem: Given N time evolving weights, w t
1 , w

t
2 , ..., w

t
N , we want to

sample xi in proportion to w t
i at time t.

O(N) cost every time

If w t
i is a specific monotonic function of θTt × ci , where θt is changing and

ci is fixed, then something significantly efficient than O(N)!

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 27 / 46

Efficient Deep Networks Using Asymmetric Hashing
With Ryan Spring.

1 Scalable and Sustainable Deep Learning via Randomized Hashing.
SIGKDD 2017

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 28 / 46

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 29 / 46

Backpropagation is not Sustainable

Backpropagation with Big-Models and Big-Data.

Slow Training and Validation: Stalls the scientific progress

Requires Expensive Clusters: Not everyone can afford it. Increased
dependency on computation services. (only few winners)

Memory and Energy: Out of reach for IoT and other embedded
devices.

Too Slow for Latency Critical Application: Hard to do inference in
few milliseconds with very large networks.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 30 / 46

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 31 / 46

Deep Networks

𝑎𝑖 = 𝑓(𝑤𝑖
𝑇𝑥)

. . .

. . .

Input Layer

Hidden Layer

Adaptive Dropouts3: Sample very few Nodes (neurons) with
probability proportional to activations. It works as well as original
with extremely sparse updates.

For every data point, compute activations, pick (very few nodes) with
high activations (using Bernoulli Sampling).

Need few nodes but Identifying which ones requires all computations.
Full Cost of Training and Testing

3Ba and Frey NIPS 2014
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 32 / 46

Deep Networks

𝑎𝑖 = 𝑓(𝑤𝑖
𝑇𝑥)

. . .

. . .

Input Layer

Hidden Layer

Adaptive Dropouts3: Sample very few Nodes (neurons) with
probability proportional to activations. It works as well as original
with extremely sparse updates.

For every data point, compute activations, pick (very few nodes) with
high activations (using Bernoulli Sampling).

Need few nodes but Identifying which ones requires all computations.
Full Cost of Training and Testing

3Ba and Frey NIPS 2014
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 32 / 46

Deep Networks

𝑎𝑖 = 𝑓(𝑤𝑖
𝑇𝑥)

. . .

. . .

Input Layer

Hidden Layer

Adaptive Dropouts3: Sample very few Nodes (neurons) with
probability proportional to activations. It works as well as original
with extremely sparse updates.

For every data point, compute activations, pick (very few nodes) with
high activations (using Bernoulli Sampling).

Need few nodes but Identifying which ones requires all computations.
Full Cost of Training and Testing

3Ba and Frey NIPS 2014
Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 32 / 46

Hash Lookups for Adaptively Sampling Active Nodes

1

2

3
4
5

1
2
3
4

1

2
3
4

1

2

H1 H2

1 | 1

2 | 2, 4

3 | 3

1 | 3

2 | 1, 4

3 | 2

2

3

4

Input

Hidden 1 Hidden 2

Output

Hash Table 1 Hash Table 2

1|5 1|5

Initialization: Hash all nodes (weights) to LSH tables.
Output of every layer is query for then next. (Initially the query is x).
The retrieved nodes serves as active sets. Nodes Sampled with
Probability 1− (1− pK)L (Unusual Distribution)
Update active sets and the hash tables. Significantly less
multiplications

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 33 / 46

Significantly Less Computations

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
u
ra

cy
MNIST

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

NORB

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

u
ra

cy

Convex

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

u
ra

cy

Rectangles

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 34 / 46

Bonus: Asynchronous (SGD) for Very Sparse Updates

0 5 10 15 20 25 30
Epochs

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra
cy

MNIST

LSH-1
LSH-8
LSH-56

0 5 10 15 20 25 30
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu
ra
cy

NORB

20 21 22 23 24 25 26

#Processors

103

104

105

T
im

e
 (

se
cs

)

MNIST8M

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 35 / 46

Summary: Cheaper and Parallel Updates

Every gradient update is significantly cheaper in terms of arithmetic
operation.

Gradient update parallelizable across data due to sparsity.

Can we beat hardware acceleration (like V100 GPU) with limited
multi-core CPU?

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 36 / 46

Baselines

State-of-the-art optimized implementations

Tensorflow on Intel(R) Xeon(R) Platinum 8175M CPU (48 cores)

Tensorflow-CPU 1.12 from source with GCC5.4 in order to support
FMA, AVX, AVX2, SSE4.1, and SSE4.2 instructions.

Tensorflow on NVIDIA Tesla V100 (32GB)

-VS-

SLIDE: Sub-LInear Deep Learning Engine.
The algorithm we just saw over Intel(R) Xeon(R) Platinum 8175M CPU
(48 cores)

Metrics

Full spectrum of accuracy climb with Wall clock time.

Effect of changes in batch size

Scalability with Increasing Cores.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 37 / 46

Dataset and Architectures

Table: Statistics of the datasets

Delicious-200K Amazon-670K

Feature Dim 782,585 135,909

Feature Sparsity 0.038 % 0.055 %

Label Dim 205,443 670,091

Training Size 196,606 490,449

Testing Size 100,095 153,025

Network Architectures (Fully Connected)

Delicious-200K 782, 585⇒ 128⇒ 205, 443 (126 million parameters)

Amazon-670K 135, 909⇒ 128⇒ 670, 091 (103 million parameters)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 38 / 46

Result: Straight Comparison (2 hours Vs 5.5 hours)

103 104 105
Time (s)

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu
ra
cy

Amazon-670K
SLIDE CPU
TF-GPU
TF-CPU

103 104

Iterations

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Amazon-670K
SLIDE CPU
TF-GPU

SLIDE on a 44 core CPU is more than 2.7 times (2 hours vs. 5.5 hours)
faster than the same network trained using Tensorflow on Tesla V100.
Reaches any given accuracy level faster. Note the log scale on time.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 39 / 46

Result 2: Sampled Softmax Tricks are Bad

102 103 104
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu
ra
cy

Amazon-670K
SLIDE CPU
TF-GPU SSM

103 104 105

Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Amazon-670K
SLIDE CPU
TF-GPU SSM

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 40 / 46

Result 3: Scalability with Cores

Table: Core Utilization

8 16 32

Tensorflow-CPU 45% 35% 32%

SLIDE 82% 81% 85%

21 22 23 24 25

Cores

104

105

Co
nv

er
ge

nc
e

Ti
m

e

Amazon-670K
SLIDE
TF-CPU
TF-GPU

21 22 23 24 25

Cores

100

2 × 100

3 × 100

4 × 100

6 × 100

Ra
tio

Amazon-670K
TF-CPU
SLIDE

New Results: 100x faster than Tensorflow on CPU system after
optimizing for cache thrashing. (Thanks to Intel)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 41 / 46

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 42 / 46

Compressed Estimations

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 43 / 46

Good old Near-Neighbor but this time sub-
linear memory and on streams!
• Problem Setting: We have a stream of vectors, 𝑥𝑡 at time t.

• Assume we observe n vectors in total. 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁}
• We are not allowed O(N) storage.
• We are not allowed second pass.

• Goal: Given any out of sample query q (𝑞 ∉ 𝐷), find the index of approximate
near-neighbors of q in D.

• << O(N) storage!!
• JL lemma gives 𝑂 𝑁 log 𝑁
• We don’t know q in advance? So best hope is random sampling? But that loses recall in

proportion to the fraction sampled! (Not sub-linear)

• LSH, KD trees, etc. all super-linear in memory.
• They all requiring storing the data vector or projection of the vector.

Motivating Applications

• Who does not need low communication near-neighbor?
• Recommendation systems.
• Compressing Friends graphs for recommending friends.
• Almost any large scale or memory constrained near-neighbor application.

• Distributed, low memory, IoT
• Small devices independently sketch what they see. We add the sketch to get the

capability to do near-neighbor search!

• Robust Caching
• Caching is widely deployed in practice for search and related network application.
• What if caches are robust to perturbation in query?

A Hard Problem in General.

• Information Lower bound (A Negative Result)
• There cannot exist an algorithm (even randomized) that can solve near-

neighbor in stream with < O(N) memory on generic inputs
• Reduction to INDEX problem

• We need a completely different characterization to get sub-linear
memory!
• What kind of inputs can we get sub-linear memory?

• Are such inputs practical?

• What does a sub-linear algorithm even looks like?

RACE (Repeated ACE Algorithm):
A Weird Sketching that Works!
Initialize M (some number) Arrays of size R with zeros.

While Get 𝑥𝑖
Choose a sparse sample out of M Arrays (universal hashing on 𝑖)

For each sampled array A,

compute the associated locality sensitive hash 𝑙 𝑥𝑖 and
increment the location, i.e. 𝐴 𝑙 𝑥𝑖 ++

DONE!!

These M arrays of counts are the required sketches
• No storing of any attribute of any kind.
• One Pass and mergeable (Just add the arrays)

1

0

2

17

0

0

12

3

0

9

2

41

0

11

0

3

3

10

4

1

1

0

13

65

0

2

21

16

44

0

0

0

44

57

81

𝑥𝑖

Based on i, sample few arrays, let say 2, 3, 6. (Sparse Design matrix.)

Each array i has LSH ℎ𝑖 associated with it, Compute

ℎ2 𝑥𝑖 = 0, ℎ3 𝑥𝑖 = 3, ℎ6 𝑥𝑖 = 3

Increment all the counts.

1

0

2

17

0

0

12

3

0

9

2

41

0

11

0

3

3

10

4

1

1

0

13

65

0

2

21

16

44

0

0

0

44

57

81

𝑥𝑖

Based on i, sample few arrays, let say 2, 3, 6. (Sparse Design matrix.)

Each array i has LSH ℎ𝑖 associated with it, Compute

ℎ2 𝑥𝑖 = 0, ℎ3 𝑥𝑖 = 3, ℎ6 𝑥𝑖 = 3

Increment all the counts.

1

0

2

17

0

0

13

3

0

9

2

41

0

12

0

3

3

10

4

1

1

0

13

65

0

2

21

16

45

0

0

0

44

57

81

𝑥𝑖

Based on i, sample few arrays, let say 2, 3, 6. (Sparse Design matrix.)

Each array i has LSH ℎ𝑖 associated with it, Compute

ℎ2 𝑥𝑖 = 0, ℎ3 𝑥𝑖 = 3, ℎ6 𝑥𝑖 = 3

Increment all the counts.

Proceed to reading 𝑥𝑖+1

1

0

2

17

0

0

12

3

0

9

2

41

0

11

0

3

3

10

4

1

1

0

13

65

0

2

21

16

44

0

0

0

44

57

81

𝑞
For array i, get the count of h(q).

Say ℎ1 𝑞 = 2, ℎ2 𝑞 = 4, ℎ3 𝑞 = 0,… , ℎ7 𝑞 = 0

Their counts are 2, 9, 2, 10, 65, 16, 0. We take average of these counts over some
repetitions.

These average counts are compressed sensing measurements of vector V, whose
𝑖𝑡ℎ component (𝑉𝑖) is collision probability of query q, with 𝑥𝑖 in database (under LSH). V is
a sparse vector, so just recover heavy entries!!

RACE: Querying

Given a query q.

For each M arrays of counts

Get the value of 𝐴 𝑙 𝑞 which will be a compressed sensing
measurement.

Enough arrays give enough measurements.

From these measurements, recover the heavy entries and they are
guaranteed to be near-neighbors!!

For any query we can get (estimate sharply) the count-min Sketch of vector V
where the 𝑖𝑡ℎ component of V is given by 𝑉𝑖 = 𝑝 𝑞, 𝑥𝑖

𝐾, where 𝑝(𝑥𝑖 , 𝑞) is the collision probability of 𝑥𝑖 (in
database) with query. K is any parameter we can choose to control sparsity.

Main Theorem

Key Hammer: ACE Algorithm (WWW 2018)

ACE: Arrays of Locality Sensitve Counts: Anomaly Detection on the Edge (by Luo and Shrivastava in WWW 2018)

• Online Addition Phase
• Generate few (hash) arrays of counters. (No hash tables, no buckets.)
• Addition: only increment the count, (no adding element to buckets).
• The global mean of anomaly score can also be updated online. (later)

ACE Estimates

• Given a data point 𝑞, ACE estimates the following unbiasedly

• We modify ACE to instead estimate σ𝑟𝑖 × 𝑝 𝑞, 𝑥𝑖
𝐾 for any −1 ≤

𝑟𝑖 ≤ 1

13

Parameter

Collision Probability

Hammer 2: Compressed Sensing (we use CMS
sketch)
• We modify ACE to instead estimate

• σ𝑟𝑖 × 𝑝 𝑞, 𝑥𝑖
𝐾 for any −1 ≤ 𝑟𝑖 ≤ 1

• These are compressed sensing estimate of N dimentinal vector (signal) for RIP choices of 𝑟𝑖
• Signal = [𝑝 𝑞, 𝑥1

𝐾 , 𝑝 𝑞, 𝑥2
𝐾 … , 𝑝 𝑞, 𝑥𝑁

𝐾]

• RACE can estimate these measurements for any query (In Sub-linear (<< O(N)) space!!)

• We can choose large K to satisfy sparsity.
• Notion of stable near-neighbor (Data Dependent)

New Connection: Hardness of near-neighbor
reduces to sparsity of similarity with query and
associated hardness in compressed sensing!!

Experimental Results • Google+ graph with
around 100k nodes

• Every nodes sparsely
represented by direct
friends (0-1 vector)

• Compress these vectors.
• Goal: Friends

recommendation
• Given a node vector,

find identity of nodes
with most similar
vectors.

• Metric: Compression-
Accuracy Trade-off

Other Related Projects.

FLASH System For Search and Sampling. (SIGMOD 18)

Large Scale Feature Selection with log d working memory. (ICML 18)

Parallel and distributed Count-Min Sketch avoiding Heaps (NIPS 18)

SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time
Series. (JMLR 2017)

Bayesian Estimation with Hashing. (AAAI 2019)

Sub-Linear Memory Search (Compressed Sensing Meets LSH) (arxiv)

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 44 / 46

Quick Peek: Sketching Optimizations

Why sketching?

All updates linear

Heavy items dominates the computation

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 45 / 46

Conclusion

Perfect Time for Algorithmic Disruption in large scale machine
learning.

Machine Learning techniques were not designed keeping in mind
computations, and the future with current algorithms such as
backpropagation is hopeless.

We need to revisit old algorithms with a new perspective.

Probabilistic hashing seems to be a very promising techniques.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 46 / 46

