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Motivating Problem: Stochastic Gradient Descent

θ∗ = arg min
θ

F (θ) = arg min
θ

1

N

N∑
i=1

f (xi , θ) (1)

Standard GD

θt = θt−1 − ηt
1

N

N∑
i=1

∇f (xj , θt−1) (2)

SGD, pick a random xi , and

θt = θt−1 − ηt∇f (xj , θt−1) (3)

SGD Preferred over GD in Large-Scale Optimization.

Slow Convergence per epoch.

Faster Epoch, O(N) times and hence overall faster convergence.

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 2 / 46



Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (4)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights (e.g. works by Rachel
Ward)

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi )||xi ||2
∣∣,

changes in every iteration.

Can we Break this Chicken-and-Egg Loop? Can we get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD?
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Outline of the Talk

1 Algorithmic Perspective of Probabilistic Hashing

Fast Near Neighbor Search (Classical LSH algorithm)

2 Hashing as Efficient Adaptive Sampling.

A New Efficient Class of Samplers and Unbiased Estimators.
Speeding up Stochastic Gradient Estimation.
Scalable and Sustainable Deep Learning via Hashing

3 What more?

Sub-Linear Memory Anomaly Detection and Near-Neighbors

4 Other Relevant Projects
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Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data object (say x ∈ RD) to an
integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):

if x = y then h(x) = h(y)

if x 6= y then h(x) 6= h(y)

Think of Java HashMaps (dictionary).

Problem: Given an array of n integers. Remove duplicates.

Naive Solution: O(n2), with sorting O(n log n)

With HashMaps (or Dictionary): O(n)
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Probabilistic Fingerprinting (Hashing)
Hashing: Function (Randomized) h that maps a given data object (say
x ∈ RD) to an integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a
discrete fingerprint.

Locality Sensitive Property:

if x = y Sim(x,y) is high then h(x) = h(y) Pr(h(x) = h(y)) is high.
if x 6= y Sim(x,y) is low then h(x) 6= h(y) Pr(h(x) = h(y)) is low.

Similar points are more likely to have the same hash value (hash collision)
compared to dissimilar points.
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Popular Hashing Scheme: SimHash (SRP) 

 

  
𝜃 

hr (x) =

{
1 if rT x ≥ 0

0 otherwise
r ∈ RD ∼ N(0, I)

Prr (hr (x) = hr (y)) = 1− 1

π
cos−1(θ), monotonic in θ (Cosine Similarity)

A classical result from Goemans-Williamson (95)
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Some Popular Measures that are Hashable

Many Popular Measures.

Jaccard Similarity (MinHash)

Cosine Similarity (Simhash and also MinHash if Data is Binary)

Euclidian Distance

Earth Mover Distance, etc.

Recently, Un-normalized Inner Products1

1 With bounded norm assumption.

2 Allowing Asymmetry.

1SL [NIPS 14 (Best Paper), UAI 15, WWW 15], APRS [PODS 16].
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Sub-linear Near-Neighbor Search

Given a query q ∈ RD and a giant collection C of N vectors in RD , search
for p ∈ C s.t.,

p = arg max
x∈C

sim(q, x)

Worst case O(N) for any query. N is huge.

Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.
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Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00  

00 01            

00 10  

… …  

11 11      

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!
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The Classical LSH Algorithm
 

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏  Buckets  

00 … 00       … 

00 … 01         …   

00 … 10 Empty 

… … … … 

11 … 11  … 

 

Table 1 

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.

2 Theory says we have a sweet spot. Provable sub-linear algorithm.
(Indyk & Motwani 98)
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Success of LSH

Similarity Search or Related (Reduce n)

Similarity Search or related.

Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

Basically JL (Johnson-Lindenstrauss) or Random Projections does
most of the job!!

Similarity Estimation. (Usually not optimal in Fisher Information
Sense)

Non-Linear SVMs in Learning Linear Time 2.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.

Are there other Fundamental Problems?

2Li et. al. NIPS 2011
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A Step Back

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00          … 

00 01            …   

00 10 Empty 

… … … 

11 11     … 

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

Is LSH really a search algorithm?

Given the query q, LSH samples x from the dataset, with probability
exactly py = 1− (1− p(q, x)K )L.

LSH is considered a black box for near-neighbor search.

Adaptive Sampling is being converted into an algorithm for high
similarity search.
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New View: Hashing is an Efficient Adaptive Sampling in Disguise.
With Ryan Spring, Beidi Chen, and Scarlett Xu.
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Partition Function in Log-Linear Models

P(y |x , θ) =
eθy ·x

Zθ

θy is the weight vector

x is the (current context) feature vector (word2vec).

Zθ =
∑

y∈Y eθy ·x is the partition function

Issues:

Zθ is expensive. |Y | is huge. (billion word2vec)

Change in context x requires to recompute Zθ.

Question: Can we reduce the amortized cost of estimating Zθ?

Anshumali Shrivastava (Rice University) IIT Bombay 28th June 2019 15 / 46



Importance Sampling (IS)

Summation by expectation: But sampling y ∝ eθy ·x = f (y) is equally
harder.

Importance Sampling

Given a normalized proposal distribution g(y) where
∑

y g(y) = 1.

We have an unbiased estimator
E
[
f (y)
g(y)

]
=
∑

y g(y) f (y)
g(y) =

∑
y f (y) = Zθ

Draw N samples yi ∼ g(y) for i = 1 . . .N. we can estimate

Zθ = 1
N sum

N
i=1

f (yi )
g(yi )

.

Chicken and Egg Loop:

Does not really work if g(y) is not close to f (y).

Getting g(y) which is efficient and close to f (y) is not known.

No efficient choice in literature. Random sampling or other heuristics.
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Detour: LSH as Samplers

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00          … 

00 01            …   

00 10 Empty 

… … … 

11 11     … 

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

(K , L) parameterized LSH algorithm is an efficient sampling:

Given the query x , LSH samples θy from the dataset, with probability
exactly py = 1− (1− p(x , θy )K )L.

Not Quite Importance Sampling:

It is not normalized
∑

y py 6= 1

Samples are correlated.

It turns out, we can still make them work!
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Beyond IS: The Unbiased LSH Based Estimator
Procedure:

For context x , report all the retrieved yi s from the (K , L)
parameterized LSH Algorithm. (just one NN query)

Report Ẑθ =
∑

i
eθyi ·x

1−(1−p(x ,θyi )K )L

Properties:

E [Ẑθ] = Zθ (Unbiased)

Var [Ẑθ] =
∑
i

f (yi )
2

pi
−

N∑
i=1

f (yi )
2

+
∑
i 6=j

f (yi )f (yj)

pipj
Cov(1[yi∈S] · 1[yj∈S])

Correlations are mostly negative (favorable) with LSH.
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MIPS Hashing is Adaptive for Log-Linear Models

Theorem

For any two states y1 and y2:

P(y1|x ; θ) ≥ P(y2|x ; θ) ⇐⇒ p1 ≥ p2

where
pi = 1− (1− p(θyi · x)K )L

P(y |x , θ) ∝ eθy ·x

Corollary

The modes of both the sample and the target distributions are identical.

For the first time we break the Chicken-and-Egg-Loop! Sampling time is
near-constant.

Efficient as well as similar to target (Adaptive).
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How does it works? (PTB and Text8 Datasets)

0 200 400 600 800 1000
#Samples

0

1

2

3

4

5

6

7

8

M
AE

PTB Uniform
LSH
Exact Gumbel
MIPS Gumbel

Running Time:

Samples Uniform LSH Exact Gumbel MIPS Gumbel
50 0.13 0.23 531.37 260.75
400 0.92 1.66 3,962.25 1,946.22
1500 3.41 6.14 1,4686.73 7,253.44
5000 9.69 17.40 42,034.58 20,668.61

Final Perplexity of Language Models

Standard LSH Uniform Exact
Gumbel

MIPS
Gumbel

91.8 98.8 524.3 91.9 Diverged
140.7 162.7 1347.5 152.9
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Note the Efficiency of Sampling

Sampling

Even 1 table will work.

No Candidate filtering. Random Sampling From Buckets.

Near-Neighbors

Many tables, Large L

Bucket aggregation, Candidate Generation, and Candidate Filtering.

Sampling is significantly efficient (1-2 memory lookups). Candidate
Filtering is wasteful.
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Exact Same Story with Adaptive Sampling for SGD

θ∗ = arg min
θ

F (θ) = arg min
θ

1

N

N∑
i=1

f (xi , θ) (5)

Standard GD

θt = θt−1 − ηt
1

N

N∑
i=1

∇f (xj , θt−1) (6)

SGD, pick a random xi , and

θt = θt−1 − ηt∇f (xj , θt−1) (7)

SGD Preferred over GD in Large-Scale Optimization.

Slow Convergence per epoch.

Faster Epoch, O(N) times and hence overall faster convergence.
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Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (8)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights.

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi )||xi ||2
∣∣,

changes in every iteration.

LSH Sampling Breaks this Chicken-and-Egg Loop. We get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD
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The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi )||xi ||2
∣∣,

changes in every iteration.

LSH Sampling Breaks this Chicken-and-Egg Loop. We get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD
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LSH Gradient Estimators

One Time Cost

Preprocess < xi ||xi ||, yi ||xi || > into Inner Product Hash Tables. (Data
Reading Cost)

Per Iteration

Query hash tables with < θt−1,−1 > for sample xi . (1-2 Hash
Lookups)

Estimate Gradient as ∇f (xi ,θt−1)
N×SamplingProbability

Can show: Unbiased and better variance than SGD.

Per iterations cost is 1.5 times that of SGD, but superior variance.
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Quality of Samples
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Beating SGD on Wall Clock Time
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What Fundamental Problem Did We Solve?

Problem: Given N time evolving weights, w t
1 , w

t
2 , ..., w

t
N , we want to

sample xi in proportion to w t
i at time t.

O(N) cost every time

If w t
i is a specific monotonic function of θTt × ci , where θt is changing and

ci is fixed, then something significantly efficient than O(N)!
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Efficient Deep Networks Using Asymmetric Hashing
With Ryan Spring.

1 Scalable and Sustainable Deep Learning via Randomized Hashing.
SIGKDD 2017
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Backpropagation is not Sustainable

Backpropagation with Big-Models and Big-Data.

Slow Training and Validation: Stalls the scientific progress

Requires Expensive Clusters: Not everyone can afford it. Increased
dependency on computation services. (only few winners)

Memory and Energy: Out of reach for IoT and other embedded
devices.

Too Slow for Latency Critical Application: Hard to do inference in
few milliseconds with very large networks.
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Deep Networks
 

𝑎𝑖 = 𝑓(𝑤𝑖
𝑇𝑥) 

.     .     .  

.     .     .  

Input Layer 

Hidden Layer 

Adaptive Dropouts3: Sample very few Nodes (neurons) with
probability proportional to activations. It works as well as original
with extremely sparse updates.

For every data point, compute activations, pick (very few nodes) with
high activations (using Bernoulli Sampling).

Need few nodes but Identifying which ones requires all computations.
Full Cost of Training and Testing

3Ba and Frey NIPS 2014
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Hash Lookups for Adaptively Sampling Active Nodes
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Input 

Hidden 1 Hidden 2 

Output 

Hash Table 1 Hash Table 2 

1|5 1|5 

Initialization: Hash all nodes (weights) to LSH tables.
Output of every layer is query for then next. (Initially the query is x).
The retrieved nodes serves as active sets. Nodes Sampled with
Probability 1− (1− pK )L (Unusual Distribution)
Update active sets and the hash tables. Significantly less
multiplications
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Significantly Less Computations
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Bonus: Asynchronous (SGD) for Very Sparse Updates
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Summary: Cheaper and Parallel Updates

Every gradient update is significantly cheaper in terms of arithmetic
operation.

Gradient update parallelizable across data due to sparsity.

Can we beat hardware acceleration (like V100 GPU) with limited
multi-core CPU?
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Baselines

State-of-the-art optimized implementations

Tensorflow on Intel(R) Xeon(R) Platinum 8175M CPU (48 cores)

Tensorflow-CPU 1.12 from source with GCC5.4 in order to support
FMA, AVX, AVX2, SSE4.1, and SSE4.2 instructions.

Tensorflow on NVIDIA Tesla V100 (32GB)

-VS-

SLIDE: Sub-LInear Deep Learning Engine.
The algorithm we just saw over Intel(R) Xeon(R) Platinum 8175M CPU
(48 cores)

Metrics

Full spectrum of accuracy climb with Wall clock time.

Effect of changes in batch size

Scalability with Increasing Cores.
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Dataset and Architectures

Table: Statistics of the datasets

Delicious-200K Amazon-670K

Feature Dim 782,585 135,909

Feature Sparsity 0.038 % 0.055 %

Label Dim 205,443 670,091

Training Size 196,606 490,449

Testing Size 100,095 153,025

Network Architectures (Fully Connected)

Delicious-200K 782, 585⇒ 128⇒ 205, 443 (126 million parameters)

Amazon-670K 135, 909⇒ 128⇒ 670, 091 (103 million parameters)
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Result: Straight Comparison (2 hours Vs 5.5 hours)
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SLIDE on a 44 core CPU is more than 2.7 times (2 hours vs. 5.5 hours)
faster than the same network trained using Tensorflow on Tesla V100.
Reaches any given accuracy level faster. Note the log scale on time.
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Result 2: Sampled Softmax Tricks are Bad
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Result 3: Scalability with Cores

Table: Core Utilization

8 16 32

Tensorflow-CPU 45% 35% 32%

SLIDE 82% 81% 85%
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New Results: 100x faster than Tensorflow on CPU system after
optimizing for cache thrashing. (Thanks to Intel)
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Compressed Estimations
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Good old Near-Neighbor but this time sub-
linear memory and on streams!
• Problem Setting: We have a stream of vectors, 𝑥𝑡 at time t. 

• Assume we observe n vectors in total. 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁}
• We are not allowed O(N) storage. 
• We are not allowed second pass.

• Goal: Given any out of sample query q (𝑞 ∉ 𝐷), find the index of approximate 
near-neighbors of q in D. 

• << O(N) storage!!
• JL lemma gives 𝑂 𝑁 log 𝑁
• We don’t know q in advance? So best hope is random sampling? But that loses recall in 

proportion to the fraction sampled! (Not sub-linear)

• LSH, KD trees, etc. all super-linear in memory. 
• They all requiring storing the data vector or projection of the vector. 



Motivating Applications

• Who does not need low communication near-neighbor?
• Recommendation systems.
• Compressing Friends graphs for recommending friends. 
• Almost any large scale or memory constrained near-neighbor application. 

• Distributed, low memory, IoT
• Small devices independently sketch what they see. We add the sketch to get the 

capability to  do near-neighbor search!

• Robust Caching
• Caching is widely deployed in practice for search and related network application. 
• What if caches are robust to perturbation in query?  



A Hard Problem in General.

• Information Lower bound (A Negative Result)
• There cannot exist an algorithm (even randomized) that can solve near-

neighbor in stream with < O(N) memory on generic inputs
• Reduction to INDEX problem

• We need a completely different characterization to get sub-linear 
memory!
• What kind of inputs can we get sub-linear memory? 

• Are such inputs practical?

• What does a sub-linear algorithm even looks like?



RACE (Repeated ACE Algorithm):
A Weird Sketching that Works! 
Initialize M (some number) Arrays of size R with  zeros. 

While Get 𝑥𝑖
Choose a sparse sample out of M Arrays (universal hashing on 𝑖)

For each sampled array A, 

compute the associated locality sensitive hash 𝑙 𝑥𝑖 and 
increment the location, i.e. 𝐴 𝑙 𝑥𝑖 ++

DONE!!

These M arrays of counts are the required sketches
• No storing of any attribute of any kind. 
• One Pass and mergeable (Just add the arrays)
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𝑞
For array i, get the count of h(q).

Say ℎ1 𝑞 = 2, ℎ2 𝑞 = 4, ℎ3 𝑞 = 0,… , ℎ7 𝑞 = 0

Their counts are 2, 9, 2, 10, 65, 16, 0. We take average of these counts over some 
repetitions. 

These average counts are compressed sensing measurements of vector V, whose 
𝑖𝑡ℎ component (𝑉𝑖) is collision probability of query q, with 𝑥𝑖 in database (under LSH).  V is 
a sparse vector, so just recover heavy entries!! 



RACE: Querying

Given a query q. 

For each M arrays of counts

Get the value of 𝐴 𝑙 𝑞 which will be a compressed sensing 
measurement. 

Enough arrays give enough measurements. 

From these measurements, recover the heavy entries and they are 
guaranteed to be near-neighbors!! 



For any query we can get (estimate sharply) the count-min Sketch of vector V 
where the 𝑖𝑡ℎ component of V is given by 𝑉𝑖 = 𝑝 𝑞, 𝑥𝑖

𝐾, where 𝑝(𝑥𝑖 , 𝑞) is the collision probability of 𝑥𝑖 (in 
database) with query. K is any parameter we can choose to control sparsity.



Main Theorem



Key Hammer: ACE Algorithm (WWW 2018)

ACE: Arrays of Locality Sensitve Counts: Anomaly Detection on the Edge ( by Luo and Shrivastava in WWW 2018)

• Online Addition Phase
• Generate few (hash) arrays of counters. (No hash tables, no buckets.)
• Addition: only increment the count, (no adding element to buckets).
• The global mean of anomaly score can also be updated online. (later)



ACE Estimates 

• Given a data point 𝑞, ACE estimates the following unbiasedly

• We modify ACE to instead estimate σ𝑟𝑖 × 𝑝 𝑞, 𝑥𝑖
𝐾 for any  −1 ≤

𝑟𝑖 ≤ 1

13

Parameter

Collision Probability



Hammer 2: Compressed Sensing (we use CMS 
sketch)
• We modify ACE to instead estimate 

• σ𝑟𝑖 × 𝑝 𝑞, 𝑥𝑖
𝐾 for any  −1 ≤ 𝑟𝑖 ≤ 1

• These are compressed sensing estimate of N dimentinal vector (signal) for RIP choices of 𝑟𝑖
• Signal = [𝑝 𝑞, 𝑥1

𝐾 , 𝑝 𝑞, 𝑥2
𝐾 … , 𝑝 𝑞, 𝑥𝑁

𝐾 ] 

• RACE can estimate these measurements for any query (In Sub-linear  (<< O(N)) space!! )

• We can choose large K to satisfy sparsity. 
• Notion of stable near-neighbor (Data Dependent)



New Connection: Hardness of near-neighbor 
reduces to sparsity of similarity with query and 
associated hardness in compressed sensing!!



Experimental Results • Google+ graph with 
around 100k nodes

• Every nodes sparsely 
represented by direct  
friends ( 0-1 vector)

• Compress these vectors.
• Goal: Friends 

recommendation
• Given a node vector, 

find identity of nodes 
with most similar 
vectors. 

• Metric: Compression-
Accuracy Trade-off



Other Related Projects.

FLASH System For Search and Sampling. (SIGMOD 18)

Large Scale Feature Selection with log d working memory. (ICML 18)

Parallel and distributed Count-Min Sketch avoiding Heaps (NIPS 18)

SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time
Series. (JMLR 2017)

Bayesian Estimation with Hashing. (AAAI 2019)

Sub-Linear Memory Search (Compressed Sensing Meets LSH) (arxiv)
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Quick Peek: Sketching Optimizations

Why sketching?

All updates linear

Heavy items dominates the computation
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Conclusion

Perfect Time for Algorithmic Disruption in large scale machine
learning.

Machine Learning techniques were not designed keeping in mind
computations, and the future with current algorithms such as
backpropagation is hopeless.

We need to revisit old algorithms with a new perspective.

Probabilistic hashing seems to be a very promising techniques.
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