
Hierarchical Summarization for Easy Video Applications

Abstract
With growing use of videos, demand on retrieval video ap-

plications has become intense. Most existing methods that
analyze the semantics of a video build specific models; for
example, ones that aim at event detection, or targeted video
albumization. These might be called as application specific
works and useful in their own right. In this paper, however,
we propose a video abstraction framework that unifies the
creation of various applications, rather than the application
itself.

Specifically, we present a dictionary summarization of
a video that provides abstractions at various hierarchical
levels such as pixels, frames, shots, and the complete video.
We illustrate the usability of our model with four different
“apps”.

1 Introduction

Say you want to find an action scene of your favorite hero.
Or want to watch a romantic movie with a happy ending. Or
say you saw a interesting trailer, and want to watch related
movies. Finding these videos in the ocean of videos avail-
able has become noticeably difficult, and requires a trust-
worthy friend or editor. Can we quickly design computer
“apps” that act like this friend?

This work presents an abstraction for making this happen.
We present a model which summarizes the video in terms of
dictionaries at different hierarchical levels — pixel, frame,
and shot. This makes it easier for creating applications that
summarizes videos, and address complex queries like the
ones listed above.

The abstraction leads to a toolkit that we use to create sev-
eral different applications demonstrated in Figure 1. In the
“Suggest a Video” application, from a set of action movies,
three Matrix sequels were given as input; the movie Termi-
nator was found to be the closest suggested match. In the
“Story Detection” application, the movie A Walk to Remem-
ber is segmented into three parts; user experience suggests
that these parts correspond to prominent changes in the twist
and plot of the movie. In the “Audio Video Mix" applica-
tion, given a song with a video as a backdrop, the applica-
tion finds another video with a similar song and video; the
application thus can be used to generate a “remix” for the
input song. This application illustrates the ability of the data
representation to find a video which closely matches both
content and tempo.

1.1 Related Work

In creating dictionaries, soft quantization [1] accounting dis-
tance from a number of codewords is considered for clas-
sifying scenes; Fisher Vector is then used in classification
[3, 2] leading to significant improvement over Bag Of word
methods.

Fig. 1. Retrieval applications designed using our Hierarchical
Dictionary Summarization method. “Suggest a Video” suggests
Terminator for Matrix sequels. “Story Detection” segments a
movie into logical turning points in the plot of the movie A Walk
to Remember. “Audio Video Mix" generates a “remix” song from
a given set of music videos.

Similar to [3, 2], we use local descriptors and form visual
dictionaries. However unlike [3, 2], we preserve more in-
formation instead of extracting only specific information. In
addition to building dictionary at pixel level, we extend this
dictionary to frame and shot level, forming a hierarchical
dictionary. Having similarity information available at vari-
ous granularities is the key to creating applications that need
features at the level desired.

1.2 Contributions

In this paper, we propose a Hierarchical Dictionary Model
(termed H-Video) to make the task of creating application
easier. Our method learns semantic dictionaries at three dif-
ferent levels — pixel patches, frames, and shots. Video is
represented in the form of learned dictionary units that re-
veal semantic similarity and video structure. The main in-
tention of this model is to provide these semantic dictionar-
ies, so that comparison of video units at different levels in
the same video and different videos becomes easier.

The benefits of H-Video include the following
(i) The model advocates run-time leveraging of prior of-

fline processing time. As a consequence, applications run
fast.

(ii) The model is built in an unsupervised fashion. As
no application specific assumption is made, many retrieval
applications can use this model and its features. This can po-
tentially save enormous amount of computation time spent
in learning.

(iii) The model represents learned information using a hi-
erarchical dictionary. This allows video to be represented
as indexes to elements in the video. This makes it easier for
the developer of a new retrieval applications as similarity in-
formation is available as a one dimensional array. In other
words, our model doesn’t demand deep video understanding



Fig. 2. Illustration of the H-Video Abstraction

background from application developers.
(iv) We have illustrated our model through several appli-

cations. Figure 1 illustrates these applications.

2 Methodology

Overview: Our model first extracts local descriptors like
colour and edge from pixels patches. (Color and edge de-
scriptors are simply examples.) We then build a dictionary,
termed H1 dictionary, out of these features. At this point,
the video could be, in principle, be represented in terms of
this H1 dictionary. We refer each frame of this representa-
tion as an H1 frame. We then extract slightly higher level
features such as the histogram of the H1 dictionary units,
the number of regions from these H1 frames and so on, and
form a new H2 dictionary. The H2 dictionary is yet another
representation of the video and captures the type of objects
and their distribution in the scene; in this way, it captures
the nature of the scene. The video could also be represented
using this H2 dictionary. We refer each shot in this represen-
tation as an H2 shot. Further, we extract features based on
the histogram and position of H2 dictionary units and build
yet another structure, the H3 dictionary. This dictionary rep-
resents the type of shots occurring in the video. The video is
now represented in terms of this H3 dictionary to form H3
video.

Details: For forming the H1 dictionary, at each pixel, the
nearby 8 × 8 window of pixels are considered. We extract
local descriptors from the moving window using pyramidal
Gaussian features, neighborhood layout features, and edge
filters.

As an example, we use the list of filters listed in Fig. 3,
which we have found to be effective in capturing the colour
& shape information. A different set of features like SIFT
or HOG can also be used based on the requirement of the
application.

These features are extracted from the complete video. We
use principal component analysis to determine the number
of clusters. The top principal component is chosen based on
the allowed error. We then use k-means to obtain the H1
dictionary. However as clustering very long videos could
be time consuming, one alternative is to do this process in
various stages. For example, we first form H1 dictionary
for each frame, combine dictionaries from a sequence of

Fig. 3. Pixel-Level Feature Extraction Filters

frames, and do clustering to form a more representative dic-
tionary. Several dictionaries from temporal stages in the
video are then combined to form a global H1 dictionary.
This step-by-step approach of building dictionary makes this
easy to compute and scalable.

Once the global H1 dictionary is available we process the
video again to remove duplicates, or near duplicates to form
a less redundant dictionary-based representation. The com-
plete video is then represented using these dictionary units
(left hand side of Fig. 2). Each frame in this representation
is referred as an H1 frame. H1 frames may also be thought
of as a segmentation, but in addition to the segmentation,
the dictionary units have the information about the nature
of the objects.

H2 Formation: From each H1 frame, conglomerate fea-
tures like a histogram, the number of regions and the dis-
tance between them are captured. A subset of these features
can also be chosen based on the application of these fea-
tures. Similar to H1 dictionary formation, these features are
clustered to form an H2 dictionary. We use the step-by-step
dictionary building approach, wherein first dictionaries for
a sequence of frames is built and they are clustered again to
form the global dictionary.

Using the H2 dictionary, we represent the video in terms
of H2 units. We refer each shot in this representation as
an H2 shot. The change in the H2 units correspond to dy-
namically changing shots, whereas more or less similar H2
units corresponds to relatively static content. Representing
video as a one dimensional array of dictionary units makes
the comparison of video elements easier. H2 units capture
higher level details and are simpler for comparison pur-
poses. Generally information needed by similarity appli-
cation will be captured at this level.

H3 Formation: Features capturing distribution of H2



units like histogram, and distance between blocks are con-
sidered. These extracted features are clustered to form H3
dictionary, wherein first the dictionary is computed at shot
level, and the dictionary units are again clustered to form
global H3 dictionary. Using this dictionary, the video is rep-
resented as a one dimensional sequence of H3 units, where
each unit corresponds to shot. This representation will be
typically useful in a applications involving a huge collection
of videos; applications can quickly narrow down to the cor-
rect interest group. This level will also be useful in segmen-
tation and classification applications. For example while
classifying shots of lecture video into professor, student and
board slides, this level will be of helpful.

Some applications require videos to be compared at mul-
tiple dictionary levels. For this purpose, we cluster H1 clus-
ters of more than one input videos in the database together,
and construct a H1 dictionary at the database level, rather
than an individual video. Using this notion of global H1
dictionary, the H2 units and H3 units are generated again.
(Input videos from the database are randomly sampled.)

3 Experiments

In this section, we first evaluate the individual performance
of the constituents of H-Video model itself. Next, in creating
dictionaries, we compare the usage of popular features such
as SIFT. Finally the performance of applications that may
use more than one of the three levels, H1, H2, or H3, are
evaluated.
Data: We have collected around 100 movie trailer from
youtube, twenty five full length movie films, and a dozen
music video clips.
Computational Time: Our implementation is in Matlab.
Typically a full-length movie takes around two hours for
feature extraction. Building local dictionaries for a movie
takes around 10 hours. Building the global dictionary, which
is extracted from local dictionary of multiple videos takes
around 6 hours. Note that building local dictionaries and a
global dictionary (left hand side of Fig. 2) are one time jobs.
Once these are built, the dictionaries are directly used to cre-
ate the right hand side of Fig. 2. In other words, relevant
model building typically takes two hours which is no differ-
ent from the average runtime of the video itself. Once the
model is constructed, each access operation typically takes
only around 10 seconds per video.

3.1 Individual Evaluation of H1 and H2

For illustrating the effectiveness of H1 dictionary, we con-
sidered the classification problem and collected videos from
the category “car”, “cricket” and “news anchor”. We have
collected 6 videos from each category summing up to total
of 18 videos. We computed H1 dictionary for each of these
videos, and formed a global H1 dictionary for the given
dataset and represented all videos in terms of this global
dictionary. For testing purposes we randomly selected two
videos from each category for training data and remaining
as testing set and test set against one of the three categories.

The recall and precision of classification using only H1 is
provided in Table 1.

Table 1. Classification using only H1. With limited infor-
mation, we are able to glean classification hints.

Category Precision Recall
Car 1.00 0.75
Cricket 0.67 1.00
News Anchor 1.00 0.75

Fig. 4. Classification using only H2. With only limited infor-
mation, and with smaller allowed error, fine details were captured.
With larger allowed error, broad categories were captured.

To evaluate the effectiveness of only H2 dictionary units,
we have built our model on a TV interview show; these had
scenes of only individuals, as well as people groups. When
we built H2 dictionaries with allowed error as “top principal
component / 1000”, we got six categories capturing differ-
ent scenes, people and their positions. As we relaxed the al-
lowed error, it resulted in two categories between individual
scene and group of people. This result is presented in Fig. 4.
Hence applications can tune allowed error parameters to suit
their requirement.

3.2 Evaluation of Alternate Features

In this section we evaluate popular features like SURF, SIFT
and contrast with the color & edge features used in this pa-
per. Given any feature set, one may do a “direct compari-
son” (which will take longer time), or do our proposed H-
Video model-based comparison (which will take far lesser
time). This experiment is performed on the “Suggest-a-
video” problem using only trailers of movies as the database.
The result is presented in Table 2.

When the H-Video model is used, we use the H2 as the
basis of comparison. We observe that the use of the hierar-
chical model helped improving the accuracy for SIFT and
color & edge features; the accuracy was almost the same
when using SURF features. In producing these statistics,
for the ground truth we have used information available on
imdb.com. One problem in using imdb.com is that the
truth is limited to the top twelve only. We therefore have

Table 2. Video suggestion using popular features
Methods Direct H-Model Percentage

Comparison Improvement
SURF 54% 54% 0%
SIFT 29% 53% 83%
Color, Edge 48% 59% 23%



added transpose and transitive relationships as well. (In
transpose relationships, if a movie A is deemed to be related
to B, we mark B as related to A. In transitivity, if a movie
A is related to B, and B is related to C, then we mark A as
related to both B and C. The transitive closure is maintained
via recursion.)

3.3 Evaluation of Video Classification

We have considered three genres for video classification. We
took the category annotation of 100 movie trailers and for
each category considered 30% of the data for training and
remaining as testing set. We have build the H-video for these
videos, extracted H2 and H3 representations, and classified
using the random forest model. Example output is shown in
Fig. 5.

Fig. 5. Sample Result of classifying movie trailers for categories
Drama, Action and Romance. In most of the cases, our model has
classified movie trailers correctly.

3.4 Evaluation of Logical Turning Point Detection

We define Logical Turning Point in the video as a point
where the characteristics of objects in the video change dras-
tically. Detecting such places helps in summarizing the
video effectively.

We consider shots within a moving window of 5 shots.
We compute the semantic overlap of H1 and H2 units be-
tween the shots. When the amount of overlap between shots
is low in a specific window of shots, we detect that as a log-
ical turning point.

Typically drama movies have three logical parts. First the
characters are introduced, then they get together and then
a punchline is presented towards the end. Considering this
as ground truth, we validated the detected logical turning
points. The logical turning points were detected with preci-
sion of 1.0 and recall of 0.75.

3.5 Evaluation of Potential Remix Candidates

Remix is the process of generating a new video from exist-
ing videos by either changing audio or video. Remixes are
typically performed on video songs for a variation on the en-
tertainment needs. The remix candidates need to have sim-
ilar phase in the change of the scene to generate a pleasing
output.

Fig. 6. Sample frames from identified remix candidates is pre-
sented. In each sets, top row correspond to a original video song
and the second row corresponds to the remix candidate. The con-
tent and sequencing of the first and second rows match suggesting
the effectiveness of our method.

We use cross correlation of H2 units to identify that they
have same phase of change. Once the closest candidate is
identified, we replace the remake candidate’s audio with the
original video’s audio.

We have conducted experiments on 20 song clips, where
the aim is to find best remix candidates. Our algorithm
found two pairs of songs which are best candidates for remix
in the given set. Sample frames from matched video are pre-
sented in Fig. 6.

4 Conclusion

In traditional video retrieval systems, relevant features are
extracted from the video and applications are built using the
extracted features. For multimedia database retrieval sys-
tems, there are typically plethora of applications that would
be required for satisfying different user needs. A unified
model which uses fundamental notions of similarity would
therefore be valuable to reduce computation time for build-
ing applications.

In this paper, we have proposed a novel model called H-
Video, which provides the semantic information needed by
retrieval applications. In summary, both creation (program-
mer time) and runtime (computer time) of the resulting ap-
plications are reduced. First, our model provides semantic
information of video in a simple way, so that it is easy for
programmers. Second, due to our suggested pre-processing
of long video data, runtime is reduced. We have built four
applications as examples to demonstrate our model.

5 References

[1] J. C. Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W.
Smeulders. Kernel codebooks for scene categorization. In
ECCV, pages 696–709, 2008.

[2] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating lo-
cal descriptors into a compact image representation. In CVPR,
pages 3304–3311, 2010.

[3] C. Sun and R. Nevatia. Large-scale web video event classifi-
cation by use of fisher vectors. In WACV, pages 15–22, 2013.


