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Secure Multi-Party 
Computation

What is it?

Manoj Prabhakaran  ::  IIT Bombay
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Declared winning bid should 
be correct

Only the winner and winning 
bid should be revealed
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combined data
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Mining 
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A general problem

To compute a function of private 
inputs without revealing 
information about the inputs

Beyond what is   
revealed by the 
function

X1 X4

X3X2

f(X1, X2, X3, X4)
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Cards are shuffled and 
dealt correctly

Complete secrecy

No “cheating” by      
players, even if  
they collude

No universally trusted 
dealer
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Emulating Trusted 
Computation

Encryption/Authentication allow us to emulate a 
trusted channel

Secure MPC: to emulate a source of trusted 
computation

Trusted means it will not “leak” a party’s 
information to others

And it will not cheat in the computation

A tool for mutually distrusting parties to collaborate
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Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments 
(since 2008)

sugar beet auction, electricity auction, spectrum 
auction, key management

A prototype for credit rating, supported by Danish 
banks
A proposal to the Estonian Tax & Customs Board
A proposal for Satellite Collision Analysis
…





This Tutorial



This Tutorial

What does it mean to be secure?



This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up



This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up

An important, basic protocol: “Basic” GMW



This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up

An important, basic protocol: “Basic” GMW
Glimpses of various issues



What does it  
mean to be  
Secure?
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Security Issues to Consider
Protocol may leak a party’s secrets


Clearly an issue 

Even if we trust everyone not to cheat in our 
protocol (i.e., honest-but-curious)


Also, a liability for a party if extra information 
reaches it (e.g., in medical data mining)

Protocol may give adversary illegitimate influence on 
the outcome


Say in poker, if adversary can influence hands dealt

In auction, if adversary can choose its bid to just 
beat the others’
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Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

Security guarantee: Whatever an adversary can do in 
the REAL world, an adversary could have done the 
same in the IDEAL world

Can’t blame the protocol for anything undesirable

PAlice

      
PBob   Alice

 
  

BobFF

IDEAL REAL

Trusted 
Third-Party Protocol
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Adversary
REAL-adversary can corrupt any set of players


IDEAL-adversary should corrupt the same set of 
players

More sophisticated notion: adaptive adversary which 
corrupts players dynamically during/after the execution


We’ll stick to static adversaries

Passive vs. Active adversary: Passive adversary gets only 
read access to the internal state of the corrupted players. 
Active adversary overwrites their state and program.
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Defining Security

Secure (and 
correct) if: 


∀    

∃      s.t.

∀  

output of        
is distributed 
identically in 
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Universally Composable [Canetti’01]
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(Some) Security Models
Standalone security: environment is not “live”: interacts with the 
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict 
minority of parties. (Not useful when only two parties involved)

Passive (a.k.a honest-but-curious) adversary: where corrupt 
parties stick to the protocol (but we don’t want to trust them 
with information)

Functionality-specific non-simulation-based definitions: usually 
leave out subtle attacks (e.g. malleability related attacks)

Protocols using a trusted party for some basic functionality 
(a.k.a. set up)

Angel-UC (UC + a helpful oracle for adversary in the ideal world)
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Is MPC Possible?
Can we securely realize every functionality?

No & Yes!

All subsets 
corruptible

Honest 
Majority

Computationally 
Unbounded No

Yes
Computationally 
Bounded (PPT)

Univ. Composable

Angel-UC
Standalone

Passive

No
Yes
Yes
Yes
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A simple example
An auction, with Alice and Bob bidding

Rules:


A bid is an integer in the range [0,100]


Alice can bid only even integers and Bob odd 
integers


Person with the higher bid wins

Goal: find out the winning bid (winner & amount) 
without revealing anything more about the losing 
bid (beyond what is revealed by the winning bid)
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Stop if a party says yes



A simple example
Secure protocol:


Count down from 100


At each even round Alice announces whether 
her bid equals the current count; at each odd 
round Bob does the same


Stop if a party says yes

Dutch flower auction
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2-Party SFE

Secure Function Evaluation (SFE) IDEAL: 

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither 
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

g(x0,x1;b) = none; f(x0,x1;b) = xb

Single-Output SFE: only one party gets any output

Alice

 
  

BobFF
X Y

g(X;Y) f(X;Y)
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2-Party SFE

Can reduce any SFE (even randomized) to a single-output 
deterministic SFE

f’(X, M, r1; Y, r2) = ( g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2) ). 
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice
Passive secure
Generalizes to active security and more than 2 parties

Can reduce any single-output deterministic SFE to OT!
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“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

Yao’s garbled circuit for 2 parties (later today)

“Basic GMW”: Information-theoretic reduction to OT

In fact, OT is complete even for active security
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“Completeness” of OT:  
Proof of Concept

Single-output 2-party function f

Alice (who knows x, but not y) prepares a table for  
f(x,⋅) with N = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick 
up using 1-out-of-N OT (without learning the other 
entries)

Bob learns only f(x,y) (in addition to y). Alice learns 
nothing beyond x.

Problem: N is exponentially large in |y|
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1-out-of-N OT
f( (x1,…,xN); i ) = (⊥; xi)

For passive security: simply run N copies of  
1-out-of-2 OT, with inputs for jth instance being  
(0,xj; bj) where bj = 1 iff j=i

Aside: active security easily achievable too using a 
randomized protocol using N-1 copies of 1-out-of-2 OT
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Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:                                              
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

Can directly convert a truth-table 
into a circuit, but circuit size  
exponential in input size

Can convert any (“efficient”) program into  
a (“small”) circuit

Interesting problems already given as succinct 
programs/circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0
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Basic GMW

Adapted from the famous Goldreich-Micali-Wigderson 
(1987) protocol (due to Goldreich-Vainish, Haber-
Micali,…)

Efficient passive secure MPC based on OT, without 
any other computational assumptions

Idea: Computing on secret-shared values
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Computing on Shares

Fix any “secret” s. Let a, b be random conditioned on 
s = a + b. (All elements from a finite field, e.g. GF(2))

Each of a, b by itself carries no information about s. 
(e.g., can pick a at random, set b = s - a.)

Will write [s]1 and [s]2 to denote shares of s
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Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with 
Alice holding one share and Bob the other. At the 
end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [u]2u

[w]1 [w]2

+

w

+ +

[v]1 v [v]2
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Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ( [u]1 + [u]2 ) ⨉ ( [v]1 + [v]2 )

Alice picks [w]1. Can let Bob compute [w]2 using the 
naive (proof-of-concept) protocol

Note: Bob’s input is ([u]2,[v]2). Over the binary field, this 
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1 [w]2
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GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u ⨉ v  
[w]1 +..+ [w]m = ( [u]1 +..+ [u]m ) ⨉ ( [v]1 +..+ [v]m )


Party i computes [u]i[v]i


For every pair (i,j), i≠j, Party i picks random aij and 
lets Party j securely compute bij s.t. aij + bij = [u]i[v]j 
using the naive protocol (a single 1-out-of-2 OT)


Party i sets [w]i = [u]i[v]i + Σj ( aij + bji )

Allows security against 
arbitrary number of 

corruptions
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Zero Knowledge proofs [GMR’86,…]
A special case of MPC, leading to many key 
concepts in crypto/complexity
Key ingredient in going from passive to active 
security

Garbled Circuit [Yao’86,…]
First general purpose MPC (2-party, passive-
security, using OT and symmetric-key encryption
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Tomorrow

Randomized Encoding
A general concept with applications to many crypto 
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Composition issues
Running two instances of a secure protocol needn’t 
be secure any more!

MPC Complexity
“Cryptographic Complexity" of functionalities
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Honest-Majority MPC
When very strong security and output guarantees 
are possible
Also useful as an encoding of computation

“MPC in the Head”
A versatile technique for creating (non-honest-
majority) MPC protocol from Honest-Majority MPC

Asynchronous MPC
Everything till this point assumes a “synchronous” 
network


