
 
 Wifi: IITB-Wireless | mpc.school.wifi | uMn6wC9m

Monday

11:00 - 12:30 What is MPC? Manoj

2:00 - 3:00 Zero Knowledge Muthu

3:30 - 5:00 Garbled Circuits Arpita

Tuesday

9:30 - 11:00 Randomized Encoding Yuval

11:30 - 12:30 Oblivious Transfer Arpita

2:00 - 3:30 Composition Muthu

4:00 - 5:00 MPC Complexity Manoj

Wednesday

9:00 - 10:30 Honest-Majority MPC Vassilis

11:00 - 12:30 "MPC in the head” Yuval

2:00 - 3:00 Asynchronous MPC Vassilis

Manoj Prabhakaran 
IIT Bombay

Muthu Venkitasubramaniam
U Rochester

Yuval Ishai  
Technion & UCLA

Arpita Patra  
IISc

Vassilis Zikas
RPI

Secure Multi-Party
Computation

What is it?

Manoj Prabhakaran :: IIT Bombay

Can we have an auction without
an auctioneer?!

Can we have an auction without
an auctioneer?!

Can we have an auction without
an auctioneer?!

Can we have an auction without
an auctioneer?!

Declared winning bid should
be correct

Can we have an auction without
an auctioneer?!

Declared winning bid should
be correct

Only the winner and winning
bid should be revealed

Hospitals which can’t share their
patient records with anyone

Hospitals which can’t share their
patient records with anyone

But want to data-mine on
combined data

Data
Mining

Tool

A general problem

X1 X4

X3X2

f(X1, X2, X3, X4)

A general problem

To compute a function of private
inputs without revealing
information about the inputs

X1 X4

X3X2

f(X1, X2, X3, X4)

A general problem

To compute a function of private
inputs without revealing
information about the inputs

Beyond what is  
revealed by the 
function

X1 X4

X3X2

f(X1, X2, X3, X4)

Need to ensure

Need to ensure

Cards are shuffled and
dealt correctly

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

No “cheating” by
players, even if  
they collude

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

No “cheating” by
players, even if  
they collude

No universally trusted
dealer

Without any trusted party,
securely do

Distributed Data mining
E-commerce
Network Games
E-voting
Secure function evaluation
....

Without any trusted party,
securely do

Distributed Data mining
E-commerce
Network Games
E-voting
Secure function evaluation
....

Without any trusted party,
securely do

Distributed Data mining
E-commerce
Network Games
E-voting
Secure function evaluation
....

 
 

Emulating Trusted
Computation

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Secure MPC: to emulate a source of trusted
computation

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Secure MPC: to emulate a source of trusted
computation

Trusted means it will not “leak” a party’s
information to others

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Secure MPC: to emulate a source of trusted
computation

Trusted means it will not “leak” a party’s
information to others

And it will not cheat in the computation

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Secure MPC: to emulate a source of trusted
computation

Trusted means it will not “leak” a party’s
information to others

And it will not cheat in the computation

A tool for mutually distrusting parties to collaborate

Is it for Real?

Is it for Real?
Getting there! Many implementations/platforms

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI
Obliv-C

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI
Obliv-C
JustGarble

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI
Obliv-C
JustGarble
SPDZ/MASCOT

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI
Obliv-C
JustGarble
SPDZ/MASCOT
ObliVM

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF
Sharemind
SCAPI
Obliv-C
JustGarble
SPDZ/MASCOT
ObliVM
…

Is it for Real?
And many practical systems using some form of MPC

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments
(since 2008)

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments
(since 2008)

sugar beet auction, electricity auction, spectrum
auction, key management

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments
(since 2008)

sugar beet auction, electricity auction, spectrum
auction, key management

A prototype for credit rating, supported by Danish
banks

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments
(since 2008)

sugar beet auction, electricity auction, spectrum
auction, key management

A prototype for credit rating, supported by Danish
banks
A proposal to the Estonian Tax & Customs Board
A proposal for Satellite Collision Analysis
…

This Tutorial

This Tutorial

What does it mean to be secure?

This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up

This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up

An important, basic protocol: “Basic” GMW

This Tutorial

What does it mean to be secure?
How does one do MPC? Warm up

An important, basic protocol: “Basic” GMW
Glimpses of various issues

What does it  
mean to be  
Secure?

Terminology

Terminology
Protocol: Instructions to the (honest) parties on what
messages to send to whom based on input/local
randomness and messages received so far.

The next-message function

Terminology
Protocol: Instructions to the (honest) parties on what
messages to send to whom based on input/local
randomness and messages received so far.

The next-message function

Functionality: What we are aiming to achieve

Specified as the program of a trusted party

Terminology
Protocol: Instructions to the (honest) parties on what
messages to send to whom based on input/local
randomness and messages received so far.

The next-message function

Functionality: What we are aiming to achieve

Specified as the program of a trusted party

Security Issues to Consider

Security Issues to Consider
Protocol may leak a party’s secrets

Clearly an issue

Even if we trust everyone not to cheat in our
protocol (i.e., honest-but-curious)

Also, a liability for a party if extra information
reaches it (e.g., in medical data mining)

Security Issues to Consider
Protocol may leak a party’s secrets

Clearly an issue

Even if we trust everyone not to cheat in our
protocol (i.e., honest-but-curious)

Also, a liability for a party if extra information
reaches it (e.g., in medical data mining)

Protocol may give adversary illegitimate influence on
the outcome

Say in poker, if adversary can influence hands dealt

In auction, if adversary can choose its bid to just
beat the others’

Defining Security

Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

PAlice

PBob Alice

 

BobFF

IDEAL REAL

Trusted
Third-Party Protocol

Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

Security guarantee: Whatever an adversary can do in
the REAL world, an adversary could have done the
same in the IDEAL world

PAlice

PBob Alice

 

BobFF

IDEAL REAL

Trusted
Third-Party Protocol

Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

Security guarantee: Whatever an adversary can do in
the REAL world, an adversary could have done the
same in the IDEAL world

Can’t blame the protocol for anything undesirable

PAlice

PBob Alice

 

BobFF

IDEAL REAL

Trusted
Third-Party Protocol

Adversary

Adversary
REAL-adversary can corrupt any set of players

IDEAL-adversary should corrupt the same set of
players

Adversary
REAL-adversary can corrupt any set of players

IDEAL-adversary should corrupt the same set of
players

More sophisticated notion: adaptive adversary which
corrupts players dynamically during/after the execution

We’ll stick to static adversaries

Adversary
REAL-adversary can corrupt any set of players

IDEAL-adversary should corrupt the same set of
players

More sophisticated notion: adaptive adversary which
corrupts players dynamically during/after the execution

We’ll stick to static adversaries

Passive vs. Active adversary: Passive adversary gets only
read access to the internal state of the corrupted players.
Active adversary overwrites their state and program.

Defining Security

Defining Security

i’face i’face

Env
IDEAL

FF

Defining Security

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Defining Security

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Defining Security

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Defining Security

Secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Defining Security

Secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Universally Composable [Canetti’01]

(Some) Security Models

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

Passive (a.k.a honest-but-curious) adversary: where corrupt
parties stick to the protocol (but we don’t want to trust them
with information)

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

Passive (a.k.a honest-but-curious) adversary: where corrupt
parties stick to the protocol (but we don’t want to trust them
with information)

Functionality-specific non-simulation-based definitions: usually
leave out subtle attacks (e.g. malleability related attacks)

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

Passive (a.k.a honest-but-curious) adversary: where corrupt
parties stick to the protocol (but we don’t want to trust them
with information)

Functionality-specific non-simulation-based definitions: usually
leave out subtle attacks (e.g. malleability related attacks)

Protocols using a trusted party for some basic functionality
(a.k.a. set up)

(Some) Security Models
Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

Passive (a.k.a honest-but-curious) adversary: where corrupt
parties stick to the protocol (but we don’t want to trust them
with information)

Functionality-specific non-simulation-based definitions: usually
leave out subtle attacks (e.g. malleability related attacks)

Protocols using a trusted party for some basic functionality
(a.k.a. set up)

Angel-UC (UC + a helpful oracle for adversary in the ideal world)

Is MPC Possible?

Is MPC Possible?
Can we securely realize every functionality?

Is MPC Possible?
Can we securely realize every functionality?

No & Yes!

Is MPC Possible?
Can we securely realize every functionality?

No & Yes!

All subsets
corruptible

Honest 
Majority

Computationally
Unbounded No

Yes
Computationally
Bounded (PPT)

Is MPC Possible?
Can we securely realize every functionality?

No & Yes!

All subsets
corruptible

Honest 
Majority

Computationally
Unbounded No

Yes
Computationally
Bounded (PPT)

Univ. Composable

Angel-UC
Standalone

Passive

No
Yes
Yes
Yes

Doing MPC

A simple example
An auction, with Alice and Bob bidding

A simple example
An auction, with Alice and Bob bidding

Rules:

A bid is an integer in the range [0,100]

Alice can bid only even integers and Bob odd
integers

Person with the higher bid wins

A simple example
An auction, with Alice and Bob bidding

Rules:

A bid is an integer in the range [0,100]

Alice can bid only even integers and Bob odd
integers

Person with the higher bid wins

Goal: find out the winning bid (winner & amount)
without revealing anything more about the losing
bid (beyond what is revealed by the winning bid)

A simple example
Secure protocol:

Count down from 100

At each even round Alice announces whether
her bid equals the current count; at each odd
round Bob does the same

Stop if a party says yes

A simple example
Secure protocol:

Count down from 100

At each even round Alice announces whether
her bid equals the current count; at each odd
round Bob does the same

Stop if a party says yes

Dutch flower auction

We Predict

STOCKS!!

IDEAL World

We Predict

STOCKS!!

IDEAL WorldPick one out of two,
without revealing which

We Predict

STOCKS!!

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them! We Predict

STOCKS!!

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them! We Predict

STOCKS!!

I need just
one

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them! We Predict

STOCKS!!

I need just
one

Sure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them! We Predict

STOCKS!!

I need just
one

But can’t tell
you whichSure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them!

F
OT

We Predict

STOCKS!!

I need just
one

But can’t tell
you whichSure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them!

F
OT

We Predict

STOCKS!!

A:up, B:down

I need just
one

But can’t tell
you whichSure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them!

F
OT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

But can’t tell
you whichSure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them!

F
OT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

But can’t tell
you which

up

Sure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

All 2 of
them!

F
OT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

But can’t tell
you which

up

Sure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

x0 x1

F

b

xb

x0 x1

F

b

xb

x0 x1

F

b

xb

x0,x1 b
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

x0,x1 b
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

x0,x1 b
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

x0,x1 b
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

x0,x1 b
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb=Dec(cb;SKb)
x0 x1

F

b

xb

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb

xb=Dec(cb;SKb)
x0 x1

F

b

xb

  (SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb

xb=Dec(cb;SKb)
x0 x1

F

b

xb

 

 

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb

xb=Dec(cb;SKb)
x0 x1

F

b

xb

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Alice

 

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

Alice

 

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

Alice

 

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

g(x0,x1;b) = none; f(x0,x1;b) = xb

Alice

 

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

g(x0,x1;b) = none; f(x0,x1;b) = xb

Single-Output SFE: only one party gets any output

Alice

 

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Can reduce any SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice

2-Party SFE

Can reduce any SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice
Passive secure

2-Party SFE

Can reduce any SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice
Passive secure
Generalizes to active security and more than 2 parties

2-Party SFE

Can reduce any SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice
Passive secure
Generalizes to active security and more than 2 parties

Can reduce any single-output deterministic SFE to OT!

“Completeness” of OT

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

Yao’s garbled circuit for 2 parties (later today)

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

Yao’s garbled circuit for 2 parties (later today)

“Basic GMW”: Information-theoretic reduction to OT

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

Yao’s garbled circuit for 2 parties (later today)

“Basic GMW”: Information-theoretic reduction to OT

In fact, OT is complete even for active security

“Completeness” of OT:  
Proof of Concept

Single-output 2-party function f

Alice (who knows x, but not y) prepares a table for  
f(x,⋅) with N = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick
up using 1-out-of-N OT (without learning the other
entries)

“Completeness” of OT:  
Proof of Concept

Single-output 2-party function f

Alice (who knows x, but not y) prepares a table for  
f(x,⋅) with N = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick
up using 1-out-of-N OT (without learning the other
entries)

Bob learns only f(x,y) (in addition to y). Alice learns
nothing beyond x.

“Completeness” of OT:  
Proof of Concept

Single-output 2-party function f

Alice (who knows x, but not y) prepares a table for  
f(x,⋅) with N = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick
up using 1-out-of-N OT (without learning the other
entries)

Bob learns only f(x,y) (in addition to y). Alice learns
nothing beyond x.

Problem: N is exponentially large in |y|

1-out-of-N OT

1-out-of-N OT
f((x1,…,xN); i) = (⊥; xi)

1-out-of-N OT
f((x1,…,xN); i) = (⊥; xi)

For passive security: simply run N copies of  
1-out-of-2 OT, with inputs for jth instance being  
(0,xj; bj) where bj = 1 iff j=i

1-out-of-N OT
f((x1,…,xN); i) = (⊥; xi)

For passive security: simply run N copies of  
1-out-of-2 OT, with inputs for jth instance being  
(0,xj; bj) where bj = 1 iff j=i

Aside: active security easily achievable too using a
randomized protocol using N-1 copies of 1-out-of-2 OT

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

0 1

Functions as Circuits

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

Can directly convert a truth-table 
into a circuit, but circuit size  
exponential in input size

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

Can directly convert a truth-table 
into a circuit, but circuit size  
exponential in input size

Can convert any (“efficient”) program into  
a (“small”) circuit

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

Can directly convert a truth-table 
into a circuit, but circuit size  
exponential in input size

Can convert any (“efficient”) program into  
a (“small”) circuit

Interesting problems already given as succinct
programs/circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Basic GMW

Basic GMW

Adapted from the famous Goldreich-Micali-Wigderson
(1987) protocol (due to Goldreich-Vainish, Haber-
Micali,…)

Basic GMW

Adapted from the famous Goldreich-Micali-Wigderson
(1987) protocol (due to Goldreich-Vainish, Haber-
Micali,…)

Efficient passive secure MPC based on OT, without
any other computational assumptions

Basic GMW

Adapted from the famous Goldreich-Micali-Wigderson
(1987) protocol (due to Goldreich-Vainish, Haber-
Micali,…)

Efficient passive secure MPC based on OT, without
any other computational assumptions

Idea: Computing on secret-shared values

Computing on Shares

Computing on Shares

Fix any “secret” s. Let a, b be random conditioned on
s = a + b. (All elements from a finite field, e.g. GF(2))

Computing on Shares

Fix any “secret” s. Let a, b be random conditioned on
s = a + b. (All elements from a finite field, e.g. GF(2))

Each of a, b by itself carries no information about s.
(e.g., can pick a at random, set b = s - a.)

Computing on Shares

Fix any “secret” s. Let a, b be random conditioned on
s = a + b. (All elements from a finite field, e.g. GF(2))

Each of a, b by itself carries no information about s.
(e.g., can pick a at random, set b = s - a.)

Will write [s]1 and [s]2 to denote shares of s

Computing on Shares

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

[u]1 [u]2u

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

[u]1 [u]2u[v]1 v [v]2

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

[u]1 [u]2u

[w]1 [w]2

[v]1 v [v]2

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

[u]1 [u]2u

[w]1 [w]2w

[v]1 v [v]2

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [u]2u

[w]1 [w]2

+

w

[v]1 v [v]2

Computing on Shares

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [u]2u

[w]1 [w]2

+

w

+ +

[v]1 v [v]2

Computing on Shares
What about w = u ⨉ v ?

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

[w]1

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1 [w]2

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

Note: Bob’s input is ([u]2,[v]2). Over the binary field, this
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1 [w]2

GMW: many parties

GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m Allows security against

arbitrary number of
corruptions

GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Allows security against
arbitrary number of

corruptions

GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u ⨉ v  
[w]1 +..+ [w]m = ([u]1 +..+ [u]m) ⨉ ([v]1 +..+ [v]m)

Party i computes [u]i[v]i

For every pair (i,j), i≠j, Party i picks random aij and
lets Party j securely compute bij s.t. aij + bij = [u]i[v]j
using the naive protocol (a single 1-out-of-2 OT)

Party i sets [w]i = [u]i[v]i + Σj (aij + bji)

Allows security against
arbitrary number of

corruptions

 

Tutorials Outline

Today

Zero Knowledge proofs [GMR’86,…]

Tutorials Outline

Today

Zero Knowledge proofs [GMR’86,…]
A special case of MPC, leading to many key
concepts in crypto/complexity

Tutorials Outline

Today

Zero Knowledge proofs [GMR’86,…]
A special case of MPC, leading to many key
concepts in crypto/complexity
Key ingredient in going from passive to active
security

Tutorials Outline

Today

Zero Knowledge proofs [GMR’86,…]
A special case of MPC, leading to many key
concepts in crypto/complexity
Key ingredient in going from passive to active
security

Garbled Circuit [Yao’86,…]

Tutorials Outline

Today

Zero Knowledge proofs [GMR’86,…]
A special case of MPC, leading to many key
concepts in crypto/complexity
Key ingredient in going from passive to active
security

Garbled Circuit [Yao’86,…]
First general purpose MPC (2-party, passive-
security, using OT and symmetric-key encryption

Tutorials Outline

Today

Tutorials Outline

Tomorrow

Tutorials Outline

Tomorrow

Randomized Encoding

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Composition issues

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Composition issues
Running two instances of a secure protocol needn’t
be secure any more!

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Composition issues
Running two instances of a secure protocol needn’t
be secure any more!

MPC Complexity

Tutorials Outline

Tomorrow

Randomized Encoding
A general concept with applications to many crypto
constructions
Yao’s Grabled Circuit is an instance of this

Oblivious Transfer
And OT extension

Composition issues
Running two instances of a secure protocol needn’t
be secure any more!

MPC Complexity
“Cryptographic Complexity" of functionalities

Tutorials Outline

Wednesday

Tutorials Outline

Wednesday

Honest-Majority MPC

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible
Also useful as an encoding of computation

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible
Also useful as an encoding of computation

“MPC in the Head”

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible
Also useful as an encoding of computation

“MPC in the Head”
A versatile technique for creating (non-honest-
majority) MPC protocol from Honest-Majority MPC

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible
Also useful as an encoding of computation

“MPC in the Head”
A versatile technique for creating (non-honest-
majority) MPC protocol from Honest-Majority MPC

Asynchronous MPC

Tutorials Outline

Wednesday

Honest-Majority MPC
When very strong security and output guarantees
are possible
Also useful as an encoding of computation

“MPC in the Head”
A versatile technique for creating (non-honest-
majority) MPC protocol from Honest-Majority MPC

Asynchronous MPC
Everything till this point assumes a “synchronous”
network

