
Zero Knowledge Proofs

Muthuramakrishnan
Venkitasubramaniam

An example

An example

S I
I (re)solved “P vs NP?”

How?

Here is the proof 𝝅

Clay
Institute

Can I convince someone the
validity of something

without revealing the proof?

Can I reveal “zero-knowledge” about a proof?

Proof Systems

5

Insight: meaningless unless can be efficiently
verified

Proof systems

What is a “proof”?

6

Proof systems
Given language L, goal is to prove

Proof system for L is a verification algorithm V
– Completeness:

“true assertions have proofs”
– Soundness:

“false assertions have no proofs”
– Efficiency: runs in polynomial time in |x|

7

Classical Proofs (a.k.a NP)

Previous definition: “classical” proof system
iff expressible as

where R is polynomial time computable
NP is the set of languages with classical
proof systems

Interactive Proofs [GMR85]

Verifier
Bob

Prover
Alice Accept!

Reject!

9

Interactive Proofs [GMR85]

• Two new ingredients:
– Randomness: verifier tosses coins, errs with

some small probability
– Interaction: rather than “reading” proof,

verifier interacts with prover

• Classical proof systems lie in this framework:
prover sends proof, verifier does not use
randomness

10

Interactive Proofs [GMR85]
Interactive proof system for L is an interactive
protocol (P, V)

– completeness:
Pr[V accepts in (P, V)(x)] = 1

– soundness:
Pr[V accepts in (P*, V)(x)] £ 1/2

– efficiency: V is p.p.t. machine
Repetition: can reduce error to any ε
Interactive Arguments: Soundness only against PPT
machines

Interactive Proof for Graph Isomorphism

Isomorphic

Isomorphic: Exists a mapping such that

⇡

Graph G0 = (V0, E0) Graph G1 = (V1, E1)
V0 = {1, 2, . . . , 8} V1 = {a, b, . . . , j}

E1 = {(a, g), (a, h), . . .}E0 = {(1, 2), (1.4), . . .}
� : V0 ! V1

(↵,�) 2 E0 , (�(↵),�(�)) 2 E1

Verifier
Bob

Prover
Alice

Accept if rb(Gb)=H

Interactive Proof for Graph Isomorphism

G0

H

G1

𝞍

r0 r1

H

rb

b ∊ [0,1]

L = {(G0, G1) | G0 ⇡ G1}

G0 ⇡ G1

Zero Knowledge
Interactive Proofs

What is Knowledge?

Question as old as Humanity

Mostly studied in Philosophy: Epistemology

Today, important in Computer Science

(also psychology, neuroscience, economics…)

A Computational Approach to
Knowledge [Goldwasser Micali 84]

2012 Turing Award Winners

“…for transformative work that laid the
complexity-theoretic foundations for
the science of cryptography, and in the
process pioneered new methods for
efficient verification of mathematical
proofs in complexity theory”

First in [GM84]: Probabilistic Encryption

Mature in [GMR85]: Zero-Knowledge + Proofs of knowledge

“I only know what I can feasibly compute”

A Computational Approach to
Knowledge [Goldwasser Micali 84]

Feasibly compute = PPT
Probabilistic Polynomial Time

Turing Machines $+

Zero-Knowledge Proofs [GMR]

Completeness : P can convince V if X is true
Soundness: no (efficient) P* can convince V if X is not true
Zero Knowledge: no efficient V* learns anything more than validity of X

Verifier
Bob

Prover
Alice

X= P vs NP

Thank you Alice,
I believe X is true.
But I don’t know why!

Verifier
Bob

Prover
Alice

ZK Proof for Graph Isomorphism

G0

H

G1

r0

H

rb

r1

b ∊ [0,1]

Darn! I did not
learn a thing

G0 ⇡ G1

ZK Definition

S-views V*-views with Prover≈

≈

Verifier*Prover

$
$
$

$
$
$

Simulator

∀PPT adversary verifier V* , ∃PPT simulator S such that

V* learns nothing that cannot be generated by V* itself
ZK Rationale

V* itself = All Prob. Poly Time

ZK Definition

S-views V*-views with Prover≈
∀PPT adversary verifier V* , ∃PPT simulator S such that

Simulator Verifier*

≈

Prover

$
$
$

$
$
$

ZK Definition

S-views V*-views with Prover≈
∀PPT adversary verifier V* , ∃PPT simulator S such that

ZK as an instance* of MPC

x,w x

Securely Compute
f(x,w) = R(x,w)

NP language L with relation R

ZK Proof for Graph Isomorphism

G0

H

G1

r0

H

rb

r1

b ∊ {0,1}

Verifier*Prover

Simulator

H

r0

01

H’

H’

1.Choose G0 or G1 at random

G0 ⇡ G1

ZK Proof for Graph Isomorphism

G0

H

G1

r0

H

rb

b ∊ {0,1}

Verifier*Prover

Simulator

H

r0

0

1.Choose G0 or G1 at random
2.Simulator will succeed w.p ½

»

G0 ⇡ G1

What can you prove in ZK?
Can prove any classical proof in ZK [GMW86]
(a.k.a NP statements)

“Everything provable is provable in ZK” [BGGHKMR90]
(a.k.a languages in IP)

IP = PSPACE [S90,LFKN90]
PSPACE contains every language that is solvable with
polynomial space

ZK for all of NP

Step 1: Construct a ZK Proof for an NP-complete
language LC = Graph 3COL

Step 2: Given any NP lang. L and instance x,
compile* instance x to an instance xC for LC and
use ZK Proof for xC∈ LC

* compile via Karp reduction

Need Cryptographic Commitments

Commitment Scheme
The “digital analogue” of sealed envelopes.

Com(v)

Decommitment
phase

v

v

Sender Receiver

Hiding: The commitment hides the committed value

Commitment
phase

d

Binding: The commitment can only open to one value

ZERO KNOWLEDGE FOR ALL OF NP
Graph 3COL

VerifierProver Com(c(1)),…,Com(c(n))

e=(i,j)

Open c(i) and c(j)

x = G(V,E)
w = c : V → {1,2,3}

x = G(V,E)
Accept iff c(i) ≠ c(j)

Completeness : Valid 3-Coloring satisfies c(i) ≠ c(j) for every edge e(i,j)
Soundness: Com() is binding⇒ prover cannot change colors later
If G is not 3 colorable, prover caught on at least one edge. Occurs w.p. 1/|E|
Zero Knowledge: Guess edge e(i,j) and give different colors for c(i) and c(j)

Constant s-soundness to negligible soundness

VerifierProver

Repeat k log(1/s) times

Caught w.p. s

Caught w.p. s

Caught w.p. s

1

2

klog(1/s)

Each rep. is indep. and soundness is sklog(1/s) = 2-k

What about ZK property?

VerifierProver 1

2

Repeat k log(1/s) times

Caught w.p. s

Caught w.p. s

Caught w.p. sklog(1/s)

Each rep. is indep. and soundness is sklog(1/s) = 2-k

Can we repeat it in parallel?

VerifierProver Caught w.p. s

Caught w.p. s

Caught w.p. s

Each rep. is indep. and soundness is sklog(1/s) = 2-k

Can we repeat it in parallel?

VerifierProver

Simulator’s guess for all rep. are correct
simultaneously only with probability 2-k

Expected number of rewidings is 2k

NO!

ZK for NP

ZK proof for any NP relation without using Karp
reductions [IKOS07]

ZK proof for Graph 3 Coloring [GMW86]
ZK proof for Hamiltonicity [Blum86]
ZK proof for SAT [BC87]

…more on Wednesday

Theorem [BG+90]: Assume the existence of one-way
functions. There exists a ZK proof for all of IP

Numerous Applications
• Boosting passive to active security
• Identification/ Authentication
• CCA secure encryption
• Resettable Security
• Bitcoins

Main Application: Active secure MPC
Compiling passive to active security when majority are

dishonest

Passive-secure
MPC protocol

Zero KnowledgeCoin Tossing

Active-secure
MPC protocol

Passive adversaries
(a.k.a. honest-but-curious)
follow protocol instructions
to-the-word

Active adversaries
(a.k.a malicious)
arbitrarily deviate from
protocol

Passive ➝ Active: Enforce honest behavior

1. Force adversary to use a fixed
input

2. Force adversary to use a uniform
random tape

3. Force adversary to follow
protocol instructions exactly

Commitments

Coin-tossing

Zero Knowledge

Coin Tossing
Goal: Fix random tape of every party

Com(r1)

r2

Open r1

Output: r1 ⨁ r2 Output: r1 ⨁ r2

Augmented Coin Tossing: Fix Alice’s tape
Goal: Alice’s random tape is uniform.

Bob receives commitment to tape

Com(r1)

r2

Open r1

Output: r1 ⨁ r2 Output: r1 ⨁ r2
Commitment to
coin toss = (Com(r1),r2)

Random tape = r1 ⨁ r2

Forcing good behavior

Com(x),Com(r1,A)

r2,A

Open r1,A

Com(y),Com(r1,B)

r2,B

Open r1,B

x y
After this stage, each party holds a commitment to the other
party’s input and random tape.

Preamble Phase:

Main Insight: A protocol is a deterministic function of a
party’s input, random tape and series of incoming
messages.

Forcing good behavior

Com(x),Com(r1,A)

r2,A

Open r1,A

x y

Preamble Phase:

Execute passive protocol
Prove correctness of message

every step

Com(y),Com(r1,B)

r2,B

Open r1,B

Com(y),Com(r1,B)

r2,B

Open r1,B

Forcing good behavior

Com(x),Com(r1,A)

r2,A

Open r1,A

x y

Preamble Phase:

NxtMsgi

“Correct”: According to
protocol specifications

with input x and
random tape r1,A ⨁ r2,A Prove that NxtMsgi

is “correct”Expressible as an
NP statement

Statement: Transcript
Witness: x, r1,A and
rand. for Com(x),Com(r1,A)
Polytime Relation:
1. Check commitments
correct w.r.t x, r1,A
2. Check all messages
generated according to
honest Alice algorithm with
input x and random tape
r1,A ⨁ r2,A

Caveat: Should not
reveal witness!

Use ZK

Final Compilation
(a.k.a GMW Paradigm)

x y

Commit inputs and
gen. rand tape

a1

b1

ZK Proof that
a1 is correct

ZK Proof that
b1 is correct Execute passive secure

protocol and give
ZK Proof every step

State-of-the-art for Active MPC
In theory, ZK Proofs allows compilation of passive to active
security

In practice, use other techniques, eg, (cut-and-choose,
MPC-in-the-head)

In fact, these other techniques have ZK implicit

Concurrency

A
P
P

P

V
V

V
Standard ZK is not secure in a concurrent setting

Zero Knowledge Proofs [GMR85]

Cornerstone of modern definitions of security

Techniques for arguing security

Fundamental cryptographic building block

Thank You

