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An example

- % ABOUT  PROGRAMS m PEOPLE  PUBLICATIONS  EVENTS
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Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But

no proof of this property is known.

Riemann Hypothesis
The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical of
the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give me a
solution, | can easily check that it is correct. But | cannot so easily find a solution.

UNIVERSITY* ROCHESTER




An example

| (re)solved “P vs NP?”

S How"?

Here is the proof &

?
Can | convince someone the
validity of something 4 Clay
without revealing the proof? Institute

Can | reveal “zero-knowledge” about a proof?
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Proof Systems
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Proof systems

L= {( A, 1%) : A is a true mathematical assertion
of proof length £}

What is a “proof”?

Insight: meaningless unless can be efficiently
verified
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Proof systems

Given language L, goal is to prove xz € L

Proof system for L is a verification algorithm V

— Completeness: Vx € L, dII, V accepts (z,1I)
“true assertions have proofs”
— Soundness: Vx &€ L, VII*, V rejects (x, IT")
“false assertions have no proofs”
— Efficiency: V runs in polynomial time in Ix|
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Classical Proofs (a.k.a NP)

Previous definition: “classical” proof system
L € NP iff expressible as

L = {z|3y s.t. |y| < |z|* and (z,y) € R}

where R is polynomial time computable

NP is the set of languages with classical
proof systems
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Interactive Proofs [GMR85]

Prover Verifier
Alice

Bob
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Interactive Proofs [GMR85]

- Two new ingredients:

— Randomness: verifier tosses coins, errs with
some small probability

— Interaction: rather than “reading” proof,
verifier interacts with prover

- Classical proof systems lie in this framework:
prover sends proof, verifier does not use
randomness
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Interactive Proofs [GMR85]

Interactive proof system for L is an interactive
protocol (P, V)

— completeness: & € L
Pr[V accepts in (P, V)(x)] =1
—soundness: x € L,VP*
Pr[V accepts in (P*, V)(x)] £ 1/2
— efficiency: V is p.p.t. machine
Repetition: can reduce error to any €

Interactive Arguments: Soundness only against PPT
machines
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Interactive Proof for Graph Isomorphism

@ @

Il =
~
e o Isomorphic

@ ©,
Graph Go = (Vy, Eo) Graph G = (V1, Eq)
V():{l,Q,...,8} Vl:{aabv'“aj}
Eo={(1,2),(1.4),...} F1 =A{(a,9),(a,h),...}

Isomorphic: Exists a mapping ¢ : Vo — V1 such that
(a, B) € Eo < (¢(a),9(B)) € En
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Interactive Proof for Graph Isomorphism
L ={(Go,G1) | Go = G1}

Prover Go # G Verifier
Alice ] o

Accept if p,(G,)=H

(@)
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Zero Knowledge
Interactive Proofs
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What is Knowledge?

Question as old as Humanity

Mostly studied in Philosophy: Epistemology

(also psychology, neuroscience, economics...)

Today, important in Computer Science
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A Computational Approach to
Knowledge [Goldwasser Micali 84]
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2012 Turing Award Winners

“ ..for transformative work that laid the
complexity-theoretic foundations for

the science of cryptography, and in the
process pioneered new methods for
efficient verification of mathematical

proofs in complexity theory”




A Computational Approach to
Knowledge [Goldwasser Micali 84]

First in [GM84]: Probabilistic Encryption

Mature in [GMR85]: Zero-Knowledge + Proofs of knowledge

“I only know what | can feasibly compute™

Feasibly compute = PPT

Probabilistic Polynomial Time +
Turing Machines

@0l UNIVERSITY* ROCHESTER

\Q/

NS



Zero-Knowledge Proofs [GMR]

Prover Verifier
Alice Bob
‘ Thank you Alice,

| believe X is true.

X=P vs NP But | don’t know why!

Completeness : P can convince V if X is true
Soundness: no (efficient) P* can convince V if X is not true
Zero Knowledge: no efficient V* learns anything more than validity of X
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ZK Proof for Graph IsomQusElRRe:
learn a thing
Go

Prover Verifier o
Alice Bob e

2
52

H
-
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ZK Definition
YV PPT adversary verifier V*, 3PPT simulator S such that

S-views o~ V*-views with Prover

Simulator Prover Verifier*

=
o

@O
0°
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ZK Definition
YV PPT adversary verifier V*, 3PPT simulator S such that

S-views o~ V*-views with Prover

ZK Rationale

V*learns nothing that cannot be generated by V*itself

V*itself = All Prob. Poly Time

=185
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ZK Definition
YV PPT adversary verifier V*, 3PPT simulator S such that

S-views o~ V*-views with Prover

Simulator Prover Verifier*

=
o
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ZK as an instance® of MPC

NP language L with relation R

Securely Compute
f(x,w) = R(x,w)
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ZK Proof for Graph Isomorphism

Simulator

H

)\ ificr

Prover

1.Choose G, or G, at random
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ZK Proof for Graph Isomorphism
Go ~ G

Simulator

H

)\ ificr

Prover

1.Choose G, or G, at random
2.Simulator will succeed w.p 12
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What can you prove in ZK?

Can prove any classical proof in ZK [GMW86]
(a.k.a NP statements)

“Everything provable is provable in ZK” [BGGHKMR90]
(a.k.a languages in IP)

IP = PSPACE [S90,LFKN90]

PSPACE contains every language that is solvable with
polynomial space
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ZK for all of NP

Step 1: Construct a ZK Proof for an NP-complete
language L

Step 2: Given any NP lang. L and instance x,
compile® instance x to an instance x; for L, and
use ZK Proof for x; € L.

* compile via Karp reduction

Need Cryptographic Commitments
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Commitment Scheme

The “digital analogue” of sealed envelopes.

V Receiver
Com(v)
Commitment e
phase ~f——
-
Decommitment d / '
phase - \ “‘ v

Hiding: The commitment hides the committed value

Binding: The commitment can only open to one value
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Graph 3COL
/ERO KNOWLEDGE FOR A=OFNP-

Prover e

s

Open c(i) and c¢())

x = G(V,E) x = G(V,E)
w=c:V->1123} Accept iff c(i) = c(j)
Completeness : Valid 3-Coloring satisfies c(i) # c(j) for every edge e(i,j)
Soundness: Com() is binding = prover cannot change colors later
If G is not 3 colorable, prover caught on at least one edge. Occurs w.p. 1/IEl
Zero Knowledge: Guess edge €(i,j) and give different colors for c(i) and c(j)
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Constant s-soundness to negligible soundness
Repeat k log(1/s) times

Prover 1 Caught w.p. s Verifier

=
(s

Caught w.p. s

!

klog(1/s) (T Caughtw.p. s
>

Each rep. is indep. and soundness is sklog(1/s) = 2-k
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What about ZK property?
Repeat k log(1/s) times

C === Caughtw.p.s Verifier
E—)
)
e _l Caught w.p. s
kIOaS)_ Caught w.p. s

Each rep. is indep. and soundness is sklog(1/s) = 2-k
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Can we repeat it in parallel?

Caught w.p. s Verifier

Caught w.p. s

Caught w.p. s

-l

C

Each rep. is indep. and soundness is sklog(1/s) = 2-k
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Can we repeat it in parallel?

Verifier

Simulator’s guess for all rep. are correct
NO! simultaneously only with probability 2%

Expected number of rewidings is 2k
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ZK for NP

/K proof for Graph 3 Coloring [GMW86]
/K proof for Hamiltonicity [Blum86]
/K proof for SAT [BC87]

Theorem [BG+90]: Assume the existence of one-way
functions. There exists a ZK proof for all of IP

/K proof for any NP relation without using Karp

reductions [IKOSO7]
...more on Wednesday
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Numerous Applications

Boosting passive to active security
ldentification/ Authentication

CCA secure encryption

Resettable Security

Bitcoins
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Main Application: Active secure MPC
Compiling passive to active security when majority are

dishonest

Passive adversaries Passive-secure
(a.k.a. honest-but-curious)
follow protocol instructions MPC protocol
to-the-word

Coin Tossing Zero Knowledge
Active adversaries Acti
(a.k.a malicious) Clive-secure
arbitrarily deviate from MPC protocol

protocol
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Passive — Active: Enforce honest behavior

1. Force adversary to use a fixed Commitments
input

2. Force adversary to use a uniform Co0in-tossing
random tape

3. Force adversary to follow Zero Knowledge
protocol instructions exactly
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Coin Tossing

Goal: Fix random tape of every party

Com(r,)

Output: r; & r, Output: ry & r,
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Augmented Coin Tossing: Fix Alice’s tape

Goal: Alice’s random tape is uniform.
Bob receives commitment to tape

Com(r,)




Forcing good behavior
Preamble Phase:

Com(x),Com(ry ) Com(y),Com(r,g)

—

Open ry 5 Openryg

IR y

X

After this stage, each party holds a commitment to the other
party’s input and random tape.

Main Insight: A protocol is a deterministic function of a

party’s input, random tape and series of incoming
messages.
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Forcing good behavior

Preamble Phase:
Com(x),Com(ry ) Com(y),Com(r,g)

EEEEEEE)
2,A 2,B

Open ry 5 Openryg

IR y

Execute passive protocol
Prove correctness of message
every step
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Forcing good | 'statement:

Witness: x, r
Preamble Phase: 1A

Com(x),Com(ry )  Cor Polytime Relation:

—
2,A —

Open rq 4
EEEEEaa—— =

X, I1.A

X

“Correct”: According to o
protocol specifications NxtMsg;
with input x and
random tape r; , © I, 5

SN PPN

Caveat: Should not

Prove that NxtMsg; reveal witness!

Expressible as an is “correct”
NP statement USe ZK
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Final Compilation
(a.k.a GMW Paradigm)

Commit inputs and
gen. rand tape

d
ZK Proof that
a, is correct

A y

ZK Proof that .

b, is correct Execute passive secure
protocol and give

. ZK Proof every step




State-of-the-art for Active MPC

In theory, ZK Proofs allows compilation of passive to active
security

In practice, use other techniques, eg, (cut-and-choose,
MPC-in-the-head)

In fact, these other techniques have ZK implicit
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Concurrency

Standard ZK is not secure in a concurrent setting
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Zero Knowledge Proofs [GMR85]

Cornerstone of modern definitions of security
Techniques for arguing security

Fundamental cryptographic building block
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Thank You
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