
Composition	of	Cryptographic	
Protocols	- Feasibility

Muthu Venkitasubramaniam
University	of	Rochester

Some	slides	borrowed	from	Manoj,	Huijia,	Abhishek	and	Rafael

Goal: Allow a set of distrustful parties to
compute any functionality f of their inputs,
while preserving:

Correctness

Privacy

Even when no honest
majority

Secure	Multi-party	Computation	
[Yao,Goldreich-Micali-Wigderson]

Real	World	/	Ideal	World	Paradigm

IDEALREAL

»…

$ S" A

Step	1:	Specify	goal	as	an	functionality	f	performed	by	an	
ideal	trusted	service

GOAL	=	CORRECTNESS	+	PRIVACY
Step	2:	Security	defined	via	protocol	emulation	in	ideal	
world	(a.k.a simulation)

f

Examples	of	Goals	/	Functionalities

Fcomp
1.	Receive	x	from	A	and	y	from	B
2.	Output	b=	(x	>	y)	to	A	and	B

FZK
1.	Receive	x,w from	A
2.	Output	b=R(x,w)	to		B

FCOIN
1.	Toss	coin	c
2.	Output	c	to	A	and		B

FOT
1.	Receive	s0,s1 from	A	and	b	from	B
2.	Output	sb to	B

Secure	Minimum	Spanning	Tree	[BS,sV]

G=(V,E0) G=(V,E1)

Goal:	Securely	compute	MST	over	the	union	of	their	edges

Secure	Minimum	Spanning	Tree	[BS,sV]

G=(V,E0) G=(V,E1)

Goal:	Securely	compute	MST	over	the	union	of	their	edges

e1,e2,…,en1 e1,e2,…,en1

Fcomp

e1 e1
L/RL/R

Fcomp

ei ej
L/RL/R

Winner	announces	its	edge

Winner	announces	its	edge

• Suppose,	we	have	secure	protocol	for	Fcomp
• Replace	calls	Fcomp to	with	secure	protocol	to	get	protocol	for	MST
• Does	this	mean	this	new	protocol	is	secure?

The	Classic	Stand-Alone	Model

One set of parties executing a single
protocol in isolation

But, Life is CONCURRENT

Many parties running many different
protocol executions

The	Chess-master	Problem

8am:

Lose! Lose!

8pm:

What	makes	it	hard?
• Concurrency
• Scheduling
• Unawarness

Win	at	least	1
(or	draw	both)

Alice Bob

Same	attack	on	protocols
a

5a

b
b/5

E.g.,	real	attacks	on	OpenSSL	implementation	[B’98]

A	fundamental	question:

Composition

Is	security	preserved	under	protocol	composition?	

Protocol	B

Protocol	CProtocol	A

Security	under	composition

MPC PKE					Signature				Commitments ZK						WH	….

“Concurrently	
Secure”	MPC

Multi-instance	
Security

Chosen	Message
Attack	Secure

Non-Malleable	
Commitments

Concurrent	ZK

Sequential	WH

1.	Composition	occurs	in	real	life
---Need	concurrent	security

2.	Composition	occurs	in	system	design
---Want	modular,	simpler,	solutions

3.	Better	understanding	of	security	notions
---Various	applications

Why	Care?	

IDEALREAL

Trusted	party

»

Concurrent	Security

Protocol	Executions

Both A and S required to be PPTRunning the protocol π in the concurrent setting is

Computing f using a trusted party in the concurrent setting
S simulates the view of A

&
the outputs of honest parties are the same in the two worlds

AS

UC	Security	[C01]

π πf f

“as correct & private as”

ZZρ ρ

The	UC	Composition	Theorem:
If π	UC-implements	f	and

ρf UC-implements	G,	
then				ρπ UC-implements	G.	

The	UC	Composition	Theorem:
If				 π	UC-implements	Fcomp and

ρf UC-implements	MST,	
then				ρπ UC-implements	MST.	

Both A and S required to be PPTRunning the protocol π in the concurrent setting is

Computing f using a trusted party in the concurrent setting
S simulates the view of A

&
the outputs of honest parties are the same in the two worlds

UC	Security	[C01]

“as correct & private as”

The	UC	Composition	Theorem:
If π	UC-implements	f	and

ρf UC-implements	G,	
then				ρπ UC-implements	G.	

The	strongest	model	of	composition
1.	Concurrent	Security
2.	Modular	analysis

Theorem [CF, CKL, L]: It is impossible to
achieve concurrent security for all “non-
trivial functionalities”
mmmm….	Nothing!

P2
P2	/	P1

P1

Examples: Self-Composable MPC	….
Non-Malleable Encryption
Concurrent Non-Malleable (NM)	ZK
CMA-secure signature
Password authenticated key exchange (PAKE)

P1

Self-Composition

P2

An	unbounded number of instances of the	same protocol

Impossibility	Results

Impossibility	of	General	
Composition

Impossibility	of	Self	
Composition

Chosen	Protocol	Attack	for	OT
[BPS06,AGJPS12,GKOV12]

Impossibility	of	General	Composition:	

For	every	𝜋"#,	there	exists	𝜋"#$ such	that
𝜋"# ∘ 𝜋"#$ breaks	security	of	𝜋"#

𝑠', 𝑠)

𝑠*

𝑏

input	(s0 ,	s1) input	b

𝐹"#

Real	Adv can	learn	honest	party’s	
input,	but	Simulator cannot

𝑠', 𝑠) 𝑏, 𝑠', 𝑠)

𝝅𝑶𝑻
𝝅𝑶𝑻

(𝑠', 𝑠)) if	
output	is	𝑠*

𝜋"#$

Chosen	Protocol	Attack:	Real	World

Attack:	Eve plays	man-in-the-middle	to	learn	(𝑠', 𝑠))

𝑠', 𝑠) 𝑏, 𝑠', 𝑠)

Chosen	Protocol	Attack:	Ideal	World
𝐹"#

𝝅𝑶𝑻

(𝑠', 𝑠)) if	
output	is	𝑠*

𝜋"#$
𝑏$

𝑠*2

Attack	Fails:	With	probability	≈)
4
	,	Eve will	ask	for	𝒔𝟏8𝒃

From	Impossibility	of	General	Composition	to	
Impossibility	of	Self-Composition

Replace	
with	Garbled	Circuits	

computing	his
Next-Message	Functions	

Give	Garbled	Circuits	to	Eve as	Aux.	Input

Want: Multiple	Executions	of	𝜋"# only (no	𝜋"#$)

𝐺𝐶)

𝐺𝐶<

...

Problem:	Who	gets	the	GC	Keys?

Eve needs	to	run	extra 𝜋"# executions	with	Alice
to	get	“necessary”	keys	

𝐺𝐶)

𝐺𝐶<

...

Eve should	have	keys	to	execute	GCs	on	Alice’s
messages,	but	can’t	give	her	ALL keys

𝑠', 𝑠)

𝝅𝑶𝑻

{𝐺𝐶>} Keys

More	Details

𝐺𝐶)

𝐺𝐶<

...

𝑠', 𝑠)

{𝐺𝐶>} Keys

𝐴)

𝜋"#

𝐴)
Keys

𝐴)

Keys
𝐴)

𝐵)

𝐵)
...

Concurrent	OT	Executions

Real	World: Eve executes	GCs	one-by-one	to	learn	𝑠', 𝑠)
Ideal	World: Attack	fails	as	before	due	to	security	of	GCs

𝐺𝐶) Keys

𝑠', 𝑠)

𝐹"#

Impossibility	extends	to	all	“non-trivial”	functions	
by	a	reduction	(in	the	concurrent	setting)	to	OT	

[AGJPS12,GKOV12]

Theorem [CF, CKL, L]: It is impossible to
achieve concurrent security for all “non-
trivial functionalities”

What	can	we	implement	with	
Concurrent	Security?

SOLUTION:	 Get	some	“limited”	help
from	a	trusted	party

Limited	Trusted	Help

Common	Reference	String
(CRS)

Tamper	Proof	Hardware	Model

Common	Reference	String	
[BFM88,D00,CLOS02,MGY03,

GO07,CPS07,DNO10]	

Timing
[DNS98,G06,LKP05]

Public-Key	Infrastructure	
[JSI96,DN03,BCNP04,DNO10]

Tamper	Proof	Hardware
[K07,NW07,CGS08,MS08]

Augmented	CRS	(GUC)	
[CDPW07]	

Feasible	in	weaker	models	!

Honest	Majority
[DM00,BGW88,BR89]

Concurrent	Security
in	a	Generalized	UC	model	

Intuition	of	Constructions

General	Composition Self	Composition

REAL

x

z=F (x,y) z=F(x,y)

y

F

IDEAL

Generalized	UC	[LPV09]

F⌃
2.	Multi-session	
Ideal/Real	World

1.	Augmented	
Real	World

G
Z

Z

A	framework	of	models

• Embeds	most	weaker	models
• Close	to	UC,	leverage	previous	results

Concurrent	MPC	
in	Generalized	UC	

Implement	multi-session	ZK	functionality

Compilation	for	UC	
by	[GMW87,BMR90,CLOS02,Pas04]
assuming	Semi-Honest	OT

x,	w R(x,	w)

VP FZK
x’,	w’ R(x’,	w’)

x’’,	w’’ R(x’’,	w’’)
⌃

Z
Design	a	“special”	ZK	protocol	(P,V),	s.t.

x,	w R(x,	w)

VP FZK
x’,	w’ R(x’,	w’)

x’’,	w’’ R(x’’,	w’’)
⌃

Implement	multi-session	ZK	functionality

»

x,	w R(x,	w)FZK⌃
x,	w

x,	w R(x,	w)FZK⌃
Simulate	w/o	witness	(ZK)

Extract	witness	(AOK)

Z

Concurrent	ZKAOK	(Concurrent	Simulation-Extractability)
Extract	witnesses	from	adv even	when	receiving	simulated	proofs

S S(E)
w1

wk

Z
S S(E)

Concurrent	ZKAOK
Extract	witnesses	from	adv even	when	receiving	simulated	proofs

w1
wk

Have	been	studied	a	LOT	!
in	Concurrent	ZK	[DNS98,RK99,PRS02…]	

Straight-line	non-black-box	simulation	[Bar01…]	

rewinding

Non-BB

How	to	get	straight-line	simulation?	

Z
S S(E)

Concurrent	ZKAOK
Extract	witnesses	from	adv even	when	receiving	simulated	proofs

w1
wk

By	giving	S certain SUPER-POWER	over	Adv
=	The	ability	to	get	a	trapdoor

UC-puzzle Non-Malleability+

Z
S S(E)

Concurrent	ZKAOK
Extract	witnesses	from	adv even	when	receiving	simulated	proofs

w1
wk

A	weaker	notion:	Fully	concurrent	ZKA	(conc.	simulation	soundness)
Adv cannot	cheat	even	when	receiving	simulated	proofs

Sound!

Compilation	from	ZKA	to	ZKAOK	
[BL02,PR03,Pas04,DNO10,MPR10,LPV13]

⌃FWZKX X	true	or	false

Z
S Sound!

A	weaker	notion:	Fully	concurrent	ZKA	
Adv cannot	cheat	even	when	receiving	simulated	proofs

Concurrent	Simulation
ç UC-puzzles

Security	against	MIM	attacks

ç Non-Malleable	Commitment

Decompose

Concurrent	MPC

UC-puzzle NM	Commitment

Unified	Framework	[LPV09,LPV12]
assuming	SH-OT	against	CSim

One-Way	Func

in	Generalized	UC	

How	to	Cook	Up	Concurrent	Security	
in	Your	Favorite	Model	X	(CRS,PKA,SPS…)?	
1. Instantiate	a	UC-puzzle	using	model	X
2. Plug	in

Common	Reference	String

Preprocessing:
Trusted	Party	samples	a	
distribution	D	and	
publishes	it

Protocol	Execution:
Parties	exchange	
messages

s s

s s
THEOREM [CLOS02]: Every goal can be implemented
with concurrent security in the CRS model.

PUZZLE	(in	CRS)

Challenger Solver

Property	1: Hard	to	solve	with	trusted	setup
Property	2:	Easy	to	solve	by	controlling setup	
in	an	undetectable way

solution

PUZZLE	(in	CRS)

Challenger Solver

Property	1: Hard	to	solve	with	trusted	setup
Property	2:	Easy	to	solve	by	controlling setup	
in	an	undetectable way

?

Rand.	primes	p,q
CRS		=	pq

CRS CRS

“Impossible	assuming	factoring	is	hard”

CRS p,q

p,q

Challenger Solver

FIND	p,q

Rand.	primes	p,q
CRS		=	pq

PUZZLE	(in	CRS)

Challenger Solver

?

Rand.	primes	p,q
CRS		=	pq

CRS CRS

“Impossible	assuming	factoring	is	hard”

CRS p,q

p,q

Challenger Solver

FIND	p,q

Rand.	primes	p,q
CRS		=	pq

COROLLARY:	Any	goal	can	be	implemented	with	
concurrent	security	in	the	CRS	model

The	State	of	UC	Security
• Possible:	with	limited	“trusted	help”

– Trusted	set-up	models:	Honest	majority	[BGW88,	CCD88,	BR89,DM00],	
CRS	[BFM,CLOS],	PKI [BCNP],	Timing	model	[DNS,KLP],	Tamper-proof	
Hardware	[K],	…

Thm [LPV09, LPV12] For static corruption,
UC-Puzzles provide a crisp and tight characterization for any setup

Are	we	done?

…
…

The Classic
Static Corruption

Adaptive Corruption

corrupt in the
beginning

corrupt adaptively
during execution

But, Life is NOT STATIC

The	State	of	UC	Security
• Possible:	with	limited	“trusted	help”

– Trusted	set-up	models:	Honest	majority	[BGW88,	CCD88,	BR89,DM00],	
CRS	[BFM,CLOS],	PKI [BCNP],	Timing	model	[DNS,KLP],	Tamper-proof	
Hardware	[K],	…

Thm [LPV09, LPV12] For static corruption,
UC-Puzzles provide a crisp and tight characterization for any setup

Thm [DMRV13, V14] For adaptive corruption,
(adaptive) UC-Puzzles are sufficient

Are	we	done,	now?
All	the	approaches	we	have	seen	require	some

minimal	trusted	setup

NO ONE!

But, in LIFE, Who Can You TRUST?

On	earth: relaxed	security	notions

—Honest	Majority	[DM00,BGW88,BR89]

— Public	Key	Registration [BCNP04,LPV09,DNO10,LPV12]

— Tamper-Proof	Hardware	[Kat07,CGS08,LPV09,GISVW10,LPV12]

— CRS [Can01,CLOS02,CPS07,CDPW07,GO07,LPV09,DNO10,LPV12]

— Timing	Model	[DNS98,KLP05,LPV09,LPV12]
— Physically	Uncloneable Functions	[BFSK11,OSVW13]

In	wonderland: UC	with	TRUST

— Input	Indistinguishable	Computation	[MPR06,GGJS12]

— Super-Polynomial-time	Simulation	[Pas03,BS05,LPV09,LPV12,GGJS12]
— Angel-based	security	[PS04,MMY06,CLP10,LP12,GLPPS13,KMO14]

— Multiple-ideal	query	security	[GJO10,GJ13,GGJ13]

Ideal	Goal:
§ Fully	composable /	concurrent	(i.e.	UC)
§ Tolerates	adaptive	corruptions
§ No	trusted	setup
§ Standard	(polynomial-time)	hardness
§ Black-box	in	the	underlying	primitives

ASS

ZZ

Super-Poly	Time	Simulation	(SPS)	[P’03]

Allow super-poly-time security reductionWe know, poly-time security reduction is impossible
Possible!

Static [P03,PS04,BS05,LPV09,GGJS12,LPV12]
Adaptive [BS05,DMRV13,V14]

But, using strong hardness assumptions

Still, meaningful in many (most) cases

Composable

AS

ZZ

Angel-Based	Security	[PS04]

Angel: A restricted super-poly-time oraclePossible w/ static [PS04, MMY06,BS05]!

But, even stronger assumptions
e.g. Adaptively hard CRH

Simulator and Adv. receive help from an angel

O O

AS

ZZ
O O

Possible under polynomial-time assumptions!
[CLP10]

Angel: Decommitment Oracle

Angel-Based Security [PS04]

New Primitive: CCA-secure Commitments

Simulator and Adv. receive help from an angel

CCA-Secure	Commitments	[CLP10]

AC(x) C(y1) O
C(y2)

C(y3)

y2

y3i j1

j2

j3

Chosen-Commitment-Attack (CCA) security:

Either A copies the left identifier to the right
Or LHS is hiding --- view of A indistinguishable

y1

Chosen-Commitment-Attack (CCA) security:

CCA-Secure	Commitments	[CLP10]

AC(x) C(y1) O
C(y2)

C(y3)

y1

y2

y3i j1

j2

j3

Theorem [CLP10,LP11,GLPPS14,K14] Assuming OWFs
∃O(log2n)-round Blackbox CCA Com.

Theorem [CLP10,LP11] Assuming CCA Com. and OT
∃BB construction static (G)UC for any functionality

Can	we	get	Angel-Based
Adaptive	UC-Security?

• Implies super-polynomial security, i.e. no setup
• Analyze single instance and guarantee composition (GUC

[CDPW07])
• Possibility of polynomial-time assumptions by relying on

rewinding based techniques

Bottleneck 1: [GS12] Rewinding based techniques don’t
compose well

Bottleneck 2: Adaptive Composable Commitments
implies selective opening security IMPOSSIBLE! [ORSV11]

Our Approach: Adaptive CCA-Secure
Coin-Tossing

A OOutcome c

Chosen-Coin-Attack (CCA) security:
Angel: O is a biasing oracle

Bias to c

Security? Simulate a coin with AO

R I

Def	1:	CCA-Secure	Coin-Tossing 𝐼, 𝑅

A OOutcome c

Chosen-Coin-Attack (CCA) security:
Angel: O is a biasing oracle

Bias to c

Security? Simulate a coin with AO

R I

Def	1:	CCA-Secure	Coin-Tossing 𝐼, 𝑅

A OI

Chosen-Coin-Attack (CCA) security:
Angel: O is a biasing oracle

Security? Simulate a coin with AO

Def	1:	CCA-Secure	Coin-Tossing 𝐼, 𝑅

A OI i
Outcome	c

j1
c1

R I
Outcome	c1

j2
c2

R I
Outcome	c2

j3
c3

R I
Outcome	c3

Chosen-Coin-Attack (CCA) security:

Def	1:	CCA-Secure	Coin-Tossing 𝐼, 𝑅

A OI i
Outcome	c

j1
c1

R I
Outcome	c1

j2
c2

R I
Outcome	c2

j3
c3

R I
Outcome	c3

Either A copies the left identifier to the right or corrupts
Or LHS is simulatable --- view of A indistinguishable

Theorem 1: Assuming CCA Coin-Tossing and sim. PKE,
adaptive UC-realize any (well-formed) functionality.

Theorem 2: Assuming OWFs, -round CCA Coin-Tossing𝑂 𝑛F

Adaptive UC Security without setup [HV16]

ü Polynomial-time assumptions (OWF+SimPKE)
ü Fully black-box

``Strongest’’ definition of concurrent
adaptive security realizable without set-up

Open	Problems

• General	feasibility	results	are	not	practical
– Many	number	of	rounds
– High	communication	complexity
– Often	non-black-box	in	the	underlying	cryptographic	
primitive

• [HV16]	UC	feasibility	in	the	CRS	under	minimal	
assumptions	in	a	black-box	way	(static	&	adap.)

• [HPV16,HPV17]	UC	feasibility	in	the	Tamper	Proof	
Hardware	model	(static	&	adap.)

Need:	A	unified	“practical”	way	of	getting	UC

THANK	YOU

