Composition of Cryptographic
Protocols - Feasibility

Muthu Venkitasubramaniam
University of Rochester

Some slides borrowed from Manoj, Huijia, Abhishek and Rafael

Secure Multi-party Computation
[Yao,Goldreich-Micali-Wigderson]

Goal: Allow a set of distrustful parties to
compute any functionality 7 of their inputs,
while preserving:

Correctness

Privacy s

Even when no honest \g ﬁf

majority

Real World / Ideal World Paradigm

Step 1: Specify goal as an functionality f performed by an
ideal trusted service

GOAL = CORRECTNESS + PRIVACY
Step 2: Security defined via protocol emulation in ideal
world (a.k.a simulation)

REAL

Examples of Goals / Functionalities

I:comp I:ZK
1. Receive x from A and y from B 1. Receive x,w from A
2. Output b= (x>y)to Aand B 2. Output b=R(x,w) to B

A AN

= \—
ﬁ & il
I:COIN I:OT
1. Toss coin ¢ 1. Receive s,,s, from A and b from B
2. OutputctoAand B 2. Output s, to B
2 &
S \%

Secure Minimum Spanning Tree [BS,sV]
Goal: Securely compute MST over the union of their edges

‘(A ,,ﬁ @ : t l
Commaumcstior NS .y 5= airte
Eil Dhirubhai Al:lwbani GmUE ""%"7}1‘ "i

G Sz G
/

W

Secure Minimum Spanning Tree [BS,sV]
Goal: Securely compute MST over the union of their edges

€, €,
L/R L/R
A Winner announces its edge o
RELIANCe & € Z dl rtel
Communications L/R L/R
Anil Dhirubhai Ambani Group —
G_(V’ EO) Winner announces its edge G_(V’ El)
€41,€5,...,€41 : €1,€5,...,€1

* Suppose, we have secure protocol for F .,
* Replace calls F,,, to with secure protocol to get protocol for MST
* Does this mean this new protocol is secure?

The Classic Stand-Alone Model

One set of parties executing a single
protocol in isolation

Sut, Life is CONCURRENT

Many parties running many different
protocol executions

The Chess-master Problem

Lose!

Lose!

Win at least 1
(or draw both)

What makes it hard?
e Concurrency

e Scheduling

e Unawarness

Same attack on protocols

d

>

b/5

< T

Alice

E.g., real attacks on OpenSSL implementation [B'98]

A fundamental question:

Composition

Protocol A Protocol C

Is security preserved under protocol composition?

Security under composition

AConcurrently C

Sec

ure” MPC
Multi-inste

mvhy Care?

1. Composition occurs in real life
---Need concurrent security

Securit . L
!\ ---Various applications

~

2. Composition occurs in system design
---Want modular, simpler, solutions

3. Better understanding of security notions

'H

/

MPC PKE

Signature Commitments ZK

WH

Concurrent Security

Protocol Executions Trusted party

REAL IDEAL

UC Security [CO1]

The UC Composition Theorem:
If n UC-implements F ., and

p' UC-implements MST,
_ then p™UC-implements MST. Y,

UC Security [CO1]

The UC Composition Theorem:
If nt UC-implements f and
p' UC-implements G,
then p™UC-implements G.

The strongest model of composition

1. Concurrent Security

2. Modular analysis

Theorem [CF, CKL, L]: is .impossible to
ach m'rb-s'e @tﬁlmg”non-

trivial functionalities”

Self-Composition

An unbounded number of instances of the same protocol

Examples: Self-Composable MPC
Non-Malleable Encryption
Concurrent Non-Malleable (NM) ZK
CMA-secure signature

Password authenticated key exchange (PAKE)

Impossibility Results

Impossibility of General
Composition

4

Impossibility of Self
Composition

Chosen Protocol Attack for OT
[BPS06,AGJPS12,GKOV12]

Ty

’
‘g« Real Adv can learn honest party’s
R

input, but Simulator cannot

input (s,

~

<

Impossibility of General fQosition:

For every 17, there exist 1r,; such that
Tor © T,r breaks security of 7,y

~

4

Chosen Protocol Attack: Real World

(5g,51) if
outputis sy

o

Attack: Eve plays man-in-the-middle to learn (s, 1)

)

Chosen Protocol Attack: Ideal World

(SO) Sl) if
outputis s,

Attack Fails: With probability = %, Eve will ask for s1_},

From Impossibility of General Composition to
Impossibility of Self-Composition

[Want: Multiple Executions of 1, only (no /) }

GC,

IlLl
ai

with Garbled Circuits
computing his
Next-Message Functions

Replace

Give Garbled Circuits to Eve as Aux. Input

Problem: Who gets the GC Keys?

Eve should have keys to execute GCs on Alice’s
messages, but can’t give her ALL keys

GC,

GC,

Eve needs to run extra myr executions with Alice
to get “necessary” keys

More Details

KeysA

Impossibility extends to all “non-trivial” functions T
by a reduction (in the concurrent setting) to OT |,

[AGJPS12,GKOV12] .
- GCr
. i S0, 51

o

Real World: Eve executes GCs one-by-one to learn sy, s4

Ideal World: Attack fails as before due to security of GCs

What can we implement with
Concurrent Security?

Theorem [CF, CKL, L]: It is impossible to
achieve concurrent security for all “non-
trivial functionalities”

SOLUTION: Get some “limited” help
from a trusted party

Tamper Proof Hardware Model

Common Reference String

o VeriSigri

The Internet Trust Company SECURITY”

Feasible in weaker models !

Honest Majority

[DM00,BGW88,BR89] Timing
[DNS98,G06,LKP05]

Tamper Proof Hardware

[K07,NWO07,CGS08,MS08] Public-Key Infrastructure
[JS196,DN03,BCNP04,DNO10]

Common Reference String
[BFM88,D00,CLOS02,MGYO03, Augmented CRS (GUC)
G0O07,CPS07,DNO10] [CDPWO7]

Concurrent Security
in a Generalized UC model

Intuition of Constructions

General Composition

Self Composition

Generalized UC [LPv09]
IDEAL

Z

1. Augmented
Real World

2. Multi-session

< ¢ Embeds most weaker models
|deal/Real World

* Close to UC, leverage previous results

Concurrent MPC
in Generalized UC

Compilation for UC

by [GMW87,BMR90,CLOS02,Pas04]
assuming Semi-Honest OT

Implement multi-session ZK functionality

X, W | R(x, w)
P X, w’ R(x’, w’) V

X”’ W” R!X”’ WII]

Implement multi-session ZK functionality

X, W R(x, w)
P X', W’ R(x’, w’) V
3(’9’,0 | R?xo”ow lz
~

Design a “special” ZK protocol (PV), s.t.
” -
—

————
< —————
_—
<==l>°°°<= ———
< - 1 >
0=
[F————

B —]

X, W
;:\y X, W | (i > R(X, w)| %

Simulate w/o witness (ZK)

Extract witness (AOK)

Z

= S(E)

S —
S
— o T

——
S — <

(O]

S

= wk
Concurrent ZKAOK (Concurrent Simulation-Extractability)
Extract witnesses from adv even when receiving simulated proofs

S(E)

Concurrent ZKAOK
Extract witnesses from adv even when receiving simulated proofs

Have been studied a LOT ! All rewinding is
in Concurrent ZK [DNS98,RK99,PRS02...] strictly prohibited

All Non-BB is
strictly prohibited

Concurrent ZKAOK
Extract witnesses from adv even when receiving simulated proofs

How to get straight-line simulation?

By giving S certain SUPER-POWER over Adv
= The ability to get a trapdoor

UC-puzzle + Non-Malleability

| ——

Concurrent ZKAOK
Extract witnesses from adv even when receiving simulated proofs

Compilation from ZKA to ZKAOK
[BLO2,PRO3,Pas04,DNO10,MPR10,LPV13]

X X true or false

A weaker notion: Fully concurrent ZKA (conc. simulation soundness)
Adv cannot cheat even when receiving simulated proofs

s — =H—

A weaker notion: Fully concurrent ZKA
Adv cannot cheat even when receiving simulated proofs

. Decompose
S — S —

Concurrent Simulation Security against MIM attacks

€ UC-puzzles € Non-Malleable Commitment

Sound!

=
000@
<=

Concurrent MPC
in Generalized UC

Unified Framework [Lpvo
assuming SH-OT against C

12]

NM Commitment

Sim

UC-EuzzIe

-~

How to Cook Up Concurre
in Your Favorite Model X (CR
1. Instantiate a UC-puzzle using mou
2. Plugin

(&

Common Reference String

Preprocessing:

Trusted Party samples a
distribution D and
publishes it

Protocol Execution:
Parties exchange
.. messages

THEOREM [CLOSO02]: Every goal can be implemented
with concurrent security in the CRS model.

PUZZLE (in CRS)

.\lll

LIS

solution
L
ChaIIengerm Solver

Property 1: Hard to solve with trusted setup
Property 2: Easy to solve by controlling setup
in an undetectable way

PUZZLE (in CRS)

Rand. primes p,
CRS =pq

Rand. primes p,q
CRS =pq

ChaIIenger Solver
“Impossible assuming factoring is hard”

Challenger Solver

Property 1: Hard to solve with trusted setup
Property 2: Easy to solve by controlling setup
in an undetectable way

PUZZLE (m CRS)

Rand. primes p,q A W,
CRS =pq
a III
A~

Challenger ChaHenger
“Impossible assuming factoring is hard”

Solver

COROLLARY: Any goal can be implemented with
concurrent security in the CRS model

The State of UC Security

* Possible: with limited “trusted help”

— Trusted set-up models: Honest majority [BGW88, CCD88, BR89,DMO00],
CRS [BFM,CLOS], PKI [BCNP], Timing model [DNS,KLP], Tamper-proof
Hardware [K], ...

Thm [LPVO9, LPV12] For static corruption,
UC-Puzzles provide a crisp and tight characterization for any setup

Are we done?

The Classic
Static Corruption

corrupt in the
beginning

corrupt adaptively
during execution

The State of UC Security

* Possible: with limited “trusted help”

— Trusted set-up models: Honest majority [BGW88, CCD88, BR89,DMO00],
CRS [BFM,CLOS], PKI [BCNP], Timing model [DNS,KLP], Tamper-proof
Hardware [K], ...

Thm [LPVO9, LPV12] For static corruption,
UC-Puzzles provide a crisp and tight characterization for any setup

Thm [DMRV13, V14] For adaptive corruption,
(adaptive) UC-Puzzles are sufficient

Are we done, now?

All the approaches we have seen require some
minimal trusted setup

Sut, In LI

- Who Can You T

RUST?

In wonderland: UC with TRUST
— Honest Majority [DMOO BGWS88,BR89]

— Tamper-Proof Hardware [Kat07,CGSO08,LPV09, GlSVWlO {P
— CRS [Can01,CLOS02,CPS07,CDPWO07,GO07,LPV09,DNO10,LPV
— Timing Model [DNS98,KLPO5,LPV09,LPV12]
— Physically Uncloneable Functions [BFSK11,0SVW13]

On earth: relaxed security notions

— Input Indistinguishable Computation [MPR06,GGJS12]

— Super-Polynomial-time Simulation [Pas03,BS05,LPV09,LPV12,GGJS12]
— Angel-based security [PS04,MMY06,CLP10,LP12,GLPPS13,KM0O14]

— Multiple-ideal query security [GJ010,GJ13,GGJ13]

|deal Goal:

Fully composable / concurrent (i.e. UC)
Tolerates adaptive corruptions

No trusted setup

Standard (polynomial-time) hardness
Black-box in the underlying primitives

Super-Poly Time Simulation (SPS) [P’03]

WRdmawper-polytimetsecurity reductione
Still, meaningfupipgagi¥(most) cases

Static [P03,PS04,BS05,LPV09,GGJS12,LPV12]
Adaptive [BS05,DMRV13,V14]

But, using strong hardness assumptions

L

= A< > &

Angel-Based Security [PS04]

Simulator and Adv. receive help from an angel
A"Q@Bs‘bféwi@tﬂﬂmtﬁmim%@]@c'e

But, even stronger assumptions
e.g. Adaptively hard CRH

x =

Angel-Based Security [PS04]

Simulator and Adv. receive help from an angel

Possible under polynomial-time assumptions!

[CLP10]
Angel: Decommitment Oracle

New Primitive: CCA-secure Commitments

Z
Y,
AT e

%\ /

CCA-Secure Commitments [cLpio;

T A v O

Chosen-Commitment-Attack (CCA) security:

Either A copies the left identifier to the right
Or LHS is hiding --- view of A indistinguishable

CCA-Secure Commitments [cLpio;

T A o O
Y1 .
< 12

Chosen-Commitment-Attack (CCA) security:

Theorem [CLP10,LP11,GLPPS14,K14] Assuming OWFs
=4 0O(log?n)-round Blackbox CCA Com.

Theorem [CLP10,LP11] Assuming CCA Com. and OT
BB construction static (G)UC for any functionality

Can we get Angel-Based
Adaptive UC-Security?

* Implies super-polynomial security, i.e. no setup

« Analyze single instance and guarantee composition (GUC
[CDPWO07])

« Possibility of polynomial-time assumptions by relying on
rewinding based techniques

Bottleneck 1: [G512] Rewinding based technigues don't
compose well

Bottleneck 2: Adaptive Composable Commitments
implies selective opening security IMPOSSIBLE! [ORSV11]

Our Approach: Adaptive CCA-Secure
Coin-Tossing

Def 1: CCA-Secure Coin-Tossing (I, R)

Bias to c

A x0,

Chosen-Coin-Attack (CCA) security:

Angel: O is a biasing oracle

Security? Simulate a coin with A©C

Def 1: CCA-Secure Coin-Tossing (I, R)

e)
A* O O
_ %

vy
)
7
o
o

Chosen-Coin-Attack (CCA) security:

Angel: O is a biasing oracle

Security? Simulate a coin with A©C

Def 1: CCA-Secure Coin-Tossing

(I,R)

-

.

C,)2

>

') R
IWAI; II.CsI

Chosen-Coin-Attack (CCA) security:

Def 1: CCA-Secure Coin-Tossing (I, R)

~ —

C)2

['@mpA o, © O

\ R I

Chosen-Coin-Attack (CCA) security:

Either A copies the left identifier to the right or corrupts
Or LHS is simulatable --- view of A indistinguishable

Theorem 1: Assuming CCA Coin-Tossing and sim. PKE,
adaptive UC-realize any (well-formed) functionality.

Theorem 2: Assuming OWFs, 0(n?)-round CCA Coin-Tossing

Adaptive UC Security without setup [HV16]

v" Polynomial-time assumptions (OWF+SimPKE)
v Fully black-box

~Strongest” definition of concurrent
adaptive security realizable without set-up

Open Problems

* General feasibility results are not practical
— Many number of rounds
— High communication complexity
— Often non-black-box in the underlying cryptographic
primitive
 [HV16] UC feasibility in the CRS under minimal
assumptions in a black-box way (static & adap.)

 [HPV16,HPV17] UC feasibility in the Tamper Proof
Hardware model (static & adap.)

|H

Need: A unified “practical” way of getting UC

THANK YOU

