
Asynchronous Multi-Party
Computation

Vassilis Zikas
RPI

MPC School
IIT Mumbai

Secure Multi-Party Computation (MPC)

D1 D2

D3D4

Security

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

D1 D2

D3D4

Security

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

D1 D2

D3D4

Security

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

Protocol π is secure if for every adversary:
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs

D1 D2

D3D4

Security

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

Protocol π is secure if for every adversary:
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs

• (termination) The protocol terminates after a finite number of rounds

D1 D2

D3D4

Security

Secure Multi-Party Computation (MPC)

D1 D2

D3D4

π4

π2

π3

π1
D1 D2

D3D4

≈

Model
• n players
• Computation over (𝔽, ⊕, ⊗) — E.g. (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

The Synchronous model

Round Structure
• Round r: parties read round r-1 messages and compute/send round

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of

Round r

Multi-Party Computation [GMW87, BGW88, CCD88, RB89, CDDHR99, ...]
Byzantine Agreement [PSL80,BGP89,DS82, FL82, TPS87, FM88, BPW91, ...]
...

The Synchronous model

Round Structure
• Round r: parties read round r-1 messages and compute/send round

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of

Round r
Real-world Assumptions:
• Channels with known bounded delay
• (Partially) Synchronized clocks

Multi-Party Computation [GMW87, BGW88, CCD88, RB89, CDDHR99, ...]
Byzantine Agreement [PSL80,BGP89,DS82, FL82, TPS87, FM88, BPW91, ...]
...

The Synchronous model

Round Structure
• Round r: parties read round r-1 messages and compute/send round

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of

Round r
Real-world Assumptions:
• Channels with known bounded delay
• (Partially) Synchronized clocks

Idea:
Use clocks to wait sufficiently
long (at least network latency)

Multi-Party Computation [GMW87, BGW88, CCD88, RB89, CDDHR99, ...]
Byzantine Agreement [PSL80,BGP89,DS82, FL82, TPS87, FM88, BPW91, ...]
...

The Synchronous model

Round Structure
• Round r: parties read round r-1 messages and compute/send round

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of

Round r
Real-world Assumptions:
• Channels with known bounded delay
• (Partially) Synchronized clocks

Security Guarantees (in reality)
• Correctness, Privacy, ...
• Input Completeness: the inputs of all honest parties are considered
• (Guaranteed) termination: In the time corresponding to the end of

the last round, the protocol terminates (independent of adversary).

Idea:
Use clocks to wait sufficiently
long (at least network latency)

Multi-Party Computation [GMW87, BGW88, CCD88, RB89, CDDHR99, ...]
Byzantine Agreement [PSL80,BGP89,DS82, FL82, TPS87, FM88, BPW91, ...]
...

The Asynchronous Model

D1 D2

D3D4

π4

π2

π3

π1
D1 D2

D3D4

≈

Model
• n players
• Computation over (𝔽, ⊕, ⊗) — E.g. (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for

Round 1 are sent

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for

Round 1 are sent
Messages for

Round 2 are sent

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for

Round 1 are sent
Messages for

Round 2 are sent total time = q(τ1 - τ0)

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for

Round 1 are sent
Messages for

Round 2 are sent

If all messages
are received, I

could proceed, but
I wait to be sure

total time = q(τ1 - τ0)

Why Asynchronous Computation?

Timeline of a Synchronous protocol

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for

Round 1 are sent
Messages for

Round 2 are sent

If all messages
are received, I

could proceed, but
I wait to be sure

total time = q(τ1 - τ0)

Asynchronous computation offers an opportunistic/
greedy approach to protocol execution:
• As soon as a party has enough info, he proceeds

to the next round

The Asynchronous Model(s)

We want to capture a setting where the messages are
delayed in the network

The Asynchronous Model(s)

Worst-case scenario:

• The delivery is the one that favors the adversary the most

• The adversary is also the scheduler: When a message is
sent from pi to pj , the adversary decides if and when it will be
received. Two flavors:

1. Fully asynchronous: The adversary can delay messages
indefinitely (This is the underlying UC network [Can00])

2. Asynchronous with eventual delivery: The adversary can
delay messages by a finite (polynomial) amount of time

We want to capture a setting where the messages are
delayed in the network

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Goal of this lecture: Understand the differences in
the synchronous and the asynchronous model(s)

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Goal of this lecture: Understand the differences in
the synchronous and the asynchronous model(s)

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Goal of this lecture: Understand the differences in
the synchronous and the asynchronous model(s)

ZZzzz

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Goal of this lecture: Understand the differences in
the synchronous and the asynchronous model(s)

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Goal of this lecture: Understand the differences in
the synchronous and the asynchronous model(s)

Full Asynchrony — Semi-honest
Semi-honest synchronous protocols can be directly executed
on an asynchronous network:

• Every party appends to each message the round number it
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send
your messages for round ρ+1

Full Asynchrony — Semi-honest
Semi-honest synchronous protocols can be directly executed
on an asynchronous network:

• Every party appends to each message the round number it
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send
your messages for round ρ+1

Security

• No party starts round ρ+1 unless all parties have finished round ρ,
hence the view is identical to the synchronous protocol.

• The privacy follows from the privacy of the synchronous protocol.

Full Asynchrony — Semi-honest
Semi-honest synchronous protocols can be directly executed
on an asynchronous network:

• Every party appends to each message the round number it
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send
your messages for round ρ+1

Security

• No party starts round ρ+1 unless all parties have finished round ρ,
hence the view is identical to the synchronous protocol.

• The privacy follows from the privacy of the synchronous protocol.

But since the adversary might delay messages indefinitely,
the protocols might not terminate!

From Synchronous to Asynchronous MPC

Outline of the lecture

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

• Same security as in the synchronous setting

Eventual Delivery — Semi-honest

The same idea as full asynchrony works … and ensures
(eventual) termination

Eventual Delivery — Semi-honest

The same idea as full asynchrony works … and ensures
(eventual) termination

• Every party appends to each message the round number it
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send
your messages for round ρ+1

Eventual Delivery — Semi-honest

The same idea as full asynchrony works … and ensures
(eventual) termination

This is the fastest way to execute semi-honest protocols.

• In reality, TCP/IP will take care of this as it will re-send
messages when no acknowledgment is received

• Every party appends to each message the round number it
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send
your messages for round ρ+1

From Synchronous to Asynchronous MPC

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Outline of the lecture

• Same security as in the synchronous setting

• Same security as in the synchronous setting

Full Asynchrony — Malicious
Malicious synchronous protocols can be compiled to be
executed on an asynchronous network:
• Every party appends to each message the round number it

belongs to.
• Pi: Upon receiving all messages for round ρ,

1. Compute and send your messages for round ρ+1
2. Send a heart-bit to every party with the current round

• Upon receiving heart-bit for round ρ from every party proceed to
round ρ+1

Full Asynchrony — Malicious
Malicious synchronous protocols can be compiled to be
executed on an asynchronous network:
• Every party appends to each message the round number it

belongs to.
• Pi: Upon receiving all messages for round ρ,

1. Compute and send your messages for round ρ+1
2. Send a heart-bit to every party with the current round

• Upon receiving heart-bit for round ρ from every party proceed to
round ρ+1

Security

• No party starts round ρ+1 unless all parties have finished round ρ,
hence the view is identical to the synchronous protocol.

• Privacy and correctness follow from the privacy and correctness of
the synchronous protocol.

Full Asynchrony — Malicious
Malicious synchronous protocols can be compiled to be
executed on an asynchronous network:
• Every party appends to each message the round number it

belongs to.
• Pi: Upon receiving all messages for round ρ,

1. Compute and send your messages for round ρ+1
2. Send a heart-bit to every party with the current round

• Upon receiving heart-bit for round ρ from every party proceed to
round ρ+1

Security

• No party starts round ρ+1 unless all parties have finished round ρ,
hence the view is identical to the synchronous protocol.

• Privacy and correctness follow from the privacy and correctness of
the synchronous protocol.

But the adversary can prevent the
protocol from terminating

Full Asynchrony — Malicious
Malicious synchronous protocols can be compiles to be
executed on an asynchronous network:
• Every party appends to each message the round number it

belongs to.
• Pi: Upon receiving all messages for round ρ,

1. Compute and send your messages for round ρ+1
2. Send a heart-bit to every party with the current round

• Upon receiving heart-bit for round ρ from every party proceed to
round ρ+1

Security without termination is infeasible in the fully asynchronous
model
• The adversary can make sure that no message is ever delivered

But the adversary can prevent the
protocol from terminating

From Synchronous to Asynchronous MPC

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting — Malicious

• Eventual delivery setting — Malicious

Outline of the lecture

• Same security as in the synchronous setting

• Same security as in the synchronous setting

• Same security as in the synchronous setting … but no termination

Eventual Delivery— Malicious

If you don’t care about termination then trivial: use the
fully asynchronous protocol idea…

Eventual Delivery— Malicious

If you don’t care about termination then trivial: use the
fully asynchronous protocol idea…

 … could we get (eventual) termination as in the
semi-honest setting ?

Eventual Delivery— Malicious

If you don’t care about termination then trivial: use the
fully asynchronous protocol idea…

 … could we get (eventual) termination as in the
semi-honest setting ?

Yes !!! …

Eventual Delivery— Malicious

If you don’t care about termination then trivial: use the
fully asynchronous protocol idea…

 … could we get (eventual) termination as in the
semi-honest setting ?

Yes !!! …

… but at a cost …

Eventual Delivery— Fail-stop

A fail-stop adversary might make corrupted parties
crash, i.e., stop playing but cannot make them

misbehave in other ways.

A fail-stop adversary is strictly weaker than a
malicious adversary so any limitations transfer to the

malicious model.

Eventual Delivery— Fail-stop
The “simple” case of Broadcast

(Recall:) Broadcast
Inputs: A party pi called the sender has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest (i.e., does not crash) then y = x
• (termination) The protocol eventually terminates

Eventual Delivery— Fail-stop
The “simple” case of Broadcast
Synchronous broadcast against fail-stop sender:

• Round 1: Sender sends his input x to every pi

• Round 2: Every pi sends the message he received (or ⟘ if
no message was received) to all pj ’s

• Output: For each pi : if a message x ≠ ⟘ was received in
Round 1 or 2 output x otherwise output ⟘.

Eventual Delivery— Fail-stop
The “simple” case of Broadcast
Synchronous broadcast against fail-stop sender:

• Round 1: Sender sends his input x to every pi

• Round 2: Every pi sends the message he received (or ⟘ if
no message was received) to all pj ’s

• Output: For each pi : if a message x ≠ ⟘ was received in
Round 1 or 2 output x otherwise output ⟘.

Security:
• Consistency:

• If any party receives a message x ≠ ⟘ in Round 1 then
everyone will output x in Round 2. Otherwise everyone
output ⟘.

• Validity: If the Sender is honest everyone receives x already in
Round 1 (and output it in the end).

Eventual Delivery— Fail-stop

How about asynchronous broadcast against fail-stop sender

The “simple” case of Broadcast

Eventual Delivery— Fail-stop

How about asynchronous broadcast against fail-stop sender

• If the parties do not wait for the sender then they might
compromise validity
• The sender might be honest but his network very slow …

• Hence the parties need to wait for the sender
• But then a fail-stop sender will make them wait forever …

The “simple” case of Broadcast

Eventual Delivery— Fail-stop

How about asynchronous broadcast against fail-stop sender

• If the parties do not wait for the sender then they might
compromise validity
• The sender might be honest but his network very slow …

• Hence the parties need to wait for the sender
• But then a fail-stop sender will make them wait forever …

Theorem [FLP85]. Broadcast with eventual (guaranteed)
termination is impossible in the eventual-delivery asynchronous
setting if the sender is semi-honest (or malicious).

The “simple” case of Broadcast

Eventual Delivery— Fail-stop
The “simple” case of Broadcast

Let’s try anyway to use the idea of the synchronous protocol:

• Start (Round 1): Sender sends his input x to every pi

• Every pi who receives some x from the sender or some pj

echoes x and terminates with output x.

How about asynchronous broadcast against fail-stop sender

Eventual Delivery— Fail-stop
The “simple” case of Broadcast

Let’s try anyway to use the idea of the synchronous protocol:

• Start (Round 1): Sender sends his input x to every pi

• Every pi who receives some x from the sender or some pj

echoes x and terminates with output x.

“Asynchronous” Broadcast (aka Bracha broadcast [Bra84])

• (validity) If the sender is honest with input x then every party
eventually terminates with output x

• (conditional consistency) If some honest party terminates with
x’ then every honest party will (eventually) terminate with x’.

How about asynchronous broadcast against fail-stop sender

Eventual Delivery— Fail-stop
The “simple” case of Broadcast

Let’s try anyway to use the idea of the synchronous protocol:

• Start (Round 1): Sender sends his input x to every pi

• Every pi who receives some x from the sender or some pj

echoes x and terminates with output x.

“Asynchronous” Broadcast (aka Bracha broadcast [Bra84])

• (validity) If the sender is honest with input x then every party
eventually terminates with output x

• (conditional consistency) If some honest party terminates with
x’ then every honest party will (eventually) terminate with x’.

Tolerates up to t<n/3
malicious parties

How about asynchronous broadcast against fail-stop sender

Eventual Delivery— Fail-stop
The “simple” case of Broadcast

Let’s try anyway to use the idea of the synchronous protocol:

• Start (Round 1): Sender sends his input x to every pi

• Every pi who receives some x from the sender or some pj

echoes x and terminates with output x.

“Asynchronous” Broadcast (aka Bracha broadcast [Bra84])

• (validity) If the sender is honest with input x then every party
eventually terminates with output x

• (conditional consistency) If some honest party terminates with
x’ then every honest party will (eventually) terminate with x’.

Tolerates up to t<n/3
malicious parties

How about asynchronous broadcast against fail-stop sender

How about MPC?

Eventual Delivery— Malicious

The case of general MPC: If correctness requires receiving
input from all honest parties then they will not terminate even
against a single corruption

• If the parties do not wait for some pi ’s input then they
might compromise correctness
• pi might be honest but his network very slow …

• Hence the parties need to wait for pi

• But then a malicious (or fail-stop) pi will make them wait
forever …

Eventual Delivery— Malicious

The case of general MPC: If correctness requires receiving
input from all but one honest parties then they will not
terminate against two corruption

• Assume the parties give up waiting for pi ’s input (no
correctness violation)

• If the parties do not wait for some pj ’s input then they
might compromise correctness
• pj might be honest but his network very slow …

• Hence the parties need to wait for pj

• But then a malicious (or fail-stop) pj will make them wait
forever …

Eventual Delivery— Malicious

The case of general MPC: If correctness requires receiving
input from all but t-1 honest parties then they will not terminate
against t corruption

Eventual Delivery— Malicious

The case of general MPC: If correctness requires receiving
input from all but t-1 honest parties then they will not terminate
against t corruption

The best we can hope for is that parties give up t honest
parties in correctness.

πn

π2

π3

π1

MPC Security — Synchronous Model

•

Protocol π is secure if for every adversary:
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties output f(x1’, x2, x3’, … ,xn)

• (termination) The protocol terminates after a finite number of rounds

x1 x2

x3xn

…

Protocol for f(x1, …, xn)

π4

π2

π3

π1

MPC Security — Eventual Delivery Model

•

Protocol π is secure if for every adversary:
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties output f(x1’, x2, x3’, … ,xn)

• (eventual termination) The protocol eventually terminates

Protocol for f(x1, …, xn)

… where the adversary
can set t honest xi ’s to 0

x1 x2

x3xn

…

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

• The adversary chooses who is left
behind (by delaying delivery)
• Best strategy: leave out t honest

parties

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

• The adversary chooses who is left
behind (by delaying delivery)
• Best strategy: leave out t honest

parties ≤ t
m ≥ n-t

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

• The adversary chooses who is left
behind (by delaying delivery)
• Best strategy: leave out t honest

parties ≤ t
m ≥ n-t

Left out:
Might be all

honest

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

• The adversary chooses who is left
behind (by delaying delivery)
• Best strategy: leave out t honest

parties ≤ t
m ≥ n-t

Left out:
Might be all

honest
All corrupted
parties are
still in here

MPC Security — Eventual Delivery
Q. Can we achieve the synchronous feasibility bounds?

A. Unfortunately not …

Player set {p1, …, pn}

• No party can wait for messages
from more than n-t parties

• The adversary chooses who is left
behind (by delaying delivery)
• Best strategy: leave out t honest

parties
• Even if the adversary synchronously

delivers all messages in the m ≥ n-t
remainder parties … we need to pay
the synchronous penalties:
• (perfect) m > 3t ⇒ n > 4t [BCG93]

• (computational/IT) m > 2t ⇒
n > 3t [BKR94]

≤ t
m ≥ n-t

Left out:
Might be all

honest
All corrupted
parties are
still in here

MPC Security — Eventual Delivery
(Over-simplified) Idea of asynchronous protocols
The most important component is a primitive called core-set
agreement (CSA) [BCG93, BKR94]
• Allows the parties to (eventually) agree on a core-set of n-t

parties who have completed their previous step (typically
sharing of their input).

MPC Security — Eventual Delivery
(Over-simplified) Idea of asynchronous protocols
The most important component is a primitive called core-set
agreement (CSA) [BCG93, BKR94]
• Allows the parties to (eventually) agree on a core-set of n-t

parties who have completed their previous step (typically
sharing of their input).

Asynchronous VSS:
• Every party verifiably shares his inputs
• Run core-set agreement to decide on n-t parties who have

successfully VSS-ed their inputs.
⇒

MPC Security — Eventual Delivery
(Over-simplified) Idea of asynchronous protocols
The most important component is a primitive called core-set
agreement (CSA) [BCG93, BKR94]
• Allows the parties to (eventually) agree on a core-set of n-t

parties who have completed their previous step (typically
sharing of their input).

Asynchronous VSS:
• Every party verifiably shares his inputs
• Run core-set agreement to decide on n-t parties who have

successfully VSS-ed their inputs.
⇒

Given these primitives, the structure is similar to the synchronous
protocols: parties use CSA to detect that the evaluation of a gate has
finished and they can proceed to the next gate.

MPC Security — Eventual Delivery
(Over-simplified) Idea of asynchronous protocols
The most important component is a primitive called core-set
agreement (CSA) [BCG93, BKR94]
• Allows the parties to (eventually) agree on a core-set of n-t

parties who have completed their previous step (typically
sharing of their input).

Asynchronous VSS:
• Every party verifiably shares his inputs
• Run core-set agreement to decide on n-t parties who have

successfully VSS-ed their inputs.
⇒

Given these primitives, the structure is similar to the synchronous
protocols: parties use CSA to detect that the evaluation of a gate has
finished and they can proceed to the next gate.

Detailed analysis is involved:
• Complications + reduced correctness = not a lot of literature

MPC Security — Eventual Delivery

MPC Security — Eventual Delivery

Why is should we look at asynchronous with eventual delivery?

MPC Security — Eventual Delivery

Why is should we look at asynchronous with eventual delivery?

• Because we cannot always assume that parties have
synchronized clocks.
• What can we do if not?

MPC Security — Eventual Delivery

Why is should we look at asynchronous with eventual delivery?

• Because we cannot always assume that parties have
synchronized clocks.
• What can we do if not?

• Because it is an interesting theoretical problem.

MPC Security — Eventual Delivery

Why is should we look at asynchronous with eventual delivery?

• Because we cannot always assume that parties have
synchronized clocks.
• What can we do if not?

• Because it is an interesting theoretical problem.

• Because we might only be able to have a pessimistic guarantee
on the network delay.
• Synchronous protocols will be too slow.
• We could get results in a hybrid (optimistic model):

• synchronous with asynchronous fallback

MPC Security — Eventual Delivery

Why is should we look at asynchronous with eventual delivery?

• Because we cannot always assume that parties have
synchronized clocks.
• What can we do if not?

• Because it is an interesting theoretical problem.

• Because we might only be able to have a pessimistic guarantee
on the network delay.
• Synchronous protocols will be too slow.
• We could get results in a hybrid (optimistic model):

• synchronous with asynchronous fallback

MPC Security — Eventual Delivery

MPC Security — Eventual Delivery
A optimistic protocol without correctness compromise:

• Assume we know that messages are almost never delayed more
than 10mins, but typically they are delivered in 1sec.

MPC Security — Eventual Delivery
A optimistic protocol without correctness compromise:

• Assume we know that messages are almost never delayed more
than 10mins, but typically they are delivered in 1sec.

• In a synchronous protocol I would need #rounds ・10mins time …

Round 1 Round 2

τ0 τ1= τ0+10 τ2= τ0+20

Round q

τn=τ0 + 10q Duration of
synch. q-round

protocol

MPC Security — Eventual Delivery
A optimistic protocol without correctness compromise:

• Assume we know that messages are almost never delayed more
than 10mins, but typically they are delivered in 1sec.

• In a synchronous protocol I would need #rounds ・10mins time …

• A better idea: Run the first round for 10 mins and then do
everything asynchronously

Round 1 Round 2

τ0 τ1= τ0+10 τ2= τ0+20

Round q

τn=τ0 + 10q Duration of
synch. q-round

protocol

Round 1

τ0 τ1= τ0+10 τ1= τ0+10 + q
Duration of

asynch. q-round
protocol

MPC Security — Eventual Delivery

Theorem. [HNP05, BH07] Assuming the messages send at the
beginning of the protocol are delivered to their recipients
synchronously (within the first 10 mins), we can achieve the same
correctness as in the synchronous setting (i.e, compute the
function on all the inputs) faster but under the asynchronous
bounds.

• perfect security: n > 4t
• (computational/IT): n > 3t

A optimistic protocol without correctness compromise:

MPC Security — Eventual Delivery

Theorem. [HNP05, BH07] Assuming the messages send at the
beginning of the protocol are delivered to their recipients
synchronously (within the first 10 mins), we can achieve the same
correctness as in the synchronous setting (i.e, compute the
function on all the inputs) faster but under the asynchronous
bounds.

• perfect security: n > 4t
• (computational/IT): n > 3t

A optimistic protocol without correctness compromise:

MPC Security — Eventual Delivery

MPC Security — Eventual Delivery
A protocol for a function f(x1, …, xn) with full correctness for
t<n/3 (assuming digital signatures)

MPC Security — Eventual Delivery
A protocol for a function f(x1, …, xn) with full correctness for
t<n/3 (assuming digital signatures)
1. Protocol start (synchronous round):

- Every party pi computes a sharing of his input xi using a
degree-t polynomial fi(・).

- pi send xij=f(αj) and his signature σij = sigski(xij,ij) to each pj.

MPC Security — Eventual Delivery
A protocol for a function f(x1, …, xn) with full correctness for
t<n/3 (assuming digital signatures)
1. Protocol start (synchronous round):

- Every party pi computes a sharing of his input xi using a
degree-t polynomial fi(・).

- pi send xij=f(αj) and his signature σij = sigski(xij,ij) to each pj.
2. The parties use an asynchronous protocol for t<n/3 (e.g., [BKR94])

to compute the following function on input the shares and
signatures received in the first round:

MPC Security — Eventual Delivery
A protocol for a function f(x1, …, xn) with full correctness for
t<n/3 (assuming digital signatures)
1. Protocol start (synchronous round):

- Every party pi computes a sharing of his input xi using a
degree-t polynomial fi(・).

- pi send xij=f(αj) and his signature σij = sigski(xij,ij) to each pj.
2. The parties use an asynchronous protocol for t<n/3 (e.g., [BKR94])

to compute the following function on input the shares and
signatures received in the first round:

G((x11, σ11), …, (xnn, σnn)): For all received inputs (xij, σij) with a valid signature:
• For each i∈ {1, …, n}:

• If there exists a degree-t polynomial gi(・) such that gi(αj) = xij then set xi’
= g(0)

• Else set xi’ = 0 (a default value)
• Compute f(x1, …, xn)

MPC Security — Eventual Delivery
A protocol for a function f(x1, …, xn) with full correctness for
t<n/3 (assuming digital signatures)

Security Proof for t<n/3
Correctness: If pi is honest then his input xi is considered in the evaluation
• In the synchronous round everyone receives his share and signature

(sij,σij)
• Even if the evaluation of G leaves t honest parties behind there is t+1

more honest that have shares to interpolate the polynom. fi
Privacy & Termination: Follow from the asynch. protocol used for G.

G((x11, σ11), …, (xnn, σnn)): For all received inputs (xij, σij) with a valid signature:
• For each i∈ {1, …, n}:

• If there exists a degree-t polynomial gi(・) such that gi(αj) = xij then set xi’
= g(0)

• Else set xi’ = 0 (a default value)
• Compute f(x1, …, xn)

MPC Security — Eventual Delivery

MPC Security — Eventual Delivery

Theorem (informal). [HNP05, BH07] Best of both worlds:
Under the asynchronous bounds we can have a protocol with delay
(due to time-outs) almost τ which computes any multi-party function
f(x1,…,xn) s.t.,
Correctness:

• If the inputs are received within time τ (i.e., by the end of first
round) then full correctness (as above)

• Else, still correctness which leaves out at most t honest inputs
Privacy & Eventual Termination:

• Guaranteed irrespective of synchrony

MPC Security — Eventual Delivery

Theorem (informal). [HNP05, BH07] Best of both worlds:
Under the asynchronous bounds we can have a protocol with delay
(due to time-outs) almost τ which computes any multi-party function
f(x1,…,xn) s.t.,
Correctness:

• If the inputs are received within time τ (i.e., by the end of first
round) then full correctness (as above)

• Else, still correctness which leaves out at most t honest inputs
Privacy & Eventual Termination:

• Guaranteed irrespective of synchrony

This motivates the study of practical async. MPC protocols
• Communication efficient [HNP08, CHP13, CBP15, …]
• Constant round [CGHZ16, Coh16]

References
• [Bra84] Gabriel Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient con- sensus protocol. In

Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC), pages 154–
162, 1984. P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus.
Computer Science Research, pages 313–322, 1992. Preliminary version in STOC’89.

• [FLP85] M. Fisher, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with
one faulty process. JACM, Vol. 32, No. 2, 1985, pp. 374—382

• [BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In
Proc. 25th ACM Symposium on the Theory of Computing (STOC), pages 52–61, 1993.
Full version in Ran Canetti’s PhD Thesis

• [BKR94] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In Proc. 13th ACM Symposium on Principles of
Dis- tributed Computing (PODC), pages 183–192, 1994.

• [HNP05] M. Hirt, J. Buus Nielsen, and B. Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience. In Ronald Cramer, editor, Advances in
Cryptology — EUROCRYPT2005, volume 3494 of Lecture Notes in Computer Science,
pages 322–340. Springer-Verlag, May 2005.

• [BH07] Z. Beerliova -́Trub ı́niova ́and M. Hirt. Simple and efficient perfectly-secure
asynchronous MPC. In Kaoru Kuro- sawa, editor, Advances in Cryptology — ASIACRYPT
2007, vol- ume 4833 of Lecture Notes in Computer Science, pages 376–392. Springer-
Verlag, December 2007.

References
• [HNP08] M. Hirt, J. Buus Nielsen, and B. Przydatek. Asynchronous multi-party

computation with quadratic com- munication. In Luca Aceto, Magnus M. Halldorsson, and
Anna Ingolfsdottir, editors, Automata, Languages and Program- ming — ICALP 2008,
volume 5126 of Lecture Notes in Computer Science, pages 473–485. Springer-Verlag,
July 2008.

• [CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. 2013. Asynchronous Multiparty
Computation with Linear Communication Complexity. In Proceedings of the 27th
International Symposium on Distributed Computing - Volume 8205 (DISC 2013), Yehuda
Afek (Ed.), Vol. 8205. Springer-Verlag New York, Inc., New York, NY, USA, 388-402.
DOI=http://dx.doi.org/10.1007/978-3-642-41527-2_27

• [CB15] Ashish Choudhury and Arpita Patra. 2015. Optimally Resilient Asynchronous MPC
with Linear Communication Complexity. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking (ICDCN '15). ACM, New York, NY,
USA, Article 5, 10 pages. DOI: https://doi.org/10.1145/2684464.2684470

• [Coh16] R. Cohen. Asynchronous secure multiparty computation in constant time. In:
Public-Key Cryptography - PKC 2016, Proceedings, Part II. pp. 183–207, 2016.

• [CGHZ16] S. Coretti, J. A. Garay, M. Hirt, and V. Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In J. H. Cheon and T. Takagi,
editors, ASIACRYPT 2016, volume 10032 of LNCS, pages 998–1021, 2016.

Constant-Round Asynchronous  
Multi-Party Computation Based on 

One-Way Functions

S. Coretti, J. Garay, M. Hirt and V. Zikas, “Constant-Round Asynchronous Multi-
Party Computation Based on One-Way Functions.” ASIACRYPT 2016.

 http://eprint.iacr.org/2016/208

http://eprint.iacr.org/2016/208

Constant-Round Asynchronous MPC

▪ Formalize asynchronous model with eventual delivery in the UC
framework
• Asynchronous round complexity
• Basic communication resources: async. secure channel (A-

SMT) and async. Byzantine agreement (A-BA)

▪ Constant-round MPC protocol
• I.e., round complexity independent of circuit’s multiplicative

depth
• Based on standard assumptions (PRFs)
• Tolerates t < n/3 corruptions
• Adaptive adversary

Prior Work Constant-Round MPC Protocols

Prior Work Constant-Round MPC Protocols

▪ Synchronous model:
• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]
• Based on FHE [AJLTVW12]
• t < n/2 corruptions
• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

Prior Work Constant-Round MPC Protocols

▪ Synchronous model:
• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]
• Based on FHE [AJLTVW12]
• t < n/2 corruptions
• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

▪ Asynchronous model (recall: eventual delivery):
• Based on FHE [Coh16]
• t < n/3 corruptions
• Assume A-BA
• (Other known protocols are GMW-based → circuit depth)

Our Results

▪ Formalize asynchronous model with eventual delivery in the UC
framework
• Asynchronous round complexity
• Basic communication resources: async. secure channel (A-

SMT) and async. Byzantine agreement (A-BA)

▪ Constant-round MPC protocol
• I.e., round complexity independent of circuit’s multiplicative

depth
• Based on standard assumptions (PRFs)
• Tolerates t < n/3 corruptions
• Adaptive adversary

Modeling Asynchronous Communication in UC

Sender
Receiver

Input messages
• Poll for

messages: T
= T-1

• If T = 0, first
message in
buffer outputA-SMT Functionality:

• Stores messages in
buffer

• Maintains delay T

Adversary

• Reorder messages in
buffer

• Increase T, specified in
unary

Modeling Asynchronous Communication in UC (2)

▪ Protocol execution:
• Party either sends message or
• polls A-SMT channels in round-robin fashion

▪ Round complexity: Maximum number of times any party
switches between sending and polling

Modeling Asynchronous SFE in UC

Parties P
• Provide input
• Poll for output: T =

T-1
• If T = 0, first

message in buffer
output

A-SFE Functionality:
• Collects inputs and computes output
• Maintains delay T

Adversary

• Decide on set of n-t
input providers

• Increase T, specified in
unary

Modeling Asynchronous BA in UC

Parties P
• Provide input
• Poll for output: T = T-1
• If T = 0, first message

in buffer output

A-BA Functionality:
• Maintains delay T
• Collects inputs and computes output

• If there is agreement in C output
corresponding value

• Otherwise, output a value specified by attacker

Adversary
• Decide on set C of n-t input providers
• Increase T, specified in unary

Our Results

▪ Formalize asynchronous model with eventual delivery in the UC
framework
• Asynchronous round complexity
• Basic communication resources: async. secure channel (A-

SMT) and async. Byzantine agreement (A-BA)

▪ Constant-round MPC protocol
• I.e., round complexity independent of circuit’s multiplicative

depth
• Based on standard assumptions (PRFs)
• Tolerates t < n/3 corruptions
• Adaptive adversary

Protocol Overview

Protocol Overview

▪ Three phases for computing Boolean circuit C:

Protocol Overview

▪ Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using
(unconditionally) secure protocol by [BKR94] (whose
round complexity depends on depth of evaluated circuit)

Protocol Overview

▪ Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using
(unconditionally) secure protocol by [BKR94] (whose
round complexity depends on depth of evaluated circuit)

II. With output from Phase I, complete circuit garbling

Protocol Overview

▪ Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using
(unconditionally) secure protocol by [BKR94] (whose
round complexity depends on depth of evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit

Circuit Garbling [Yao86,BMR90]

▪ Idea: Associated with every wire w of Boolean circuit C:
• mask mw (to hide actual value on wire) and
• two keys kw,0, kw,1

▪ Evaluate circuit on masked values while maintaining invariant:

If masked value is z, kw,z is known and kw,1-z is secret

Circuit Garbling [Yao86,BMR90] (2)

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

To evaluate garbled circuit, use:
• Masked values on input wires and

corresponding keys
• Masks of output wires

NAND

a b

c

Issue 1

▪ Evaluating encryption function in MPC → non-constant
depth circuit
▪ Solution: “Distributed encryption” [DI05]

Regular encryption: E(k,m)

Distributed encryption:

▪ Use sub-keys k1,…,kn instead of k
▪ Secret-share m
▪ Give ith share mi and ki to party Pi

▪ Pi computes E(ki,mi) and sends to all

Circuit Garbling with Distributed Encryption

▪ Idea: Associated with every wire w of circuit C:
• mask mw (to hide actual value on wire) and
• two keys kw,0, kw,1, each consisting of n subkeys

▪ Evaluate circuit on masked values while maintaining
invariant:

If masked value is z, kw,z is known and kw,1-z is secret.

Circuit Garbling without Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

NAND

a b

c

Circuit Garbling with Distributed Encryption

Instead of encrypting garbled entry,
compute secret-sharing of (each
component of) it

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc [z , kc,z]

0 1 ((0 + ma) NAND (1 + mb)) + mc [z , kc,z]

1 0 ((1 + ma) NAND (0 + mb)) + mc [z , kc,z]

1 1 ((1 + ma) NAND (1 + mb)) + mc [z , kc,z]

NAND

a b

Phase I: Garbling with Distributed Encryption

Phase I: described by (randomized) constant-depth function that
▪Randomly chooses masks and subkeys
▪Computes masked inputs and corresponding subkeys based

on player inputs and masks
▪Computes shared function tables (can be done in parallel)
▪Outputs to Pi:

• Masked inputs and corresponding subkeys
• ith shares of all shared function tables
• Masks of output wires

Phase I: Garbling with Distributed Encryption

▪Actual Phase I: Evaluate Phase I function using
[BKR94] protocol
▪Round complexity of [BKR94] depends on

evaluated circuit
▪But: Phase I function is constant-depth

Phases II + III: Encrypting and Evaluating

▪ Phase II: Compute threshold encryption of garbled
entries
• Each party Pi locally encrypts its shares with the

appropriate subkeys and sends resulting ciphertexts to
all

▪ Phase III: Locally evaluate garbled circuit
• Decryption of a function table entry with decryption

subkeys k1,…,kn:
oUpon receiving encrypted share from Pi, decrypt it

with ki

oWait until 2t+1 shares on degree-t polynomial
received and interpolate

Issue 2

▪ [BKR94] protocol evaluates arithmetic circuits
▪ Phase I function described by Boolean circuit
▪→ Conversion to circuit over extension field of GF(2)

• Replace each NAND gate with inputs x,y by a
computation of 1−xy

▪ Ensure that all inputs are 0,1 as follows:
• After input phase, for every input x, jointly open x –

x2 [BGN05]
• If result is 0, accept x, otherwise replace by 0

References
• [Bra84] Gabriel Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient con- sensus protocol. In

Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC), pages 154–
162, 1984. P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus.
Computer Science Research, pages 313–322, 1992. Preliminary version in STOC’89.

• [FLP85] M. Fisher, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with
one faulty process. JACM, Vol. 32, No. 2, 1985, pp. 374—382

• [BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In
Proc. 25th ACM Symposium on the Theory of Computing (STOC), pages 52–61, 1993.
Full version in Ran Canetti’s PhD Thesis

• [BKR94] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In Proc. 13th ACM Symposium on Principles of
Dis- tributed Computing (PODC), pages 183–192, 1994.

• [HNP05] M. Hirt, J. Buus Nielsen, and B. Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience. In Ronald Cramer, editor, Advances in
Cryptology — EUROCRYPT2005, volume 3494 of Lecture Notes in Computer Science,
pages 322–340. Springer-Verlag, May 2005.

• [BH07] Z. Beerliova -́Trub ı́niova ́and M. Hirt. Simple and efficient perfectly-secure
asynchronous MPC. In Kaoru Kuro- sawa, editor, Advances in Cryptology — ASIACRYPT
2007, vol- ume 4833 of Lecture Notes in Computer Science, pages 376–392. Springer-
Verlag, December 2007.

References
• [HNP08] M. Hirt, J. Buus Nielsen, and B. Przydatek. Asynchronous multi-party

computation with quadratic com- munication. In Luca Aceto, Magnus M. Halldorsson, and
Anna Ingolfsdottir, editors, Automata, Languages and Program- ming — ICALP 2008,
volume 5126 of Lecture Notes in Computer Science, pages 473–485. Springer-Verlag,
July 2008.

• [CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. 2013. Asynchronous Multiparty
Computation with Linear Communication Complexity. In Proceedings of the 27th
International Symposium on Distributed Computing - Volume 8205 (DISC 2013), Yehuda
Afek (Ed.), Vol. 8205. Springer-Verlag New York, Inc., New York, NY, USA, 388-402.
DOI=http://dx.doi.org/10.1007/978-3-642-41527-2_27

• [CB15] Ashish Choudhury and Arpita Patra. 2015. Optimally Resilient Asynchronous MPC
with Linear Communication Complexity. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking (ICDCN '15). ACM, New York, NY,
USA, Article 5, 10 pages. DOI: https://doi.org/10.1145/2684464.2684470

• [Coh16] R. Cohen. Asynchronous secure multiparty computation in constant time. In:
Public-Key Cryptography - PKC 2016, Proceedings, Part II. pp. 183–207, 2016.

• [CGHZ16] S. Coretti, J. A. Garay, M. Hirt, and V. Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In J. H. Cheon and T. Takagi,
editors, ASIACRYPT 2016, volume 10032 of LNCS, pages 998–1021, 2016.

