
Asynchronous Multi-Party 
Computation

Vassilis Zikas
RPI

MPC School
IIT Mumbai



Secure Multi-Party Computation (MPC)

D1 D2

D3D4

Security



π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

D1 D2

D3D4

Security



π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

D1 D2

D3D4

Security



π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

Protocol π is secure if for every adversary: 
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs

D1 D2

D3D4

Security



π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

Protocol π is secure if for every adversary: 
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs

• (termination) The protocol terminates after a finite number of rounds
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Model
• n players 
• Computation over (𝔽, ⊕, ⊗) — E.g.  (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1
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The Synchronous model 

Round Structure 
• Round r:  parties read round r-1 messages and compute/send round 

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of 

Round r
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The Synchronous model 

Round Structure 
• Round r:  parties read round r-1 messages and compute/send round 

r messages.
• Round r-1 messages are guaranteed to be delivered by beginning of 

Round r
Real-world Assumptions: 
• Channels with known bounded delay
• (Partially) Synchronized clocks 

Security Guarantees (in reality)
• Correctness, Privacy, ...
• Input Completeness: the inputs of all honest parties are considered
• (Guaranteed) termination:  In the time corresponding to the end of 

the last round, the protocol terminates (independent of adversary).

Idea:
Use clocks to wait sufficiently 
long (at least network latency)

Multi-Party Computation [GMW87, BGW88, CCD88, RB89, CDDHR99, ... ]
Byzantine Agreement [PSL80,BGP89,DS82, FL82, TPS87, FM88, BPW91, ...]
...
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Why Asynchronous Computation?

Timeline of a Synchronous protocol 

Round 1 Round 2

τ0 τ1 τ2

Round q

τq-1 τq…
Messages for 

Round 1 are sent
Messages for 

Round 2 are sent

If all messages 
are received, I 

could proceed, but 
I wait to be sure

total time = q(τ1 - τ0)  

Asynchronous computation offers an opportunistic/
greedy approach to protocol execution: 
• As soon as a party has enough info, he proceeds 

to the next round



The Asynchronous Model(s) 

We want to capture a setting where the messages are 
delayed in the network 



The Asynchronous Model(s) 

Worst-case scenario: 

• The delivery is the one that favors the adversary the most

• The adversary is also the scheduler: When a message is 
sent from pi to pj , the adversary decides if and when it will be 
received. Two flavors: 

1. Fully asynchronous: The adversary can delay messages 
indefinitely (This is the underlying UC network [Can00])

2. Asynchronous with eventual delivery: The adversary can 
delay messages by a finite (polynomial) amount of time

We want to capture a setting where the messages are 
delayed in the network 
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Semi-honest synchronous protocols can be directly executed 
on an asynchronous network:

• Every party appends to each message the round number it 
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send 
your messages for round ρ+1

Security

• No party starts round ρ+1 unless all parties have finished round ρ, 
hence the view is identical to the synchronous protocol. 

• The privacy follows from the privacy of the synchronous protocol.

But since the adversary might delay messages indefinitely, 
the protocols might not terminate!
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Eventual Delivery — Semi-honest

The same idea as full asynchrony works … and ensures 
(eventual) termination

This is the fastest way to execute semi-honest protocols. 

• In reality, TCP/IP will take care of this as it will re-send 
messages when no acknowledgment is received 

• Every party appends to each message the round number it 
belongs to

• Pi: Upon receiving all messages for round ρ, compute and send 
your messages for round ρ+1
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Full Asynchrony — Malicious
Malicious synchronous protocols can be compiles to be 
executed on an asynchronous network:
• Every party appends to each message the round number it 

belongs to.
• Pi: Upon receiving all messages for round ρ, 

1. Compute and send your messages for round ρ+1
2. Send a heart-bit to every party with the current round

• Upon receiving heart-bit for round ρ from every party proceed to 
round ρ+1

Security without termination is infeasible in the fully asynchronous 
model 
• The adversary can make sure that no message is ever delivered

But the adversary can prevent the 
protocol from terminating 



From Synchronous to Asynchronous MPC

• Fully asynchronous setting — Semi-honest

• Eventual-delivery setting — Semi-honest

• Fully asynchronous setting  — Malicious

• Eventual delivery setting — Malicious 

Outline of the lecture

• Same security as in the synchronous setting

• Same security as in the synchronous setting

• Same security as in the synchronous setting … but no termination
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Eventual Delivery— Malicious

If you don’t care about termination then trivial: use the  
fully asynchronous protocol idea… 

 … could we get (eventual) termination as in the 
semi-honest setting ?

Yes !!! …  

…  but at a cost … 



Eventual Delivery— Fail-stop

A fail-stop adversary might make corrupted parties 
crash, i.e., stop playing but cannot make them 

misbehave in other ways. 

A fail-stop adversary is strictly weaker than a 
malicious adversary so any limitations transfer to the 

malicious model. 



Eventual Delivery— Fail-stop
The “simple” case of Broadcast 

(Recall:) Broadcast
Inputs: A party pi called the sender  has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest (i.e., does not crash) then y = x
• (termination) The protocol eventually terminates
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• Round 2: Every pi sends the message he received (or ⟘ if 
no message was received) to all pj ’s 

• Output: For each pi : if a message x ≠ ⟘ was received in 
Round 1 or 2 output x otherwise output ⟘.



Eventual Delivery— Fail-stop
The “simple” case of Broadcast 
Synchronous broadcast against fail-stop sender: 

• Round 1: Sender sends his input x to every pi 

• Round 2: Every pi sends the message he received (or ⟘ if 
no message was received) to all pj ’s 

• Output: For each pi : if a message x ≠ ⟘ was received in 
Round 1 or 2 output x otherwise output ⟘.

Security:
• Consistency:

• If any party receives a message x ≠ ⟘ in Round 1 then 
everyone will output x in Round 2. Otherwise everyone 
output ⟘.

• Validity: If the Sender is honest everyone receives x already in 
Round 1 (and output it in the end). 
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Eventual Delivery— Fail-stop

How about asynchronous broadcast against fail-stop sender

• If the parties do not wait for the sender then they might 
compromise validity
• The sender might be honest but his network very slow … 

• Hence the parties need to wait for the sender 
• But then a fail-stop sender will make them wait forever …  

Theorem [FLP85]. Broadcast with eventual (guaranteed) 
termination is impossible in the eventual-delivery asynchronous 
setting if the sender is semi-honest (or malicious). 

The “simple” case of Broadcast 
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Eventual Delivery— Fail-stop
The “simple” case of Broadcast 

Let’s try anyway to use the idea of the synchronous protocol:

• Start (Round 1): Sender sends his input x to every pi 

• Every pi who receives some x from the sender or some pj 

echoes x and terminates with output x.

“Asynchronous” Broadcast (aka Bracha broadcast [Bra84]) 

• (validity) If the sender is honest with input x then every party 
eventually terminates with output x 

• (conditional consistency) If some honest party terminates with 
x’ then every honest party will (eventually) terminate with x’.  

Tolerates up to t<n/3 
malicious parties

How about asynchronous broadcast against fail-stop sender

How about MPC? 



Eventual Delivery— Malicious

The case of general MPC:  If correctness requires receiving 
input from all honest parties then they will not terminate even 
against a single corruption

• If the parties do not wait for some pi ’s input then they 
might compromise correctness
• pi might be honest but his network very slow … 

• Hence the parties need to wait for pi

• But then a malicious (or fail-stop) pi will make them wait 
forever … 
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The case of general MPC:  If correctness requires receiving 
input from all but one honest parties then they will not 
terminate against two corruption

• Assume the parties give up waiting for pi ’s input (no 
correctness violation) 

• If the parties do not wait for some pj ’s input then they 
might compromise correctness
• pj might be honest but his network very slow … 

• Hence the parties need to wait for pj

• But then a malicious (or fail-stop) pj will make them wait 
forever … 
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Eventual Delivery— Malicious

The case of general MPC:  If correctness requires receiving 
input from all but t-1 honest parties then they will not terminate 
against t corruption

The best we can hope for is that parties give up t honest 
parties in correctness. 
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MPC Security — Synchronous Model

•

Protocol π is secure if for every adversary: 
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties output f(x1’, x2, x3’, … ,xn) 

• (termination) The protocol terminates after a finite number of rounds

x1 x2

x3xn

…

Protocol for  f(x1, …, xn)
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MPC Security — Eventual Delivery Model

•

Protocol π is secure if for every adversary: 
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties output f(x1’, x2, x3’, … ,xn) 

• (eventual termination) The protocol eventually terminates

Protocol for  f(x1, …, xn)

… where the adversary 
can set t honest xi ’s to 0

x1 x2

x3xn

…
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MPC Security — Eventual Delivery 
Q. Can we achieve the synchronous feasibility bounds? 

A. Unfortunately not … 

Player set {p1, …, pn}

• No party can wait for messages 
from more than n-t parties

• The adversary chooses who is left 
behind (by delaying delivery)
• Best strategy: leave out t honest 

parties 
• Even if the adversary synchronously 

delivers all messages in the m ≥ n-t 
remainder parties … we need to pay 
the synchronous penalties: 
• (perfect) m > 3t ⇒ n > 4t [BCG93]

• (computational/IT)  m > 2t ⇒       
n > 3t  [BKR94]

≤ t
m ≥ n-t

Left out: 
Might be all 

honest
All corrupted 
parties are 
still in here 
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The most important component is a primitive called core-set 
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parties who have completed their previous step (typically 
sharing of their input). 
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MPC Security — Eventual Delivery 
(Over-simplified) Idea of asynchronous protocols 
The most important component is a primitive called core-set 
agreement (CSA) [BCG93, BKR94]
• Allows the parties to (eventually) agree on a core-set of  n-t 

parties who have completed their previous step (typically 
sharing of their input). 

Asynchronous VSS:
• Every party verifiably shares his inputs 
• Run core-set agreement to decide on n-t parties who have 

successfully VSS-ed their inputs. 
⇒

Given these primitives, the structure is similar to the synchronous 
protocols: parties use CSA to detect that the evaluation of a gate has 
finished and they can proceed to the next gate. 

Detailed analysis is involved:
• Complications + reduced correctness = not a lot of literature
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MPC Security — Eventual Delivery 
A optimistic protocol without correctness compromise: 

• Assume we know that messages are almost never delayed more 
than 10mins, but typically they are delivered in 1sec. 

• In a synchronous protocol I would need #rounds ・10mins time … 

• A better idea: Run the first round for 10 mins and then do 
everything asynchronously

Round 1 Round 2

τ0 τ1= τ0+10 τ2= τ0+20

Round q

τn=τ0 + 10q Duration of 
synch. q-round 

protocol

Round 1

τ0 τ1= τ0+10 τ1= τ0+10 + q 
Duration of 

asynch. q-round 
protocol
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Theorem. [HNP05, BH07] Assuming the messages send at the 
beginning of the protocol are delivered to their recipients 
synchronously (within the first 10 mins), we can achieve the same 
correctness as in the synchronous setting (i.e, compute the 
function on all the inputs) faster but under the asynchronous 
bounds. 

• perfect security: n > 4t
• (computational/IT): n > 3t 

A optimistic protocol without correctness compromise: 
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A protocol for a function f(x1, …, xn)  with full correctness for 
t<n/3 (assuming digital signatures)
1. Protocol start (synchronous round):  

- Every party pi computes a sharing of his input xi using a 
degree-t polynomial fi(・).

- pi send xij=f(αj) and his signature σij = sigski(xij,ij) to each pj. 
2. The parties use an asynchronous protocol for t<n/3 (e.g., [BKR94]) 

to compute the following function on input the shares and 
signatures received in the first round:  

G((x11, σ11), …, (xnn, σnn)): For all received inputs (xij, σij) with a valid signature: 
• For each i∈ {1, …, n}: 

• If there exists a degree-t polynomial gi(・) such that gi(αj) = xij then set xi’ 
= g(0)

• Else set xi’ = 0 (a default value) 
• Compute f(x1, …, xn)



MPC Security — Eventual Delivery 
A protocol for a function f(x1, …, xn)  with full correctness for 
t<n/3 (assuming digital signatures)

Security Proof for t<n/3
Correctness: If pi is honest then his input xi is considered in the evaluation
• In the synchronous round everyone receives his share and signature 

(sij,σij)
• Even if the evaluation of G leaves t honest parties behind there is t+1 

more honest that have shares to interpolate the polynom. fi
Privacy & Termination: Follow from the asynch. protocol used for G. 

G((x11, σ11), …, (xnn, σnn)): For all received inputs (xij, σij) with a valid signature: 
• For each i∈ {1, …, n}: 

• If there exists a degree-t polynomial gi(・) such that gi(αj) = xij then set xi’ 
= g(0)

• Else set xi’ = 0 (a default value) 
• Compute f(x1, …, xn)
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Theorem (informal). [HNP05, BH07] Best of both worlds: 
Under the asynchronous bounds we can have a protocol with delay 
(due to time-outs) almost τ which computes any multi-party function 
f(x1,…,xn) s.t.,
Correctness:

• If the inputs are received within time τ (i.e., by the end of first 
round) then full correctness (as above)

• Else, still correctness which leaves out at most t honest inputs
Privacy & Eventual Termination:

• Guaranteed irrespective of synchrony



MPC Security — Eventual Delivery 

Theorem (informal). [HNP05, BH07] Best of both worlds: 
Under the asynchronous bounds we can have a protocol with delay 
(due to time-outs) almost τ which computes any multi-party function 
f(x1,…,xn) s.t.,
Correctness:

• If the inputs are received within time τ (i.e., by the end of first 
round) then full correctness (as above)

• Else, still correctness which leaves out at most t honest inputs
Privacy & Eventual Termination:

• Guaranteed irrespective of synchrony

This motivates the study of practical async. MPC protocols
• Communication efficient [HNP08, CHP13, CBP15, … ]
• Constant round [CGHZ16, Coh16]
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Constant-Round Asynchronous MPC

▪ Formalize asynchronous model with eventual delivery in the UC 
framework 
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▪ Constant-round MPC protocol  
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• Adaptive adversary
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Prior Work Constant-Round MPC Protocols

▪ Synchronous model:
• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]
• Based on FHE [AJLTVW12]
• t < n/2 corruptions
• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

▪ Asynchronous model (recall: eventual delivery):
• Based on FHE [Coh16]
• t < n/3 corruptions
• Assume A-BA
• (Other known protocols are GMW-based → circuit depth)



Our Results

▪ Formalize asynchronous model with eventual delivery in the UC 
framework 
• Asynchronous round complexity 
• Basic communication resources: async. secure channel (A-

SMT) and async. Byzantine agreement (A-BA) 

▪ Constant-round MPC protocol  
• I.e., round complexity independent of circuit’s multiplicative 

depth 
• Based on standard assumptions (PRFs) 
• Tolerates t < n/3 corruptions 
• Adaptive adversary



Modeling Asynchronous Communication in UC

Sender
Receiver

Input messages
• Poll for 

messages:     T 
= T-1 

• If T = 0, first 
message in 
buffer outputA-SMT Functionality: 

• Stores messages in 
buffer 

• Maintains delay T

Adversary

• Reorder messages in 
buffer 

• Increase T, specified in 
unary



Modeling Asynchronous Communication in UC (2)

▪ Protocol execution: 
• Party either sends message or 
• polls A-SMT channels in round-robin fashion 

▪ Round complexity: Maximum number of times any party 
switches between sending and polling



Modeling Asynchronous SFE in UC

Parties P
• Provide input 
• Poll for output: T = 

T-1 
• If T = 0, first 

message in buffer 
output

A-SFE Functionality: 
• Collects inputs and computes output 
• Maintains delay T

Adversary

• Decide on set of n-t 
input providers 

• Increase T, specified in 
unary



Modeling Asynchronous BA in UC

Parties P
• Provide input 
• Poll for output: T = T-1 
• If T = 0, first message 

in buffer output

A-BA Functionality: 
• Maintains delay T 
• Collects inputs and computes output 

• If there is agreement in C output 
corresponding value 

• Otherwise, output a value specified by attacker

Adversary
• Decide on set C of n-t input providers 
• Increase T, specified in unary



Our Results

▪ Formalize asynchronous model with eventual delivery in the UC 
framework 
• Asynchronous round complexity 
• Basic communication resources: async. secure channel (A-

SMT) and async. Byzantine agreement (A-BA) 

▪ Constant-round MPC protocol  
• I.e., round complexity independent of circuit’s multiplicative 

depth 
• Based on standard assumptions (PRFs) 
• Tolerates t < n/3 corruptions 
• Adaptive adversary
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Protocol Overview

▪ Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit 

• Evaluate constant-depth function using 
(unconditionally) secure protocol by [BKR94] (whose 
round complexity depends on depth of evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit



Circuit Garbling [Yao86,BMR90]

▪ Idea: Associated with every wire w of Boolean circuit C: 
• mask mw (to hide actual value on wire) and 
• two keys kw,0, kw,1 

▪ Evaluate circuit on masked values while maintaining invariant: 

If masked value is z, kw,z is known and kw,1-z is secret



Circuit Garbling [Yao86,BMR90] (2)

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

To evaluate garbled circuit, use: 
• Masked values on input wires and 

corresponding keys 
• Masks of output wires

NAND

a b

c



Issue 1

▪  Evaluating encryption function in MPC → non-constant 
depth circuit 
▪  Solution:  “Distributed encryption” [DI05]

Regular encryption: E(k,m)

Distributed encryption:

▪ Use sub-keys k1,…,kn instead of k 
▪ Secret-share m  
▪ Give ith share mi and ki to party Pi 

▪ Pi computes E(ki,mi) and sends to all



Circuit Garbling with Distributed Encryption

▪ Idea: Associated with every wire w of circuit C: 
• mask mw (to hide actual value on wire) and 
• two keys kw,0, kw,1, each consisting of n subkeys 

▪ Evaluate circuit on masked values while maintaining 
invariant: 

If masked value is z, kw,z is known and kw,1-z is secret.



Circuit Garbling without Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

NAND

a b

c



Circuit Garbling with Distributed Encryption

Instead of encrypting garbled entry, 
compute secret-sharing of (each 
component of) it

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc [ z , kc,z ]

0 1 ((0 + ma) NAND (1 + mb)) + mc [ z , kc,z ]

1 0 ((1 + ma) NAND (0 + mb)) + mc [ z , kc,z ]

1 1 ((1 + ma) NAND (1 + mb)) + mc [ z , kc,z ]

NAND

a b



Phase I: Garbling with Distributed Encryption

Phase I: described by (randomized) constant-depth function that 
▪Randomly chooses masks and subkeys 
▪Computes masked inputs and corresponding subkeys based 

on player inputs and masks 
▪Computes shared function tables (can be done in parallel) 
▪Outputs to Pi: 

• Masked inputs and corresponding subkeys 
• ith shares of all shared function tables 
• Masks of output wires



Phase I: Garbling with Distributed Encryption

▪Actual Phase I: Evaluate Phase I function using 
[BKR94] protocol 
▪Round complexity of [BKR94] depends on 

evaluated circuit 
▪But: Phase I function is constant-depth



Phases II + III: Encrypting and Evaluating

▪ Phase II: Compute threshold encryption of garbled 
entries 
• Each party Pi locally encrypts its shares with the 

appropriate subkeys and sends resulting ciphertexts to 
all 

▪ Phase III: Locally evaluate garbled circuit 
• Decryption of a function table entry with decryption 

subkeys k1,…,kn: 
oUpon receiving encrypted share from Pi, decrypt it 

with ki 

oWait until 2t+1 shares on degree-t polynomial 
received and interpolate



Issue 2

▪ [BKR94] protocol evaluates arithmetic circuits 
▪ Phase I function described by Boolean circuit 
▪→ Conversion to circuit over extension field of GF(2) 

• Replace each NAND gate with inputs x,y by a 
computation of 1−xy 

▪ Ensure that all inputs are 0,1 as follows: 
• After input phase, for every input x, jointly open x – 

x2  [BGN05]  
• If result is 0, accept x, otherwise replace by 0
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