
Secure Multi-Party Computation
with Honest Majority

Vassilis Zikas
RPI

MPC School
IIT Mumbai

Secure Multi-Party Computation (MPC)

D1 D2

D3D4

MPC: The general task

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

D1 D2

D3D4

MPC: The general task

•

•

•

π4

π2

π3

π1

Secure Multi-Party Computation (MPC)

•

Protocol π is secure if for any such cheaters:
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs

D1 D2

D3D4

MPC: The general task

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data 1011

1000 0011

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data 1011

1000 0011⊕
=

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Goal

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Goal

MPC

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data
 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 c

 m 2

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 c

 m 2

 m’

3

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 c

 m 2

 m’

3

 c’ 4

 k1 k2

 c

P1 P2

P3

MPC

MPC in Action: A Toy Example
Example:
Cloud Computing

 on Encrypted Data

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)

Re-encrypt m’ with k to obtain c’

 k

1

 c

 m 2

 m’

3

 c’ 4

 k1 k2

 c

P1 P2

P3Goal: Perform this computation securely

• (privacy) No (corrupted) server learns the key or the plaintext

• (correctness) The result is the encrypted data after the computation

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)
Re-encrypt m’ with k to obtain c’

 c k1 k2

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)
Re-encrypt m’ with k to obtain c’

 c k1 k2

 k

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)
Re-encrypt m’ with k to obtain c’

 c k1 k2

 k

m

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)
Re-encrypt m’ with k to obtain c’

 c k1 k2

 k

m

m’

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Inputs: k1, k2, c=Enck=k1⊕k2(m)
Task: Compute c’=Enck(f(m))

Reconstruct k := k1 ⊕ k2

Decrypt c with key k to obtain m

Apply f(･) to m to obtain m’= f(m)
Re-encrypt m’ with k to obtain c’

 c k1 k2

 c’

 k

m

m’

 c k1 k2

MPC in Action: A Toy Example

⊕

f

Dec

Enc

1

2

3

4

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

⊕

f

Dec

Enc

1

2

3

4

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

⊕

f

Dec

Enc

1

2

3

4

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f

Dec

Enc

1

2

3

4

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2 [k1] [k2] [c]

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f

Dec

Enc

1

2

3

4

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2 [k1] [k2] [c]

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f

Dec

Enc

1

2

3

4

 [k]

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2 [k1] [k2] [c]

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f

Dec

Enc

1

2

3

4

 [m]

 [k]

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2 [k1] [k2] [c]

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [m]

 [k]

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

 c k1 k2 [k1] [k2] [c]

MPC in Action: A Toy Example

Tool: (Additive) Secret Sharing [s] of secret s
• Choose random s1, s2, s3 s.t. s1⊕s2⊕s3 = s

• Hand si to Pi

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of
the wires’ values compute sharing of these values

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

k11⊕ k21 k12⊕ k22 k13⊕ k23 [k1⊕k2] = [k]1

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

k11⊕ k21 k12⊕ k22 k13⊕ k23 [k1⊕k2] = [k]

c1⊕k11⊕ k21 c2⊕k12⊕ k22 c3⊕k13⊕ k23 [c+k1⊕k2] = [m]

1

2

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

k11⊕ k21 k12⊕ k22 k13⊕ k23 [k1⊕k2] = [k]

c1⊕k11⊕ k21 c2⊕k12⊕ k22 c3⊕k13⊕ k23 [c+k1⊕k2] = [m]

m’1=f() m’2=f() m’3=f() [f(m)]=[m’]

1

2

3

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

k11⊕ k21 k12⊕ k22 k13⊕ k23 [k1⊕k2] = [k]

c1⊕k11⊕ k21 c2⊕k12⊕ k22 c3⊕k13⊕ k23 [c+k1⊕k2] = [m]

m’1=f() m’2=f() m’3=f() [f(m)]=[m’]

m’1⊕k11⊕ k21 m’2⊕k12⊕ k22 m’3⊕k13⊕ k23 [m’+k]=[c’]

1

2

3

4

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

MPC in Action: A Toy Example

Example:
Enck(m):= m ⊕ k , f(m) = mL⊕mR||mR

m=mL||mR

P1 P2 P3

P1 (k1) k11 k12 k13 [k1]

P2 (k2) k21 k22 k23 [k2]

P3 (c) c1 c2 c13 [c]

k11⊕ k21 k12⊕ k22 k13⊕ k23 [k1⊕k2] = [k]

c1⊕k11⊕ k21 c2⊕k12⊕ k22 c3⊕k13⊕ k23 [c+k1⊕k2] = [m]

m’1=f() m’2=f() m’3=f() [f(m)]=[m’]

m’1⊕k11⊕ k21 m’2⊕k12⊕ k22 m’3⊕k13⊕ k23 [m’+k]=[c’]

1

2

3

4

⊕

f
 [m’]

Dec

Enc

1

2

3

4

 [c’]

 [m]

 [k]

 [k1] [k2] [c]

Deck(c):= c ⊕ k

Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1

•

D1 D2

D3D4

≈

Ideal World: Specification Real World: Protocol

InpInp

Inp Inp

Out Out

Out Out

Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1

•

D1 D2

D3D4

≈

Ideal World: Specification Real World: Protocol

InpInp

Inp Inp

Out Out

Out Out

Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1
D1 D2

D3D4

≈

Model
• n players
• Computation over (𝔽, ⊕, ⊗) — E.g. (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

((

The adversary

Corruption Types
• Passive (semi-honest): Corrupted parties follow their protocol but

try to learn more information than allowed from their joint view
• Active (malicious): Corrupted parties misbehave arbitrarily

Computing Power
• Unbounded (information theoretic security): The adversary can

perform arbitrary (even exponential) computation
• Security is unconditional

• Bounded (Computational or cryptographic security): The
adversary can perform polynomial-time computation
• Security is guaranteed under hardness assumptions, e.g.,

DDH, RSA, Factoring, …

Known Feasibility Results

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

Known Feasibility Results

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

Secret Sharing (Informal)

A secret-sharing scheme allows an honest dealer D to distribute
a secret s among players in a set P, such that
• any non-qualified subset of players has no information about s,
• every qualified subset of players can collaboratively

reconstruct the secret.

Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for P={p1, …, pn}
consists of a pair of protocols: (Share, Reconstruct) with the following
properties

• Share allows a Dealer D to distribute a given value s among the parties
in P. It is probabilistic and uses secure channels to distribute the
shares.

• Reconstruct allows to later on reconstruct the shared value.

Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for P={p1, …, pn}
consists of a pair of protocols: (Share, Reconstruct) with the following
properties

• Share allows a Dealer D to distribute a given value s among the parties
in P. It is probabilistic and uses secure channels to distribute the
shares.

• Reconstruct allows to later on reconstruct the shared value.

Security properties:

• (correctness) Given the shares of any t parties, Reconstruct should output
the secret s.

• (t-privacy) The shares of any t-1 parties include not information about s.

Threshold Secret Sharing
P: Inp = s

s1 s2 sn

…

Example: (n-out-of-n) Additive Secret Sharing

• Share: Dealer p sharing s:

• Choose n values s1, …, sn ∈ ℤp

uniformly at random s.t.

• Send si to player pi

• Reconstruct:
• The parties add their shares to recover s

nX

i=1

si = s (mod p)

Threshold Secret Sharing
P: Inp = s

s1 s2 sn

…

Example: (n-out-of-n) Additive Secret Sharing

• Share: Dealer p sharing s:

• Choose n values s1, …, sn ∈ ℤp

uniformly at random s.t.

• Send si to player pi

• Reconstruct:
• The parties add their shares to recover s

nX

i=1

si = s (mod p)

Security:

• (correctness) Given the shares of any n parties, Reconstruct outputs the
secret s by summing them.

• (n-privacy) The shares of any n-1 parties include not information about s
since the missing share perfectly blinds the secret.

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

Linear Secret Sharing
We say that a sharing (s1, …, sn) is linear if the shares are
computed as a linear function of s and random values. That
is if there exists a constant n x (m+1) matrix A such that for
random values r1,…, rm :

Linear Secret Sharing
We say that a sharing (s1, …, sn) is linear if the shares are
computed as a linear function of s and random values. That
is if there exists a constant n x (m+1) matrix A such that for
random values r1,…, rm :

Example:
n-out-of-n

(additive) sharing

2

64
s1
...
sn

3

75 =

2

666664

0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
1 �1 �1 . . . �1

3

777775

2

6664

s
r1
...

rn�1

3

7775

Linear Secret Sharing

When s and s’ are shared by a linear secret sharing then the parties
can computer a sharing of s’’= s + s’ by locally adding their shares
if s and s’

2

64
s1
...
sn

3

75+

2

64
s01
...
s0n

3

75 =

2

64
A10 A11 . . . A1m
...

...
An0 An1 . . . Anm

3

75

0

BBB@

2

6664

s
r1
...
rm

3

7775
+

2

6664

s0

r01
...
r0m

3

7775

1

CCCA
=

2

6664

s0

r001
...

r00n�1

3

7775

2

64
s1
...
sn

3

75+

2

64
s01
...
s0n

3

75 =

2

64
A10 A11 . . . A1m
...

...
An0 An1 . . . Anm

3

75

0

BBB@

2

6664

s
r1
...
rm

3

7775
+

2

6664

s0

r01
...
r0m

3

7775

1

CCCA
=

2

6664

s0

r001
...

r00n�1

3

7775

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi •

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi •

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

Secret Sharing: (t+1)-out-of-n

P: Inp = s

s1 s2 sn

…

Example: Polynomial (Shamir [Sha79]) Secret Sharing

• Share: Dealer p sharing s:
• Choose a random degree-t polynomial f(・) with f(0)=s

• Give si = f(𝛼i) to player pi

• Reconstruct:
• Lagrange interpolation (for all n > t-1):

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

f(x) =
nX

i=1

`i(x)si `i(x) =
nY

j=1
j 6=i

x� ↵j

↵i � ↵j

Secret Sharing: (t+1)-out-of-n

P: Inp = s

s1 s2 sn

…

Example: Polynomial (Shamir [Sha79]) Secret Sharing

• Share: Dealer p sharing s:
• Choose a random degree-t polynomial f(・) with f(0)=s

• Give si = f(𝛼i) to player pi

• Reconstruct:
• Lagrange interpolation (for all n > t-1):

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

f(x) =
nX

i=1

`i(x)si `i(x) =
nY

j=1
j 6=i

x� ↵j

↵i � ↵j

Choose random 𝑎1,…,𝑎t and set
f(x) = s+ a1x+ . . .+ atx

t

Shamir Secret Sharing is Linear
We say that a sharing (s1, …, sn) is linear if the shares are
computed as a linear function of s and random values. That
is if there exists a constant n x (m+1) matrix A such that for
random values r1,…, rm :

2

64
s1
...
sn

3

75 =

2

6664

1 ↵1 ↵2
1 . . . ↵t

1

1 ↵2 ↵2
2 . . . ↵t

2
...
1 ↵n ↵2

n . . . ↵t
n

3

7775

2

6664

s
a1
...
at

3

7775

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

Addition Protocol

Goal: Addition Gadget

G(s,s’)= s + s’

 [s] [s’]

 [s + s’]

In this lecture:
“gadget” = protocol where
inputs/outputs are shares or
field elements

`

𝛼1 𝛼2 𝛼n

s

s1
s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1+s1’
s2+s2’

sn+sn’

f+g(・) = f(・) + g(・)
s’’=s+s’

• Each party locally adds
his share of s and s’, i.e.,
pi computes si’’ = si+si’

• The result is a sharing of
s’’ by means of
polynomial f’’ = f+g

`

𝛼1 𝛼2 𝛼n

s

s1
s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1+s1’
s2+s2’

sn+sn’

f+g(・) = f(・) + g(・)
s’’=s+s’

• Each party locally adds
his share of s and s’, i.e.,
pi computes si’’ = si+si’

• The result is a sharing of
s’’ by means of
polynomial f’’ = f+g

Security proof:

• Correctness: By Lagrange interpolation, the share sums lie on f+g

• Privacy: No information is exchanged (only local computation)

Linear Formulas Protocol

If I can compute sharing of s + s’ from sharing of s and s’ then I can
compute any linear combination 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m) (for
constants 𝑎1,…, 𝑎m)

a1s
(1) + . . .+ ams(m) = s(1) + . . .+ s(1)| {z }

a1 times

+ . . .+ s(m) + . . .+ s(m)
| {z }

am times

Linear Formulas Protocol

If I can compute sharing of s + s’ from sharing of s and s’ then I can
compute any linear combination 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m) (for
constants 𝑎1,…, 𝑎m)

G(s(1),…, s(m)) = 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m)

[s(1)] [s(2)] [s(m)]

[a1s(1) + a2s(2)+ … + ams(m)]

Linear Gadget

a1s
(1) + . . .+ ams(m) = s(1) + . . .+ s(1)| {z }

a1 times

+ . . .+ s(m) + . . .+ s(m)
| {z }

am times

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔
Any linear

 combination

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔
Any linear

 combination

Multiplication Protocol

Goal: Multiplication Gadget

G(s,s’)= s ⋅ s’

[s] [s’]

 [s ⋅ s’]

Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …

• Each party locally
multiplies his share of s
and s’, i.e., pi computes
si’’ = si⋅si’

• The result is a sharing of
s’’ by means of
polynomial f’’ = f⋅g

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)

Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …

• Each party locally
multiplies his share of s
and s’, i.e., pi computes
si’’ = si⋅si’

• The result is a sharing of
s’’ by means of
polynomial f’’ = f⋅g

Problem: f’’ of degree 2t
• If I multiply again it will

become degree 3t
• 3t > n hence parties cannot

reconstruct

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)

Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …

• Each party locally
multiplies his share of s
and s’, i.e., pi computes
si’’ = si⋅si’

• The result is a sharing of
s’’ by means of
polynomial f’’ = f⋅g

Problem: f’’ of degree 2t
• If I multiply again it will

become degree 3t
• 3t > n hence parties cannot

reconstruct

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)

Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)
s’’=s⋅s’

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is
enough parties to

interpolate

Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing of
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i) = �1s

00
1 + . . . �ns

00
n

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is
enough parties to

interpolate

Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing of
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i) = �1s

00
1 + . . . �ns

00
n

Multiplication (Gadget) Protocol
• Every pi shares si’’ = si ⋅ si’
• Use the linear gadget to compute a sharing of s’’

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is
enough parties to

interpolate

Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing of
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i) = �1s

00
1 + . . . �ns

00
n

Multiplication (Gadget) Protocol
• Every pi shares si’’ = si ⋅ si’
• Use the linear gadget to compute a sharing of s’’

Security proof:

• Correctness: As shown above …

• Privacy: Follows from the privacy of the linear gadget and the SS

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is
enough parties to

interpolate

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔ ✔

Known Feasibility Results

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

Known Feasibility Results

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x

Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x

Theorem:
• Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
• Assuming digital signatures and a public-key infrastructure it is

possible for any t < n [DS83]

Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x

Theorem:
• Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
• Assuming digital signatures and a public-key infrastructure it is

possible for any t < n [DS83]

Broadcast + Encryption Setup (keys) = Secure channel

p1

p2

pn

pi

ki: encryption
key for pi Enc(x, ki) = c ⋮

c
c
c

can decrypt
and learn x

??

??

Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1
D1 D2

D3D4

≈

Model
• n players
• Computation over (𝔽, ⊕, ⊗) — E.g. (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

((

Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1

≈

Model
• n players
• Computation over (𝔽, ⊕, ⊗) — E.g. (ℤp, + , ⋅)
• Communication: Broadcast + Public-key Infrastructure
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

((D1, SK1 D2, SK2

D4, SK4 D3, SK3

PK1, … PK4

Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}

Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Security (informal)
• Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
• Hiding: From the Commit phase, V has no information about P’s input x.
• Binding: After the Commit phase, there exists only one value x that will

be accepted by V in the Open phase.

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}

Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Security (informal)
• Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
• Hiding: From the Commit phase, V has no information about P’s input x.
• Binding: After the Commit phase, there exists only one value x that will

be accepted by V in the Open phase.

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}

• Extra property: Additive Homomorphism

Com (x, r) =c Com (x’, r’) =c’ ⇒ c ∗ c’ = Com(x+x’ , r + r’)

Malicious MPC with t<n/2 (GMW)
Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:

• All parties know a value y and a relation R(・, y) ∈ {0,1}

Properties:

• (completess) Someone who knows a (witness) w such that
R(w, y)=1 can convince everyone about his knowledge

• (soundness) If there exists no w such that R(w, y)=1, then no
one can succeed in convincing the others about the opposite

• (zero-knowledge) The proof reveals no information about w

Malicious MPC with t<n/2 (GMW)
Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:

• All parties know a value y and a relation R(・, y) ∈ {0,1}

Properties:

• (completess) Someone who knows a (witness) w such that
R(w, y)=1 can convince everyone about his knowledge

• (soundness) If there exists no w such that R(w, y)=1, then no
one can succeed in convincing the others about the opposite

• (zero-knowledge) The proof reveals no information about w

Example: Proving knowledge of a committed value without revealing
anything about the value:
• y is a commitment c
• R(w,y) = 1 iff w=(x,r) and Ver(c,x,r)=1

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

The GMW Compiler

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

The GMW Compiler

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Recovery gadget:
• When pi fails then the remaining parties reconstruct all his shares
• For each share si of pi the parties compute a sharing of si using

the linearity gadget with ZK proofs and then reconstruct it.

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

𝛼2

si

si = f(↵i) =
X

j2[n]\i

`i(↵i)sj

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Recovery gadget:
• When pi fails then the remaining parties reconstruct all his shares
• For each share si of pi the parties compute a sharing of si using

the linearity gadget with ZK proofs and then reconstruct it.

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

𝛼2

si

si = f(↵i) =
X

j2[n]\i

`i(↵i)sj Works because t<n/2,
hence there are
enough (i.e, t+1)
parties to interpolate

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the
following:
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means

that the parties follow their
protocol

• Only corrupted-prover ZKPs
might fail ⇒ there will be n - t >

n/2 to recover the missing values

The GMW Compiler

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the
following:
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means

that the parties follow their
protocol

• Only corrupted-prover ZKPs
might fail ⇒ there will be n - t >

n/2 to recover the missing values

The GMW Compiler

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

What if corrupted
parties use bad
randomness?

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Coin-tossing protocol (idea):
Parties can make pi committed to a random Ri
• Every pj (including pi) commits to a random Rij, i.e., computes and

broadcasts cij = Com(Rij, rij)

• Every pj sends rij to pi

• pi computes ci1 ∗ … ∗ cin which (using the homomorphic property)
is a commitment to Ri = Ri1 + … + Rin with opening-randomness
ri=ri1 + … + rin.

 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the
following:
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means

that the parties follow their
protocol

• Only corrupted-prover ZKPs
might fail ⇒ there will be n - t >

n/2 to recover the missing values

The GMW Compiler

coin-tossing

Round 0:
Every Pi commits to its input and
randomness

Rounds 1 … ρπ + 1:
Execute π round-by-round over
Broadcast so that in each round
• every party proves (in ZK) that

he follows π
• if the ZKP of some pi fails then

invoke the Recovery process
to publicly announce all pi ’s
shares.

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔???

Broadcast for t<n/3

Consensus:(Inputs: x1, …, xn , Outputs: y1, …, yn)
• (consistency) There exists y s.t. yj = y for all pj

• (validity) If all honest pi has input xi = x then y = x

Broadcast for t<n/3

Consensus:(Inputs: x1, …, xn , Outputs: y1, …, yn)
• (consistency) There exists y s.t. yj = y for all pj

• (validity) If all honest pi has input xi = x then y = x

Theorem:
• Consensus is possible (unconditionally) iff t < n/3 [LSP82,BGP89]

Broadcast for t<n/3

Consensus:(Inputs: x1, …, xn , Outputs: y1, …, yn)
• (consistency) There exists y s.t. yj = y for all pj

• (validity) If all honest pi has input xi = x then y = x

Theorem:
• Consensus is possible (unconditionally) iff t < n/3 [LSP82,BGP89]

Consensus ⇒ Broadcast:

1. Sender sends his input to every pi
2. The parties runs consensus on inputs the received values

Broadcast for t<n/3

Consensus:(Inputs: x1, …, xn , Outputs: y1, …, yn)
• (consistency) There exists y s.t. yj = y for all pj

• (validity) If all honest pi has input xi = x then y = x

Theorem:
• Consensus is possible (unconditionally) iff t < n/3 [LSP82,BGP89]

Consensus ⇒ Broadcast:

1. Sender sends his input to every pi
2. The parties runs consensus on inputs the received values

Security proof of Consensus ⇒ Broadcast:

• (consistency) Follows from consistency of consensus
• (validity) If the sender is honest then consensus is executed with

all honest pi’s having input the sender’s input

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔???

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89] Broadcast

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔???
PKI +

channels

Impossibility of Broadcast for n=3, t=1
Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Impossibility of Broadcast for n=3, t=1
Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Impossibility of Broadcast for n=3, t=1

p1 is corrupted
p3 has input 1

Correctness⇒
p2 outputs 1

Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Impossibility of Broadcast for n=3, t=1

Correctness⇒
p1 outputs 0

p2 is corrupted
p3 has input 0

Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Impossibility of Broadcast for n=3, t=1

p3 is corrupted

consistency⇒
p1 outputs the

same as p2

Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Impossibility of Broadcast for n=3, t=1

Correctness⇒
p2 outputs 1

Correctness⇒
p1 outputs 0

consistency⇒
p1 outputs the

same as p2

Assume a protocol (Π1, Π2, Π3) allowing p3 to broadcast a bit.

Known Bounds

Adv. Type Security Corruption Bound Requires

semi-honest
(passive)

Information
theoretic (IT)

t<n/2
[BGW88,CCD88] Sec. channels

Computational t<n
[GMW87]

Sec. channels +
OT

malicious
(active)

information
theoretic

t<n/3
[BGW88,CCD88] Sec. channels

computational
(or IT w.

negligible error)

t<n/2
[GMW87,RB89]

computational
without fairness

t<n
[GMW87] Broadcast + OT

✔

✔PKI

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

s1

p3

correctness ⇒

∀ s3’ Rec(s1, s2, s3’) = s
⇒ ∃ Rec12 s.t.
Rec12(s1, s2) = s

s2

s3’

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

p3

s1

correctness ⇒

∀ s2’ Rec(s1, s2’, s3) = s
⇒ ∃ Rec13 s.t.
Rec13(s1, s3) = s

s3

s2’

p1

p2

s1

p3

correctness ⇒

∀ s3’ Rec(s1, s2, s3’) = s
⇒ ∃ Rec12 s.t.
Rec12(s1, s2) = s

s2

s3’

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

p3

s1

correctness ⇒

∀ s2’ Rec(s1, s2’, s3) = s
⇒ ∃ Rec13 s.t.
Rec13(s1, s3) = s

s3

s2’

p1

p2

s1

p3

correctness ⇒

∀ s3’ Rec(s1, s2, s3’) = s
⇒ ∃ Rec12 s.t.
Rec12(s1, s2) = s

s2

s3’

p1

p2

p3

s1

1-privacy ⇒
s1 has no info about s
• ∀ s’ ∃ s2’ s.t.

Rec12(s1, s2’) = s’

s3

s2’

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

p3

s1

correctness ⇒

∀ s2’ Rec(s1, s2’, s3) = s
⇒ ∃ Rec13 s.t.
Rec13(s1, s3) = s

s3

s2’

p1

p2

s1

p3

correctness ⇒

∀ s3’ Rec(s1, s2, s3’) = s
⇒ ∃ Rec12 s.t.
Rec12(s1, s2) = s

s2

s3’

p1

p2

p3

s1

1-privacy ⇒
s1 has no info about s
• ∀ s’ ∃ s2’ s.t.

Rec12(s1, s2’) = s’

s3

s2’s or s’?

MPC with Malicious Adversary — t<n/3
The t<n/2 solution does not even work given broadcast

• Let’s look at 3 parties with 1 corruption
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

p3

s1

correctness ⇒

∀ s2’ Rec(s1, s2’, s3) = s
⇒ ∃ Rec13 s.t.
Rec13(s1, s3) = s

s3

s2’

p1

p2

s1

p3

correctness ⇒

∀ s3’ Rec(s1, s2, s3’) = s
⇒ ∃ Rec12 s.t.
Rec12(s1, s2) = s

s2

s3’

p1

p2

p3

s1

1-privacy ⇒
s1 has no info about s
• ∀ s’ ∃ s2’ s.t.

Rec12(s1, s2’) = s’

s3

s2’s or s’?

We need a secret sharing scheme that ensures honest
parties do not loose their shared state

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

• (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s.

• (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

• (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s.

• (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’

(correctness) ⇒ s’ = s when Dealer is honest in Share

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

• (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s.

• (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’

(correctness) ⇒ s’ = s when Dealer is honest in Share

In a VSS the adversary cannot make the parties loose a shared value

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

• (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s.

• (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’

(correctness) ⇒ s’ = s when Dealer is honest in Share

In a VSS the adversary cannot make the parties loose a shared value

Previous argument shows that VSS (without
signatures) exists only if t<n/3

(t+1)-out-of-n VSS (t<n/3)

(t+1)-out-of-n VSS (t<n/3)
Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)

p2 ’s “share”

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

p2 ’s “share”

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

p2 ’s “share” Requires Broadcast
• Recall: Can be constructed

from secure channels iff
t<n/3 [LSP82 BGP89]

(t+1)-out-of-n VSS (t<n/3)

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

p2 ’s “share”

(t+1)-out-of-n VSS (t<n/3)
Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮

(t+1)-out-of-n VSS (t<n/3)
Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮

S12

S21

(t+1)-out-of-n VSS (t<n/3)
Share:
1. D chooses a random bivariate polynomial F(x,y) of degree t in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, 𝛼i), gj(y) = F(𝛼j, y)
2. Each party pi receives fi(x) and gi(y)
3. Each pair (pi, pj) confirms that sij = fi(𝛼j) = gj(𝛼i) and sji=fj(𝛼i) = gi(𝛼j).
4. Resolve conflict by public accusations answered by the dealer.

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮

S12

S21

𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮
Sij

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

0
0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮
𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮

S1j

S2j

Sij

Snj

Gi(0)

t-out-of-n VSS (t<n/3)

Claim: Gj(y) = gj(y)

Proof:
• Gj(y) passes through the t+1 values from the honest parties

which all lie on gj.
• By the Lagrange interpolation, there exists no other degree-t

polynomial with this property, hence this is the only polynomial
that might be reconstructed.

Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮
𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮

S1j

S2j

Sij

Snj

gi(0)

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮
𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮

S1j

S2j

Sij

Snj

gi(0)

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮
𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮

g1(0)

S1j

S2j

Sij

Snj

gi(0)

t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y):

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces s1j, …, snj

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)

𝛼1 𝛼2 𝛼n𝛼j

𝛼1

𝛼2

𝛼n

S
0

0 f0(x)

f1(x)

f2(x)

fn(x)

⋮

g0(y) g1(y) g2(y) gn(y)
p1 p2 pn

p1

p2

pn

⋯
⋮ ⋮
𝛼i fj(x) = F(x,𝛼j)

gi(y) = F(𝛼i, y)
pi

pj
⋮⋮

⋯

⋮

g1(0) g2(0) gi(0) gn(0)

S1j

S2j

Sij

Snj

gi(0)

t-out-of-n VSS (t<n/3)
Properties:
• At the end of the sharing phase

• t parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔

Malicious MPC: Addition
Goal: Addition Gadget

G(s,s’)= s + s’

 [s] [s’]

 [s + s’]

Malicious MPC: Addition
Goal: Addition Gadget

G(s,s’)= s + s’

 [s] [s’]

 [s + s’]

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s

Malicious MPC: Addition
Goal: Addition Gadget

G(s,s’)= s + s’

 [s] [s’]

 [s + s’]

Define F’’(x,y)=F(x,y) + F’(x,y) ⇒ F’’(0,0) = F(0,0) + F’(0,0) = s’ + s’

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s

Malicious MPC: Addition
Goal: Addition Gadget

G(s,s’)= s + s’

 [s] [s’]

 [s + s’]

Define F’’(x,y)=F(x,y) + F’(x,y) ⇒ F’’(0,0) = F(0,0) + F’(0,0) = s’ + s’

Addition protocol

• Each party locally adds his share-shares of s and s’, i.e., pi computes
sij’’ = sij+sij’ and sji’’ = sji+sji’

• The result is a sharing of s’’ by means of polynomial F’’ = F + F’

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔
Any linear

 combination

MPC Goal

Ideal World Real World

Input
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates

pi Inpi
pi

⊕ ⊗
⊕ ⊗

pi Outi pi

✔

✔
Any linear

 combination

Multiplication Protocol: Malicious

Goal: Multiplication Gadget

G(s,s’)= s ⋅ s’

 [s] [s’]

 [s ⋅ s’]

t-out-of-n VSS
Properties (recall):
• At the end of the sharing phase

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it

t-out-of-n VSS
Properties (recall):
• At the end of the sharing phase

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it

p2 ’s “share”

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

t-out-of-n VSS
Properties (recall):
• At the end of the sharing phase

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

s

Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

si : commitment to si held by pi

siLinearity: si si + si’+ =

s

Multiplication Protocol: Malicious

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

si : commitment to si held by pi

siLinearity: si si + si’+ =

Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

s

si : commitment to si held by pi

siLinearity: si si + si’+ =

Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)
s

As in the semi honest setting to multiply shared s and s’

• Every pi computes si’’ = si ⋅ si’

• Use the linearity to compute a VSS of s’’

si : commitment to si held by pi

siLinearity: si si + si’+ =

Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)
s

As in the semi honest setting to multiply shared s and s’

• Every pi computes si’’ = si ⋅ si’

• Use the linearity to compute a VSS of s’’

we need a commitment
multiplication protocol
• Similar idea to the

semi honest protocol:
Have every party
commit to its share
product and use
linearity to combine
them.

• + a check that the
commitment is correct

si : commitment to si held by pi

siLinearity: si si + si’+ =

References

• [Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22:612–613, 1979.

• [LSP82] L. Lamport, R. Shostak, and M. Pease. 1982. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382-401.
DOI=http://dx.doi.org/10.1145/357172.357176

• [DS83] D. Dolev and H. Strong. Authenticated algorithms for Byzantine
agreement. SIAM J. Computing, 12(4):656–666, 1983.

• [BCR86] :G. Brassard, C. Crepeau, and J.-M. Robert. 1986. Information
theoretic reductions among disclosure problems. FOCS '86. IEEE Computer
Society, Washington, DC, USA, 168-173.

• [GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game — a completeness theorem for protocols with honest majority. In Proc.
19th ACM Symposium on the Theory of Computing (STOC), pages 218–229,
1987.

http://dx.doi.org/10.1145/357172.357176

References

• [BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant dis- tributed computation. In Proc.
20th ACM Symposium on the Theory of Computing (STOC), pages 1–10,
1988.

• [CCD88] D. Chaum, C. Cre ṕeau, and I. Damga r̊d. Multi- party unconditionally
secure protocols (extended abstract). In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pages 11–19, 1988.

• [BGP89] P. Berman, J. A. Garay, and K. J. Perry. 1989. Towards optimal
distributed consensus. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science (SFCS '89). IEEE Computer Society,
Washington, DC, USA, 410-415. DOI=http://dx.doi.org/10.1109/SFCS.
1989.63511

• [RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In Proc. 21st ACM Symposium on the Theory of
Computing (STOC), pages 73–85, 1989.

http://dx.doi.org/10.1109/SFCS.1989.63511
http://dx.doi.org/10.1109/SFCS.1989.63511

