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Protocol mris secure if for any such cheaters:
e (privacy) Whatever the adversary learns he could compute by himself
e (correctness) Honest (uncorrupted) parties learn their correct outputs
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MPC in Action: A Toy Example

Example:

Cloud Computing
on Encrypted Data

Inputs: &;, k2, c=Enci=i,@k,(m)
Task: Compute c’=Enci(f(m))

€@ Reconstruct k .= k; ® k

€©) Decrypt c with key & to obtain m

€ Apply 1) to m to obtain m’= f(m)

@) Re-encrypt m’ with k to obtain ¢’
[ | L
Goal: Perform this computation securely

e (privacy) No (corrupted) server learns the key or the plaintext
e (correctness) The result is the encrypted data after the computation

—
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P1 (ki) ki ki2 kis [ki]
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0 kii® kz; ki2® k22 ki3® k3 [ki®ka] = [k]
e c1®Pki® koj 2Dk 12D k22 Cc3DPki3D ko3 | [c+kiDkz] = [m]

| | |
! ! oy ,
mi=f(") m2=f(") m3=f( ) [fim)]=[m’]

[ki] [k2] [c]
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Model
e n players
e Computation over (F, ®, ®) — E.g. (Zp, +, -)
e Communication: Point-to-point secure channels (and Broadcast)
e Synchrony: Messages sent in round i are delivered by round i+1



The adversary

Corruption Types
e Passive (semi-honest): Corrupted parties follow their protocol but
try to learn more information than allowed from their joint view
e Active (malicious): Corrupted parties misbehave arbitrarily

Computing Power
e Unbounded (information theoretic security): The adversary can
perform arbitrary (even exponential) computation
e Security is unconditional

e Bounded (Computational or cryptographic security): The
adversary can perform polynomial-time computation
e Security is guaranteed under hardness assumptions, e.g.,
DDH, RSA, Factoring, ...



Known Feasibility Results

Adv. Type Security Corruption Bound Requires

: Information t<n/2 S N |
semi-honest theoretic (IT)  [BGW88,CCDgg]  °°¢- hanneis
(passive)
. t<n Sec. channels +
Computational [GMWS7] oT
information t<n/3 Sec. channels
theoretic [IBGW88,CCD88] |

computational
(or IT w.
negligible error)

t<n/2
[GMW87,RB89]

malicious Broadcast

(active)

computational t<n

without fairness |[GMW87] Broadcast + OT
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Secret Sharing (Informal)

A secret-sharing scheme allows an honest dealer D to distribute
a secret s among players in a set P, such that

- any non-qualified subset of players has no information about s,

* every qualified subset of players can collaboratively
reconstruct the secret.



Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for P={p;, ..., pn}
consists of a pair of protocols: (Share, Reconstruct) with the following

properties

e Share allows a Dealer D to distribute a given value s among the parties
In P. It is probabilistic and uses secure channels to distribute the

shares.
e Reconstruct allows to later on reconstruct the shared value.



Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for P={p;, ..., pn}
consists of a pair of protocols: (Share, Reconstruct) with the following

properties

e Share allows a Dealer D to distribute a given value s among the parties
In P. It is probabilistic and uses secure channels to distribute the

shares.
e Reconstruct allows to later on reconstruct the shared value.

Security properties:

¢ (correctness) Given the shares of any t parties, Reconstruct should output
the secret s.

e (t-privacy) The shares of any t-1 parties include not information about s.



Threshold Secret Sharing

Example: (n-out-of-n) Additive Secret Sharing

e Share: Dealer p sharing s:

P:lnp=s

e Choose nvalues sy, ..., sn € 7, Egg Egﬂ
n

uniformly at random s.t. Z si =s (mod p)
1=1
e Send s; to player pi
® Reconstruct:
* The parties add their shares to recover s



Threshold Secret Sharing

Example: (n-out-of-n) Additive Secret Sharing P:lnp=s

#
% s
e Share: Dealer p sharing s: / \
* Choose nvalues sy, ..., ss € Z)y (tk Et;_f’:
uniformly at random s.t. Z §i =8 (mod p)
1=1

e Send s; to player pi

® Reconstruct:
* The parties add their shares to recover s
Security:

e (correctness) Given the shares of any n parties, Reconstruct outputs the
secret s by summing them.

e (n-privacy) The shares of any n-1 parties include not information about s
since the missing share perfectly blinds the secret.
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Linear Secret Sharing

We say that a sharing (s, ..., s») IS linear if the shares are
computed as a linear function of s and random values. That

IS If there exists a constant n x (m+1) matrix A such that for
random values ry,..., rm :

- - - - s
81 Ao A - Aim
r1
 Sn i Ano Ani Apm i




Linear Secret Sharing

We say that a sharing (s;,

..., sn) 1S linear if the shares are

computed as a linear function of s and random values. That

IS If there exists a constant n x (m+1) matrix A such that for
random values ry,..., rm :

Example:
n-out-of-n
(additive) sharing

pr

Ao An




Linear Secret Sharing

When s and s’ are shared by a linear secret sharing then the parties
can computer a sharing of s”= s + s’ by locally adding their shares
If s and s’
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Secret Sharing: (t+1)-out-of-n

Example: Polynomial (Shamir [Sha79]) Secret Sharing

$2

4 ; P:lnp=s

' (*)

f C/tg

: 31 S2 Sn
. h

T 8 - @

e Share: Dealer p sharing s:
e (Choose a random degree-t polynomial f{ * ) with f{0)=s

e QGive s; = fla;) to player pi

e Reconstruct:
e |agrange interpolation (for all n > t-1):

n

- T —
— ;EZ(:U)SZ li(x) = H p— ojj

j=1
i




Secret Sharing: (t+1)-out-of-n

Example: Polynomial (Shamir [Sha79]) Secret Sharing

$2

4 ; P:lnp=s
' () Ik
f &
: 31 S2 Sn
- NS

T 8 - @

e Share: Dealer p sharing s:
e (Choose a random degree-t polynomial f{ * ) with f{0)=s

e Give s; = fla;) to player pi Choose random ai,...,at and set

_ t
® Reconstruct: f(x) = S+ a1 oo T A X

e |agrange interpolation (for all n > t-1):

n

- T —
— ;EZ(:U)SZ li(x) = H p— ojj

j=1
i




Shamir Secret Sharing is Linear

We say that a sharing (sy, ..., s») Is linear if the shares are
computed as a linear function of s and random values. That
IS If there exists a constant n x (m+1) matrix A such that for
random values ry,..., rm :

- - - - 8
$1 Ao A o Aim
r1
| Sn i AnO Anl Anm
- - 1 o1 of o S
o1 2 t
I oy a5 o5 a1
Sn 2 t |
- - 1 o, o a, | | ar
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Addition Protocol

Goal: Addition Gadget

In this lecture:

“gadget” = protocol where
iInputs/outputs are shares or
£5] [S] field elements

G(s,s’)=s+ s’

I
[s+ 5]
|



Jre( = )=f()+gl*)

)

M------l

e Each party locally adds
his share of s and s’, i.e.,
g(*) picomputes s;” = si+s;’

o
—
E BN BN BN BN BN BN BN OB OB Om .

e The result is a sharing of
) s” by means of

polynomial f” = f+g

2

S

)\

S
>



Jre( = )=f()+gl*)

;2’ e Each party locally adds
: ' his share of s and s’, i.e.,
* ) picomputes s;” = si+s;’

e The result is a sharing of
. ) s” by means of

polynomial f” = f+g

|
1 | I

a1 A2 an

Security proof:
e Correctness: By Lagrange interpolation, the share sums lie on f+g¢

e Privacy: No information is exchanged (only local computation)



Linear Formulas Protocol

If | can compute sharing of s + s’ from sharing of s and s’ then | can
compute any linear combination a;s® + a>s@+ ... + ans™ (for
constants ai,..., am)

a1s'V 4 a,s™ =W 4 s g4 g
N— —————

a1 times a,, times



Linear Formulas Protocol

If | can compute sharing of s + s’ from sharing of s and s’ then | can
compute any linear combination a;s® + a>s@+ ... + ans™ (for
constants ai,..., am)

a1s'V 4 a,s™ =W 4 s g4 g

a1 times a,, times
Linear Gadget ! ! |
g [S(])] [S(Z)] [S(m)]

G(sD,...,s™) = aisD) + @@+ ... + Ams™

[ais™) + axs@P)+ ...+ ams™]
|
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Multiplication Protocol

Goal: Multiplication Gadget

[s] [s]

G(s,s’)=s5"5’

[s-5"]



Multiplication Protocol

Attempt 1: Use the addition protocol idea ...

A §2°82°
. W [ )=fal+)=f) el ")
T \/Sn, e Each party locally

' ! multiplies his share of s
5>’ : and s’, i.e., picomputes
: : Si = Si'Si’
") e The result is a sharing of
s” by means of
* ) polynomial f” = f-g

1 i i
a1 a2 an
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and s’, i.e., picomputes
Si”: Si'Si’

S’,:S'S,
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Multiplication Protocol

Attempt 1: Use the ad rotocol idea ...

S0 )=rfg(*)=/"°) g*)

\/Sn, e Each party locally

multiplies his share of s
and s’, i.e., picomputes
Si” = 8i'Si’

S’,:S'S,

") e The result is a sharing of
s” by means of

. ) polynomial f” = f-g

o : Problem: f” of degree 2t
1 — e [f | multiply again it will
a1 a2 an become degree 3¢
e 3t > n hence parties cannot
reconstruct




Multiplication Protocol

n n

Attempt 2: s” = f7(0) = Y £:(0)s) = £:(0)(s; - s})
A S2’S2, = =
\W i )=felr) =M )8 )

s”=ss" RIS \/
-
: 52 :
s’ H
©)

1 "
a1 ao n



Multiplication Protocol

Attempt 2: s” = f”(0) = » £;(0)
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Multiplication Protocol
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Multiplication Protocol

Attempt 2: 5" = (0 ZZ =) £4:(0)(ss
= 1
degree 2t hence there is 7 00—«
enough parties to £:(0) = H Qi — o Bo
interpolate yo¥

To compute a sharing of s” = s - s’ it suffices to compute a sharing of

Y Bilsi-si)=>_Bi(si) = Bis! + ... Bus,
1=1 1—=1

Multiplication (Gadget) Protocol
e Every pisharess;”=s;-s’
e Use the linear gadget to compute a sharing of s”

Security proof:
e Correctness: As shown above ...
e Privacy: Follows from the privacy of the linear gadget and the SS



MPC Goal

Ideal World Real World

Computation:
Addition/
Multiplication
Gates

Output




Known Feasibility Results

Adv. Type Security Corruption Bound Requires

: Information t<n/2 S N | ‘/
semi-honest theoretic (IT)  [BGW88,CCDgg]  °°¢- hanneis
(passive)
. t<n Sec. channels +
Computational [GMWS7] oT
information t<n/3 Sec. channels
theoretic [IBGW88,CCD88] |

computational
(or IT w.
negligible error)

t<n/2
[GMW87,RB89]

malicious Broadcast

(active)

computational t<n

without fairness |[GMW87] Broadcast + OT
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Malicious MPC with t<n/2 (GMW)

Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender has input x
Outputs: Every p; outputs y;
e (consistency) There exists y s.t. y; = y for all j
e (validity) If piis honest then y = x
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Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82] / \\

Inputs: A party pi called the sender has input x g
Outputs: Every p; outputs y;

e (consistency) There exists y s.t. y; = y for all j

e (validity) If piis honest then y = x

Theorem:
e Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
e Assuming digital signatures and a public-key infrastructure it is
possible for any ¢t < n [DS83]



Malicious MPC with t<n/2 (GMW)

Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82] f \\

Inputs: A party pi called the sender has input x g
Outputs: Every p; outputs y;

e (consistency) There exists y s.t. y; = y for all j

e (validity) If piis honest then y = x

Theorem:
e Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
e Assuming digital signatures and a public-key infrastructure it is
possible for any ¢ < n [DS83]

Broadcast + Encryption Setup (keys) = Secure channel

ki: encryption ) D2 ?7?
y P Enc(x, ki) = c A - can decrypt
P1 »'1~;,(‘;\\f__F’,‘ > Di - and learn x
(‘_t,f' =

\c>

Pn — 29



Back to MPC Security

Ideal World: Specification Real World: Protocol
N

U

Model
e n players
e Computation over (F, ®, ®) — E.g. (Zp, +, -)
e Communication: Point-to-point secure channels (and Broadcast)
e Synchrony: Messages sent in round i are delivered by round i+1
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Ideal World: Specification Real World: Protocol
T . sk
i
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U

Model
e n players
e Computation over (F, ®, ®) — E.g. (Zp, +, -)
e Communication: Broadcast + Public-key Infrastructure
e Synchrony: Messages sent in round i are delivered by round i+1



Malicious MPC with t<n/2 (GMW)

Tools 2/3 : (Non-interactive) Commitments

Committer P ¢ , Verifier V

Input x
Rand. r

X,r
Open Phase Ver(c,x,r)e{0,1}
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Tools 2/3 : (Non-interactive) Commitments

Committer P ¢ , Verifier V
InPUt X Com (x, r) =C Commit Phase
Rand.»
X,r "
Open Phase Ver(c,x,r)e{0,1}

Security (informal)

e Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
e Hiding: From the Commit phase, V has no information about P’s input x.

¢ Binding: After the Commit phase, there exists only one value x that will
be accepted by V in the Open phase.



Malicious MPC with t<n/2 (GMW)

Tools 2/3 : (Non-interactive) Commitments

Committer P ¢ , Verifier V
InpUt X Com (x, r) =C Commit Phase
Rand.»
X,r "
Open Phase Ver(c,x,r)e{0,1}

Security (informal)

e Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
e Hiding: From the Commit phase, V has no information about P’s input x.

¢ Binding: After the Commit phase, there exists only one value x that will
be accepted by V in the Open phase.

e Extra property: Additive Homomorphism

Com(x,r)=c Com(x’,r’)=c’ = c=*c’=Com(x+x’,r+r’)



Malicious MPC with t<n/2 (GMW)

Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:
e All parties know a value y and arelation R( * ,y) €{0,1}

Properties:
e (completess) Someone who knows a (withess) w such that
R(w, y)=1 can convince everyone about his knowledge
e (soundness) If there exists no w such that R(w, y)=1, then no
one can succeed in convincing the others about the opposite
e (zero-knowledge) The proof reveals no information about w



Malicious MPC with t<n/2 (GMW)

Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:
e All parties know a value y and arelation R( * ,y) €{0,1}

Properties:
e (completess) Someone who knows a (withess) w such that
R(w, y)=1 can convince everyone about his knowledge
e (soundness) If there exists no w such that R(w, y)=1, then no
one can succeed in convincing the others about the opposite
e (zero-knowledge) The proof reveals no information about w

Example: Proving knowledge of a committed value without revealing
anything about the value:

e yis acommitment c
® Riwy)=1 It w=(xr)and Ver(c,x,r)=1



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol rtinto (malicious) secure



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol rtinto (malicious) secure

Round O:
Every P; commits to its input and
randomness

Rounds ] ... g+ I:
Execute 1t round-by-round over
Broadcast so that in each round
e every party proves (in ZK) that
he follows Tt
e if the ZKP of some p; fails then
iInvoke the Recovery process
to publicly announce all pi’s
shares.
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Compile a semi-honest SFE protocol rtinto (malicious) secure

Round O:
Every P; commits to its input and
randomness

Rounds ] ... g+ I:
Execute 1t round-by-round over
Broadcast so that in each round
e every party proves (in ZK) that
he follows Tt
e if the ZKP of some p;j fails then
iInvoke the ‘Recovery process \
to publicly announce all pi’s
shares.




Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol rtinto (malicious) secure

Recovery gadget:
e \When p; fails then the remaining parties reconstruct all his shares
e For each share s; of pithe parties compute a sharing of s;using
the linearity gadget with ZK proofs and then reconstruct it.

Je[n]\i

a1 Qa2 a2 Un



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure

Recovery gadget:
e \When p; fails then the remaining parties reconstruct all his shares
e For each share s; of pithe parties compute a sharing of s;using
the linearity gadget with ZK proofs and then reconstruct it.

s;i = fla;) = Z l;(c;)s;  Works because ¢<n/2,
jEnI\i

hence there are
enough (i.e, t+1)
parties to interpolate

a1 Qa2 a2 Un



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol rtinto (malicious) secure

Round O:
Every P; commits to its input and
randomness

Rounds I ... Or+ 1:
Execute 1t round-by-round over
Broadcast so that in each round
e every party proves (in ZK) that
he follows Tt
e if the ZKP of some p; fails then
iInvoke the Recovery process
to publicly announce all pi’s
shares.



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure
Security (with abort)

* Privacy: The parties see the
following:
e Setup
e Commitments
* Messages from 1t

Round O:
Every P; commits to its input and
randomness

RoundS 1 cos sz"" 1.’
Execute 1t round-by-round over
Broadcast so that in each round

e (Correctness:
e |f all ZKPs succeed this means

e every party proves (in ZK) that that the parties follow their
he follows 11 protocol

o if the ZKP of some pi fails then e Only corrupted-prover ZKPs
invoke the Recovery process might fail = there willbe n - ¢ >

to publicly announce all pi’s o
shares. n/2 to recover the missing values



Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol mtinto (malicious) secure

What if corrupted Security (with abort)
parties use bad
Round O: randomness?

Every Pi co nmits to its input and
randomness

* Privacy: The parties see the
following:
e Setup
e Commitments

* Messages from 1t

RoundS 1 cos Q;z"l' 1.’
Execute 1t round-by-round over
Broadcast so that in each round

e (Correctness:
e |f all ZKPs succeed this means

e every party proves (in ZK) that that the parties follow their
he follows 11 protocol

o if the ZKP of some pi fails then e Only corrupted-prover ZKPs
invoke the Recovery process might fail = there willbe n - ¢ >

to publicly announce all pi’s o
shares. n/2 to recover the missing values



Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol rtinto (malicious) secure

Coin-tossing protocol (idea):
Parties can make pi committed to a random R;
e Every p;(including pi) commits to a random R;;, i.e., computes and
broadcasts c;; = Com(Rjj, rij)
e Every pjsends r; to pi
e picomputes ci; * ... * cix Which (using the homomorphic property)
IS a commitment to R; = Ri; + ... + R, with opening-randomness

HOLY CRAP! THERES A
FE@H#SING RABIT IN
THEREY

Vi=ri; + ...+ rin.




Malicious MPC with t<n/2 (GMW)

The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure
Security (with abort)

* Privacy: The parties see the
following:
e Setup
e Commitments
* Messages from 1t

Round O:
Every P; commits to its input and

randomness - coin-tossing

Rounds I ... 9.+ I:
Execute 1t round-by-round over
Broadcast so that in each round

e (Correctness:
e |f all ZKPs succeed this means

e every party proves (in ZK) that that the parties follow their
he follows 11 protocol

o if the ZKP of some pi fails then e Only corrupted-prover ZKPs
invoke the Recovery process might fail = there willbe n - ¢ >

to publicly announce all pi’s o
shares. n/2 to recover the missing values



Known Bounds

Adv. Type Security Corruption Bound Requires

: Information t<n/2 S N | ‘/
semi-honest theoretic (IT)  [BGW88,CCDgg]  °°¢- hanneis
(passive)
. t<n Sec. channels +
Computational [GMWS7] oT
information t<n/3 Sec. channels
theoretic [IBGW88,CCD88] |

computational
(or IT w.
negligible error)

t<n/2
[GMW87,RB89]

malicious Broadcast ‘/

(active)

computational t<n

without fairness |[GMW87] Broadcast + OT
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Broadcast for t<n/3

Consensus:(Inputs: x;, ..., x, , Outputs: y;, ..., yu)
e (consistency) There exists y s.t. y; = y for all p;
e (validity) If all honest pihas input x; = x then y = x
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Theorem:
e (Consensus is possible (unconditionally) iff 1 < n/3 [LSP82,BGP89]
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Theorem:
e (Consensus is possible (unconditionally) iff 1 < n/3 [LSP82,BGP89]

Consensus = Broadcast:

1. Sender sends his input to every pi
2. The parties runs consensus on inputs the received values



Broadcast for t<n/3

Consensus:(Inputs: x;, ..., x, , Outputs: y;, ..., yu)
e (consistency) There exists y s.t. y; = y for all p;
e (validity) If all honest pihas input x; = x then y = x

Theorem:
e (Consensus is possible (unconditionally) iff 1 < n/3 [LSP82,BGP89]

Consensus = Broadcast:

1. Sender sends his input to every pi
2. The parties runs consensus on inputs the received values

Security proof of Consensus = Broadcast:

e (consistency) Follows from consistency of consensus
e (validity) If the sender is honest then consensus is executed with
all honest pi’s having input the sender’s input
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Assume a protocol (4, M2, IN3) allowing ps to broadcast a bit.
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Assume a protocol (4, M2, IN3) allowing ps to broadcast a bit.

P2 IS corrupted
p3 has input O

@0
CIRO,

Correctness=

p1 outputs O



Impossibility of Broadcast for n=3, t=1

Assume a protocol (4, M2, IN3) allowing ps to broadcast a bit.

P3 IS corrupted

@@
@ @

consistency=

p1 outputs the
same as p2



Impossibility of Broadcast for n=3, t=1

Assume a protocol (4, M2, IN3) allowing ps to broadcast a bit.

@ © O 0 O 6
CRCONCECHICRC

Correctness= Correctness= consistency=

P2 outputs 1 pP1 outputs O p1 outputs the
same as po
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MPC with Malicious Adversary — t<n/3

The t<n/2 solution does not even work given broadcast
e | et’s look at 3 parties with 1 corruption
e Secrets s shared as (s, s2, s3) , 1.€., pi holds s;
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The t<n/2 solution does not even work given broadcast
e | et’s look at 3 parties with 1 corruption
e Secrets s shared as (s, s2, s3) , 1.€., pi holds s;
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MPC with Malicious Adversary — t<n/3

The t<n/2 solution does not even work given broadcast

o | et’s look at 3 parties with 1 corruption

e Secrets s shared as (s, s2, s3) , 1.€., pi holds s;

o

P1
S1 S;\\p {

correctness =

Y 53’ Rec(si, s2,83’) = s
— Rec> S.1.

Recia(s1,$2) = s

§2° \pzj
e
P

S1 \

S3 p3

correctness =

Y 52’ Rec(s1,s2°,83) = s
— J Recy; s.t.

Rec3(s1,83) = 8

1-privacy =

s1 has no info about s
e VYV s'ds,’s.t.

Reci2(s1,827) =8’



MPC with Malicious Adversary — t<n/3

The t<n/2 solution does not even work given broadcast
e | et’s look at 3 parties with 1 corruption
e Secrets s shared as (s, s2, s3) , 1.€., pi holds s;

2’ \pzj

2 . ) 2
2 P ) sors’? 2 P
= e S
\Y/ p1 S1 p1 \Y/ p1

S‘3\\p{ ;3\p3 ‘}ps
correcthess = correcthess = 1-privacy =
YV 53’ Rec(si, s2, 83°) = s Y 52’ Rec(s1,s2°,83) = s s1 has no info about s
— 5 Recj> S.1. — 7 Recj; S.1. e Vs'dsy'st.

N o0
Recio(s1,52) = s Reci3(s1,83) = s Recia(s1,827) =8



MPC with Malicious Adversary — t<n/3

The t<n/2 solution does not even work given broadcast
e | et’s look at 3 parties with 1 corruption
e Secrets s shared as (s, s2, s3) , 1.€., pi holds s;

fg/ P2 Sf,/ P2 sors’? s2’ P2
S] P1 S1 P1 \Yi P1
Svsx\p{ ;3\p3 vbps
correctness = correctness = 1-privacy =

Recia(s1,$2) = s Rec3(s1,83) = 8



Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
IS a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

e (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

e (t-privacy) The shares of any set of ¢-1 parties include not information about s.

e (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’
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In a VSS the adversary cannot make the parties loose a shared value



Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme
IS a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following
properties:

e (correctness) If the dealer is honest during Share, then given the shares of
any t parties, Reconstruct outputs the secret s.

e (t-privacy) The shares of any set of ¢-1 parties include not information about s.

e (commitment) At the end of Share there is a unique value s’ such that if the
parties invoke Reconstruct the output will be s’

(correctness) = s’ = s when Dealer is honest in Share

In a VSS the adversary cannot make the parties loose a shared value

Previous argument shows that VSS (without
signatures) exists only if t<n/3
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Share:
1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)
2. Each party pi receives fi(x) and gi(y)



(t+1)-out-of-n VSS (t<n/3)

Share:
1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each

variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)
2. Each party pi receives fi(x) and gi(y)

Flazy) = g2(y) 4 F(x,y)

NS

F(aiy) = gi(y) Flany) = gn(y)

fo(x) = F(x,0)

ST T i
a1 Qao n



(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(«;, y)

2. Each party pi receives fi(x) and gi(y)
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(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(«;, y)

2. Each party pi receives fi(x) and gi(y)

P2 ’s “share”

Flazy) = g2(y) 4 F(x,y)

NS

F(any) = gn(y)

Flasy) = gi(y)




(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)

2. Each party pi receives fi(x) and gi(y)

3. Each pair (pi, pj) confirms that s;; = fi(a;) = gi(ai) and sji=fi(ai) = gi(a;).

4. Resolve conflict by public accusations answered by the dealer.

P2 ’s “share”

Flazy) = g2(y) 4 F(x,y)

NS

F(any) = gn(y)

Flasy) = gi(y)




(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)

2. Each party pi receives fi(x) and gi(y)

3. Each pair (pi, pj) confirms that s;; = fi(a;) = gi(ai) and sji=fi(ai) = gi(a;).

4. Resolve conflict by public accusations answered by the dealer.

P2 ’s “share”

Requires Broadcast
e Recall: Can be constructed
Flazy) = g2(y) 4 from secure channels iff
™~ t<n/3 [LSP82 BGP89]

F(aiy) = gi(y)




(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)

2. Each party pi receives fi(x) and gi(y)

3. Each pair (pi, pj) confirms that s;; = fi(a;) = gi(ai) and sji=fi(ai) = gi(a;).

4. Resolve conflict by public accusations answered by the dealer.

P2 ’s “share”

Flazy) = g2(y) 4 F(x,y)

NS

F(any) = gn(y)

Flasy) = gi(y)




(t+1)-out-of-n VSS (t<n/3)

Share:

1.

o

D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)
Each party pi receives fi(x) and gi(y)

Each pair (pi, p;) confirms that s;; = fi(a;) = gi(a:) and s;i=fi(a:;) = gi(a;).
Resolve conflict by public accusations answered by the dealer.

P1 P2 Pn
go(y) &i(y) g2(y) gn(y)




(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)

2. Each party pi receives fi(x) and gi(y)

3. Each pair (pi, pj) confirms that s;; = fi(a;) = gi(ai) and sji=fi(ai) = gi(a;).
4. Resolve conflict by public accusations answered by the dealer.
P1 P2 Pn

go(y) 8&i1(y) 82(y) gn(y)

Qn Ju(x) Pn

a2 fZ(X) p2

4 f1(x) P1

0s Jo(x)

0 04 042 04 an



(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial F(x,y) of degree ¢ in each
variable, such that f(0,0)=s. Denote: fi(x) = F(x, ai), gi(y) = F(a;, y)

2. Each party pi receives fi(x) and gi(y)

Each pair (pi, p;) confirms that s;; = fi(a;) = gi(a:) and s;i=fi(a:;) = gi(a;).

4. Resolve conflict by public accusations answered by the dealer.

P1 P2 Pi Pn
go(y) &1(y) g2(y) gi(y) =F(ai,y) gu(y)

Ju(x) Pn

o

= fi(x) = F(xa;) P

J2(x) P2
f1(x) P1
Jo(x)




t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):
1. pj announces s;;
2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces syj, ..., sy
3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):
1. pj announces s;;
2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces syj, ..., sy
3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)

P1 P2 Pi Pn
go(y) &i(y) gy) gi(y)=F(ai,y) gu(y)
s, filx) o
i :
. Sy - fitx) = F(x,ay)  Pi
S;j J2(x) oF.
S;Jj Ji(x) P1
Gi(0) Jo(x)

0 04 042 04 an



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):

1. pj announces s;;

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces sjj, ..., sy

3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)

Claim: Gj(y) = gi(y)

Proof:

e Gj(y) passes through the r+1 values from the honest parties
which all lie on g;.
e By the Lagrange interpolation, there exists no other degree-t

polynomial with this property, hence this is the only polynomial
that might be reconstructed.



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):
1. pj announces s;;
2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces sjj, ..., sy
3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)

P1 P2 Pi Pn
go(y) gi(y) g2y) &giy)=F(ai,y) gu(y)

s, filx) o
i :

Sy * fi(x) = F(x,a;) Pi
S;j J2(x) oF.
S;j Ji(x) P1
gi(0) Jo(x)

04 an



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):
1. pj announces s;;
2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces sjj, ..., sy
3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)

P1 P2 Pi Pn
go(y) gi(y) g2y) &giy)=F(ai,y) gu(y)

s, filx) o
i :

Sy * fi(x) = F(x,a;) Pi
S;j J2(x) oF.
S;j Ji(x) P1
gi(0) Jo(x)

04 an



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):

1. pj announces s;;

2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces sjj, ..., sy

3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)
P1 P2 Pi Pn
go(y) &i1(y) g2y) 8iy)=F(ai,y) gu(y)

Il .X) Pn

= fi(x) = F(x,a;) P

Ja(x) D2

fi(x) P1
Jo(x)

0 04 042 04 an



t-out-of-n VSS (t<n/3)

Reconstruct:
1. For each gi(y):
1. pj announces s;;
2. Find the degree-t polynomial Gj(y) which passes through at least
2t+1 points from the announces sjj, ..., sy
3. Use G(0), ..., Gu(0) to interpolate fo(x) and compute s=f(0)

P1 P2 Pi Pn
go(y) &i(y) g2(y) gi(y) =F(ai,y) gu(y)

K
Snj fn(x) pn
i :

Sy * fi(x) = F(x,a;) Pi
S;j J2(x) oF.
Sij Ji(x) P+

 §
0 5 =81(0)=g2(0) =——23i(0)
0 A 042 04

gn(0)* fo(x)
an



t-out-of-n VSS (t<n/3)

Properties:
e At the end of the sharing phase
* t parties have no information = VSS privacy

* The dealer is committed to the shared secret = VSS commitment
e |f the dealer is honest then the sharing is of s = VSS correctness

e Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it



MPC Goal

Ideal World Real World

Computation:
Addition/
Multiplication
Gates

Output




MPC Goal

Ideal World Real World

pi&m —

Pi f —

Input
Gates

Computation:
Addition/
Multiplication
Gates

Output
Gates




Malicious MPC: Addition
Goal: Addition Gadget

[s] [s']

G(s,s’)=s+ s’

[s + 5]
|



Malicious MPC: Addition

Goal: Addition Gadget
F(x,y)s.t. F(0,0)=s F’(x,y) s.t. F’(0,0)=s’

Ny a

G(s,s’)=s+ s’

[s + 5]
|



Malicious MPC: Addition

Goal: Addition Gadget
F(x,y)s.t. F(0,0)=s F’(x,y) s.t. F’(0,0)=s’

Ny a

G(s,s’)=s+ s’

I
[s + 5]

/’ |

Define F”(x,y)=F(x,y) + F’(x,y) = F”(0,0) = F(0,0) + F’(0,0) =5’ + s’



Malicious MPC: Addition

Goal: Addition Gadget
F(x,y)s.t. F(0,0)=s F’(x,y) s.t. F’(0,0)=s’

Ny a

G(s,s’)=s+ s’

I
[s + 5]

/’ |
Define F”(x,y)=F(x,y) + F’(x,y) = F”(0,0) = F(0,0) + F’(0,0) =5’ + s’
Addition protocol

e Each party locally adds his share-shares of s and s’, i.e., picomputes
Sij” = Sij+Slj’ and Sji” = Sji+Sji’

e The resultis a sharing of s” by means of polynomial F” = F + F’
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MPC Goal

Input
Gates

Computation:
Addition/
Multiplication
Gates

Output
Gates

Ideal World

Real World

pi&m’;

/ :

Pi f —

5L&

D &

<] ele]

Outi —
—

Any linear
g combination

—
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Multiplication Protocol: Malicious

Goal: Multiplication Gadget

[s] [s]

G(s,s’)=s5"5’

[s-5"]



t-out-of-n VSS

Properties (recall):
e At the end of the sharing phase
e (-] parties have no information = VSS privacy

e The dealer is committed to the shared secret = VSS commitment
e |f the dealer is honest then the sharing is of s = VSS correctness

e Every party (even malicious) is committed to his share (i.e.,
polynomial gi(y)): the honest parties can reconstruct it



t-out-of-n VSS

Properties (recall):
e At the end of the sharing phase
e (-] parties have no information = VSS privacy

e The dealer is committed to the shared secretl= VSS commitment

e |f the dealer is honest then the sharing is of s = VSS correctness

e Every party (even malicious) is committed to his share (i.e.,

polynomial gi(y)): the honest parties can reconstruct it

F(a2,y) = g2(y) . P2 ’s “share” F(x,y)
~

F(aiy) = gi(y) Flany) = gn(y)

Jo(x) = F(x,0)




t-out-of-n VSS

Properties (recall):
e At the end of the sharing phase
e -1 parties have no information = VSS privacy

e The dealer is committed to the shared secretl= VSS commitment

* |f the dealer is honest then the sharing is of s = VSS correctness

e Every party (even malicious) is committed to his share (i.e.,

polynomial gi(y)): the honest parties can reconstruct it

Jo(x) = F(x,0)




Multiplication Protocol: Malicious

. : commitment to s; held by pi

Linearity: . + . = -

fo(x) = F(x,0)

a1 a2 an



Multiplication Protocol: Malicious

. . commitment to s; held by pi

Linearity: (88 + BN = [

F(az,y) = g2(y) 4 F(x,y)

.
F(aiy) = gi(y) F(any) = gn(y)

Jo(x) = F(x,0)

n

a2 !
(04 ' : ' >

| ' |
a1 a2 an



Multiplication Protocol: Malicious

. : commitment to s; held by pi

Linearity: . + . = -

fo(x) = F(x,0)

a1 a2 an



Multiplication Protocol: Malicious
. : commitment to si held by pi
Linearity: [ + D -

As in the semi honest setting to multiply shared s and s’

e Every pi computes. = -

e Use the linearity to compute a VSS of s”

A

a1 a2 an



Multiplication Protocol: Malicious

. . commitment to s; held by pi
Linearity: [N + BN - )

As in the semi honest setting to multiply shared s and s’

we need a commitment
e Every pi computes = — NN
multiplication protocol

e Use the linearity to compute a VSS of s”  ® Similar idea to the
A semi honest protocol:

Have every party
commit to its share
product and use
linearity to combine
them.

e + a check that the
commitment is correct
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