
“MPC	in	the	Head”

Yuval	Ishai
Technion and	UCLA

Back	to	the	1980s
• Zero-knowledge	proofs	for	NP	[GMR85,GMW86]

• Computational	MPC	with	no	honest	majority	
[Yao86,	GMW87]

• Unconditional	MPC	with	honest	majority	
[BGW88,	CCD88,	RB89]

• Unconditional	MPC	with	no	honest	majority	
assuming	ideal	OT	[Kilian88]

• Are	these	unrelated?

Message	of	this	talk

• Honest-majority	MPC	is	useful	even	when	
there	is	no	honest	majority!

• Establishes	unexpected	relations	between
classical	results

• New	results	for	MPC	with	no	honest	majority
• New	application	domains	for	honest-majority	
tools	and	techniques

Bernard

Research	interests:
- zero-knowledge	proofs
- efficient	two-party	protocols

Research	interests:
- information-theoretic	cryptography
- honest-majority	MPC

some	relevance

no	relevance?	

Allison

Bernard

Research	interests:
- zero-knowledge	proofs
- efficient	two-party	protocols

Research	interests:
- information-theoretic	cryptography
- honest-majority	MPC

Allison

Want	to	hear	about	my	latest	and	
coolest	VSS	protocol?

what	a	dork…

Helping	make	the	match
• Add	to	Allison’s	world	a	simple	ideal	functionality
– Ideal	commitment oracle	for	ZK												(Com-hybrid model)
– Ideal	OT oracle	for	general	protocols				(OT-hybrid model)	

• Makes	unconditional	(and	UC)	security	possible
– Analogous	to	secure	channels	in	Bernard’s	world

• Why	should	Allison	be	happy?
– Generality:	Com	or	OT	can	be	realized	in	a	variety	of	models,	
under	a	variety	of	assumptions	

– Efficiency:	Com	or	OT	can	be	realized	with	little	overhead
• Essentially	free	given	preprocessing	[BG89]
• Cheap	preprocessing:	fast	OT	[…,PVW08,…], faster	OT	extension	
[Bea96,IKNP03…]

• Still:	Why	should	Bernard’s	research	be	relevant?

Helping	make	the	match
• Add	to	Allison’s	world	a	simple	ideal	functionality
– Ideal	commitment oracle	for	ZK												(Com-hybrid model)
– Ideal	OT oracle	for	general	protocols				(OT-hybrid model)	

• Makes	unconditional	(and	UC)	security	possible
– Analogous	to	secure	channels	in	Bernard’s	world

• Why	should	Allison	be	happy?
– Generality:	Com	or	OT	can	be	realized	in	a	variety	of	models,	
under	a	variety	of	assumptions	

– Efficiency:	Com	or	OT	can	be	realized	with	little	overhead
• Essentially	free	given	preprocessing	[BG89]
• Cheap	preprocessing:	fast	OT	[…,PVW08,…], faster	OT	extension	
[Bea96,IKNP03…]

• Still:	Why	should	Bernard’s	research	be	relevant?

A	high	level	idea:

• Run	MPC	“in	the	head”.
• Commit	to	generated	views.
• Use	consistency	checks to	ensure
honest	majority.

Zero-knowledge	proofs

• Goal:	ZK	proof	for	an	NP-relation	R(x,w)
– Completeness
– Soundness
– Zero-knowledge

• Towards	using	MPC:	
– define	n-party	functionality

g(x;	w1,...,wn)	=	R(x,	w1Å...Å wn)
– use	any	2-secure,	perfectly	correct protocol	for	g

• security	in	semi-honest	(passive	adversary)	model
• honest	majority	when	n³5

MPC	à ZK		[IKOS07]

Prover Verifier

w=w1Å...Å wn

P1 P2

P3

P4P5

Pn

w1 w2

w3
w4w5

wn

V1 V2

V3
V4V5

Vn viewsp

commit to views V1,...,Vn

random i,j

open views Vi, Vj

w accept iff output=1
&

Vi,Vj are consistent

Given MPC protocol p for
g(x; w1,...,wn) = R(x, w1Å...Å wn)

Analysis

• Completeness:	Ö
• Zero-knowledge: by 2-security of
p and randomness of wi, wj.
(Note: enough to use w1,w2,w3)

Prover Verifier
commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1
&

Vi,Vj are consistent

w=w1Å...Å wn

Analysis

• Soundness: Suppose R(x, w)=0 for all w.
è either (1) V1,...,Vn consistent with protocol p

or (2) V1,...,Vn not consistent with p

Prover Verifier
commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1
&

Vi,Vj are consistent

w=w1Å...Å wn

(2) Þ for some (i,j), Vi,Vj are inconsistent.
Þ Verifier rejects with prob. ³ 1/n2.

(1) Þ outputs=0 (perfect correctness)
Þ Verifier rejects

In	fact,	proof	of	
knowledge

Analysis
Prover Verifier

commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1
&

Vi,Vj are consistent

w=w1Å...Å wn

Communication complexity:
≤ (comm. complexity + rand. complexity + input size) of p.

Extensions
• Variant:	Use	1-secure	MPC
– Open	one	view	and	one	incident	channel

• Extends	to	OT-based	MPC
– Simple	consistency	check	when	t≥2
– Slightly	more	involved	with	t=1	[HV16,IKPSY16]

• Extends	to	MPC	with	error	
• Variant:	Directly	get	2-k soundness	error	via	security	
in	malicious	model	(active	adversary)
– Two	clients,	n=O(k)	servers	
– W(n)-security	with	abort
– Broadcast	is	“free”

• Realize	Com using	a	one-way	function

Applications

• Simple	ZK	proofs	using:
– (1,3)	semi-honest	MPC					[BGW88,CCD88]	or	[Mau02]
– (2,3)	or	even	(1,2)	semi-honest	MPCOT [GMW87,GV87,GHY87]

• Practical	ZK	proofs	(“ZKBoo” [GMO16])
• ZK	proofs	with	O(|R|)+poly(k)	communication

– Using	efficient	MPC	+	AG	codes	[DI06,CC06]
• Many	good	ZK	protocols	implied	by	MPC	literature

– ZK	for	linear	algebra	[CD01,…]

General	2-party	protocols	[IPS08]
• Life	is	easier	when	everyone	follows	instructions…
• GMW	paradigm [GMW87]:

– semi-honest-secure	pàmalicious-secure	p’
– use	ZK	proofs	to	prove	“sticking	to	protocol”

• Non-black-box:	ZK proofs	in	p’ involve	code of p
– Typically	considered	“impractical”
– Not	applicable	at	all	when	p uses	an	oracle

• Functionality	oracle:		OT-hybrid	model	
• Crypto	primitive	oracle:	black-box	PRG
• Arithmetic	oracle:	black-box	field	or	ring

• Is there a “black-box alternative” to GMW?

A	dream	goal

• Possible	for	some	fixed f
– e.g.,	OT		[IKLP06,Hai08]

• Impossible	for	general	f		
– e.g.,	ZK	functionalities	[IKOS07]

p’
realizes	f	in	

malicious	model

p
realizes	f	in	

semi-honest	model

Idea
• Combine	two	types	of	“easy” protocols:
– Outer	protocol:
honest-majority	MPC

– Inner	protocol:	
semi-honest	2-party	protocol
• possibly	in	OT-hybrid	model

• Both	are	considerably	easier	than	our	goal
• Both	can	have	information-theoretic	security

Outer	protocol

18

k Servers

Client A
holds input x

Client B
holds input y

Secure	against	malicious adaptive	
adversary	corrupting	one	client	and	t=ck	
servers,	for	some	constant	c>0.

Security	with	abort	suffices.

Straight-line	simulation.

Example:	“BGW-lite”

Inner	protocol

Secure	against	semi-honest	adversary

(Adaptive	security	w/erasures)

Example:	“GMW-lite”

Client A
holds input x

Client B
holds input yOT

Combining	the	two	protocols

Player	virtualization

OT	calls	by	inner	protocol
are	“risky”

oblivious	watch	lists

outer	protocol	for	f

panopticon

A	closer	look	at	server	emulation
• Assume	servers	are	deterministic

– This	is	already	the	case	for	natural	protocols
– Can	be	ensured	in	general	with	small	overhead

• In	outer	protocol,	server	i
– gets	messages	from	A	and	B
– sends	messages	to	A	and	B
– may	update	a	secret	state

• Captured	by	reactive	2-party	functionality	Fi
– Inputs	=	incoming	messages
– Outputs	=	outgoing	messages

• Use	semi-honest	protocol	for	Fi
– Distribute	server	between	clients
– “Local” computations	do	not	need	to	be	distributed.

A	closer	look	at	watchlists
• Inner	protocol	can’t	prevent	clients	from	cheating	
by	sending	“bad	messages”

• Watchlist	mechanism	ensures	that	cheating	does	
not	occur	too	often
– Client	doesn’t	know	which	instances	of	inner	protocol	
are	watched

– Two	cases:
• Client	cheats	in	£ t	instances
ð cheating	is	tolerated	by	t-security	of	outer	protocol

• Client	cheats	in	>t	instances
ð will	be	caught	with	overwhelming	probability

• Non-interactive	form	of	“cut-and-choose”

Setting	up	the	watchlists
• Each	client	picks	n	long	one-time	pads	Ri
• |Ri|	=	length	of	messages	+	randomness	in	
execution	of	i-th	inner	protocol
– Short	PRG	seed	suffices	for	computational	security

• Each	client	uses	OT	to	select	~	t/2	of	the	other	
client’s	pads	Ri

• Implemented	via	Rabin-OT	for	each	server
– Reduces	to	a	constant	number	of	(1,2)	string-OTs	per	
server	for	any	rational	probability	p

– With	overwhelming	probability,	p±0.01 fraction	of	Ri
are	received

Using	the	watchlists
} Consider	here	B	watching	A
– A	watches	B	symmetrically
• A	uses	sequential	parts	of	each	Ri to	mask	her	
(progressive)	view	of	the	i-th	inner	protocol
– If	B	obtained	Ri,	he	has	full	view	of	i-th	inner	protocol
– Can	detect	(and	abort)	as	soon	as	A	cheats
–What	about	ideal	OT	calls	in	inner	protocol?

• Cheating	caught	w/prob	½	if	OT	inputs	are	random
• Use	OT	to	random-OT	reduction

Example
• Consider	a	“BGW-style” outer	protocol
• Each	server	performs	two	types	of	computations:
– Send	aibi+zi to	A,	where	ai is	a	secret	received	from	A	and	
bi,zi are	secrets	received	from	B
• O(|C|)	such	computations	overall	
• Can	be	implemented	by	simple	inner	protocols

– unconditionally	using	OT	[GMW87,IPS09]
– using	homomorphic	encryption	(e.g.,	Paillier)
– using	coding	assumptions	and	OT	[NP99,IPS09]

– Send	to	A	a	public	linear	combination	of	secrets	sent
by	B	(and	vice	versa)
• Can	be	implemented	via	local	computation	of	B

• Gives	efficient	protocols	for	arithmetic	computations

Simulation	(rough	idea)
• Suppose	A	is	corrupted	in	final	protocol
• Main	simulator	runs	outer	simulator	to	
– extract	input	of	A
– generate	outer	protocol	messages	from	B
– generate	full	view	of	inner	protocols	watched	by	A	
(requires	corrupting	~	t/2	servers)

– generate	A’s	inputs	and	outputs	in	other	inner	protocols	
(communication	of	A	with	servers)
• feed	to	inner	simulator	to	generate	inner	protocol	view
• valid	as	long	as	A	does	not	deviate	from	inner	protocol

• Main	simulator	can	observe	deviation	from	inner	
protocol
– When	A	cheats	on	i-th	inner	protocol,	outer	simulator	
corrupts	i-th	server	and	main	simulator	aborts	w/prob.	p

A	general	protocol	compiler

§ Given	a	2-party	functionality	F
§ Get	an	honest-majority-secure	outer	protocol	Π	for	the	functionality	F	

(with	2	clients	and	k	servers)
§ Get	a	semi-honest-secure	inner	protocol	ρOT for	a	

2-party	functionality	GΠ corresponding	to	the	servers’
program	in	Π

(GΠ is	a	reactive	functionality	defined	black-box w.r.t	Π)

§ Our	(2-party)	protocol	ΦOT,		with	black-box access	to	Π	and	
ρ,	is	a	malicious-secure	protocol	for	F.

m

m

m

m

Applications
• Revisiting	the	classics

– BGW-lite	+	GMW-lite	è Kilian

• Efficient	MPC	with	no	honest	majority
– O(1)	bits	per	gate	in	OT-hybrid	model		(+	additive	term)
– All	crypto	can	be	pushed	to	preprocessing

• Constant-round MPCOT (t<n)	using	black-box PRG
– Extending	2-party	“cut-and-choose” Yao

• Efficient	OT	extension	in	malicious	model
• Constant-rate	b.b.	reduction	of	OT	to	semi-honest	OT	
• Secure	arithmetic	computation	over	black-box	fields/rings
• Protocols	making	black-box	use	of	homomorphic	encryption

More	“MPC	in	the	Head”:
OT	combiners	and	OT	extractors

• OT	combiners	[HKNRR05]
– Given	n instances	of	OT,	of	which	t are	faulty,	produce	m good	OTs
– Can	be	obtained	via	honest-majority	MPC	[HIKN08,IPS08]

• Outer	protocol:	honest-majority	MPC	for	m	OTs
• Inner	protocol:	OT-based	2-party	protocol	for	emulating	MPC	server	

– Used	for	constant-rate	OT	from	noisy	channels	[HIKN08,IKOPSW11]

• OT	extractors	[IKOS09]
– Generalize	OT	combiners	by	allowing	global	leakage
– Construction	makes	an	ad-hoc	use	of	suitable	“outer	protocol” and	

“inner	protocol”
– Yield	constant-rate	OT	protocols	from	imperfect	noisy	channels,	

constant-rate	OT	from	(computational)	“q-Hiding	assumption”.

OT	Extractor

OT	Combiner Randomness	extractor

Extractor	for	
bit-fixing	sources

Random	codes

Arithmetic	codes

More	“MPC	in	the	Head”:
Non-Interactive	Secure	Computation
• Goal:	Protect	non-interactive	OT-based	protocols	
against	malicious	sender

• Challenge:	allow	Receiver	to	detect	when	
Sender’s	OT	inputs	are	inconsistent	with	protocol

OT OT OT OT OT

Sender

Receiver

More	“MPC	in	the	Head”:
Non-Interactive	Secure	Computation
• An	MPC-based	approach	[IKOPS11]

OT OT OT OT OT

Sender

Receiver

Input	client

Servers

Output	clients

Protect	against	
“correlated	abort”
attacks	by	encoding	
receiver’s	input	

[Kil98,LP07,IKOPS11]

Further	research	I
• Find	other	useful	“black-box” connections
• Formalized	via	oracle	game:

– Protocol	move:	
given	oracle	g,	get	(arbitrary)	protocol	oracle	pg

– Build	move:	
given	oracle	f,	build	oracle	g

– Goal:	given	oracle	f,	obtain	a	protocol	pf in	a	“strong” model	
using	only	protocol	moves	in	“weaker” model(s)

• Previous	examples
– ZK	from	MPC:

build	– protocol	– build
– New	protocol	compiler:

protocol	– build	– protocol	- build

Further	Research	

• Other	useful	“black-box” connections?
– Formalized	via	“MPC	transformations” framework	[IKPSY16]
– Gives	hope	for	proving	negative	results

• Find	leaner	versions	of	protocol	compilers
– Weaker	outer	protocol?	

• Minimize	constants	in	constant-rate	protocols
– Better	“arithmetic	codes”?

• Optimize	for	practical	efficiency?	
– Many	degrees	of	freedom!
– Progress	made	in	[LOP11]

