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Abstract

Differential Privacy (DP) is an area that has recently seen many direct and indirect applications to
machine learning. While DP provides the most rigorous notions of privacy, there are many settings where
its applicability is limited.

In this work, we make foundational contributions to DP, thereby greatly expanding its applicability
in multiple ways. Towards this, we define two complementary concepts, namely, Flexible Accuracy
and Robust Privacy. Flexible Accuracy allows small distortions in the input (e.g., dropping outliers)
before measuring accuracy of the output, allowing one to extend DP mechanisms to high-sensitivity
functions. Robust Privacy goes beyond the notion of individual-level privacy considered by DP: It requires
a mechanism to not include any “non-utile information” in the output, thereby offering database-level
privacy. Then, we present mechanisms that can help in achieving these notions, where previously no
meaningful differentially private mechanisms were available. In particular, we illustrate an application to
differentially private histograms, which in turn yields mechanisms for revealing the support of a dataset or
the extremal values in the data. Analyses of our constructions exploit new versatile composition theorems
that facilitate modular design.

Our definitional framework, in terms of “lossy Wasserstein distance” – a 2-parameter error measure
for distributions – is of independent interest. In particular, it leads us to a mechanism for differentially
private sampling.

1 Introduction
In this work, we make foundational contributions to the area of Differential Privacy (DP), greatly extending
its applicability in machine learning and other contexts. Our main contribution is to identify and address two
limitations of the DP framework. At a high-level, these limitations follow from a seemingly natural choice:
Accuracy guarantees of a mechanism are in terms of distances in the output space, and privacy demands are in
terms of distances in the input space (neighboring inputs). Somewhat surprisingly, these choices turn out to
be not always adequate. Our extensions can be seen as adding accuracy guarantees in terms of distances (or
rather, distortions) in the input space, and privacy demands in terms of distances in the output space. Along
the way, we extend the notion of DP to randomized functions over a metric space, for which distances are
measured using a (generalization of) Wasserstein distance. We illustrate the applicability of our foundational
extensions with applications to an important class of functions – namely, functions of a histogram of the data.

Our work could also be viewed as an extension to an earlier approach by Blum, Ligett and Roth [BLR13],
which partly addressed the issues that motivate our work. Our framework subsumes that of [BLR13] and
goes well beyond it, e.g., by enabling privacy mechanisms for high-sensitivity functions like maximum.

We briefly discuss the limitations of DP addressed in this work.

1



Limits Set by Sensitivity. Consider querying a database consisting of integer valued observations –
say, ages of patients who recovered from a certain disease – for the maximum value. For the sake of privacy,
one may wish to apply a DP mechanism, rather than output the maximum in the data itself. Two possible
datasets which differ in only one patient are considered neighbors and a DP mechanism needs to make the
outputs on these two samples indistinguishable from each other. However, the function in question is highly
sensitive – two neighboring datasets can have their maxima differ by as much as the entire range of possible
ages – and the standard DP mechanisms in the literature will add so much noise that no useful information
can be retained.1

As we shall see, the above limitation can be attributed to a rigidly defined notion of accuracy. This same
rigidity leads to another surprising limitation too. Consider the problem of reporting a histogram (again, say,
of patients’ ages). Here a standard DP mechansim, of adding a zero-mean Laplace noise to each bar of the
histogram is indeed reasonable, as the histogram function has low sensitivity in each bar. Now, note that
maximum can be computed as a function of the histogram. However, even though the histogram mechanism
was sufficiently accurate in the standard sense, the maximum computed from its output is no longer accurate!
This is because when a non-zero count is added to a large-valued item which originally has a count of 0, the
maximum can increase arbitrarily.

In this work we develop a more relaxed notion of accuracy, called flexible accuracy, that lets us address
both of the above issues. In particular, it not only enables new DP mechanisms for maximum, but also allows
one to derive the mechanism from a new DP mechanism for histograms. A new composition theorem enables
us to transfer the accuracy guarantees on histogram to accuracy guarantees on the maximum function (see
Theorem 4.1).

Limitations due to Focus on Individuals. Differential Privacy focuses on making outputs from
neighboring databases indistinguishable, where neighborhood usually refers to databases obtained by adding
or deleting a small number of data items (or a single one). However, such a notion of neighborhood of the
databases may not capture all pairs of databases that should be indistinguishable from each other.

Consider training a machine learning model on either dataset D1 or dataset D2, acquired from two large
hospitals. Suppose both the datasets are representative and yield very similar models. In this case, we may
reasonably require that querying a model should not reveal whether it was trained on D1 or D2. Indeed,
since the models are “similar,” one may expect them to yield results which are indistinguishable from each
other. Unfortunately, this is not generally true: Similarity of outputs is measured from the point of view of
honest users, in terms of a distance in the output space (or rather, the Wasserstein distance over that space,
since the output is probabilistic); but the extent of their indistinguishability is measured from the point of
view of an adversarial user, in terms of total variation distance or the ratio of probabilities (as in DP), which
are not influenced by the metric space associated with the outputs. For instance, if the outputs from the
model trained in D1 have an even value for the least significant digit, and for D2 it is an odd value, the total
variation distance between the two output distributions is maximum, while the Wasserstein distance can be
very small.

In short, one may demand – without necessarily compromising on accuracy – indistinguishability between
datasets which result in outputs that are close to each other. Robustness is a complementary notion of privacy
we introduce to addresses this demand. In contrast, DP only guarantees indistinguishability between datasets
which are close to each other. We recommend using a DP mechanism that is also robust.

1.1 Our Contributions
Our contributions are in three parts:

• Definitions: In Section 3, we define flexible accuracy and robust privacy to address the above limitations.
As an intermediate step, we define lossy Wasserstein distance, which is of independent interest.
1In fact, all datasets with low maximum values have high sensitivity locally, by considering a neighboring dataset with a

single additional data item with a large value. As such, mechanisms which add noise based on the local sensitivity rather than
global sensitivity [NRS07, ZCP+15] also do not fare any better.
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• Composition Theorems: In Section 4, we derive versatile composition theorems that can be used to build
mechanisms for functions of interest, from mechanisms for basic functions.

• Mechanisms: In Section 5, we give a new DP mechanism for releasing a sanitized histogram, which, via our
composition theorems yield DP mechanisms with (flexible) accuracy guarantees for all histogram-based
statistics (see Theorem 5.4), unlike any of the prior work (see [Vad17]). These functions include several
high-sensitivity functions like maximum and minimum, range, maximum margin separator, etc. We also
design mechanisms with robust privacy, via our composition results.

1.2 Related Work
DP, defined by Dwork et al. [DMNS06] has developed into a highly influential framework for providing formal
privacy guarantees (see [DR14] for more details). The notion of flexible accuracy we define is motivated
by the difficulty in handling outliers in the data. Some of the work leading to DP explicitly attempts to
address the privacy of outliers [CDM+05, CDMT05], as did some of the later works within the DP framework
[DL09, BNS19, TS13]. These results rely on having a distribution over the data, or respond only when the
answer is a “stable value”.

Incidentally, Wasserstein distance has been used in privacy mechanisms in the Pufferfish framework
[KM14, SWC17], which also relies on a distribution over data.

Blum et al. [BLR13] introduced notions of usefulness and distributional privacy, that were motivated by
similar limitations of DP as those which motivated flexible accuracy and robust privacy, respectively. As
described later, our framework goes well beyond what these notions allowed.

1.3 Paper Organization
We give preliminary definitions in Section 2. We define our new notions, namely, the lossy Wasserstein
distance, flexible accuracy, and robust privacy in Section 3, where we also state the important properties
that the lossy Wasserstein distance satisfies. We give our new composition theorems for flexible accuracy
and robust privacy, along-with a new composition theorem for differential privacy via pre-processing in
Section 4. We present and analyze several new mechanisms – for histogram and any histogram-based-statistic
(e.g., max and support), and also for robust privacy – in Section 5. In the same section, we also present
a mechanism for querying randomized functions that achieves differential privacy (extending the notion
beyond deterministic functions) as well as our notions of flexible accuracy and robust privacy. We empirically
compare our mechanisms against the state-of-the-art in Section 6.

2 Preliminaries
We denote by N all non-negative integers (including zero). We refer to a metric space (Ω, d), where d is a
metric over the set Ω. Here, Ω can be discrete or continuous, and for generality, we shall not assume that
it is discrete, and use probability density functions to specify distributions over Ω. For example, given a
distribution φ over Ω × Ω, its first marginal is given by φ1(x) =

∫
Ω
φ(x, y) dy and the second marginal is

given by φ2(y) =
∫

Ω
φ(x, y) dx.

We will use upper case letters (P,Q,X, Y , etc.) to denote random variables, as well as the probability
distributions associated with them. For a random variable P , we denote its probability density function by
P (·).

Definition 1 (Total Variation Distance). Let P and Q be two probability distributions on a sample space Ω.
The total variation distance between P and Q, denoted by ∆(P,Q), is defined as

∆(P,Q) =
1

2

∫
Ω

|P (ω)−Q(ω)|dω.
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2.1 Differential Privacy
Let X denote a universe of possible “databases” with a symmetric neighborhood relation ∼. In typical
applications, two databases x and x′ are considered neighbors if one is obtained from the other by removing
the data corresponding to a single “individual.” A mechanism M over X is an algorithm which takes x ∈ X
as input and samples an output from an output space Y, according to some distribution. We shall denote
this distribution byM(x).

Definition 2 (Differential Privacy [DMNS06, DKM+06]). A randomized algorithm M : X → Y is (ε, δ)-
differentially private (DP), if for all neighboring databases x,x′ ∈ X and all measurable subsets S ⊆ Y, we
have

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

Definition 3 (Laplace Distribution). Let b be a positive real number. The Laplace distribution with scaling
parameter b and mean µ, denoted by Lap(x|µ, b), is defined by the following density function:

Lap(x|µ, b) :=
1

2b
e
−|x−µ|

b , x ∈ R.

We denote a random variable that is distributed according to the Laplace distribution with the scaling
parameter b and mean µ by Lap(b, µ). If mean µ is zero, then we will simply denote it by Lap(b).

2.1.1 Laplace Mechanism

Let f : X → R be a function defined from X to R. When f is a deterministic map, then the Laplace
mechanismsMf,b

Lap : X → R (given below) is well known for achieving (ε, 0)-DP (denoted simply by ε-DP and
also called pure DP) for f [DMNS06, DR14].

Laplace mechanism Mf,b
Lap: On input x ∈ X , output f(x) + Lap(b).

In this paper, we use the Laplace mechanism with appropriate parameters to achieve robustness. We
also extend the above mechanismMf,b

Lap to obtain differential privacy for sampling queries, i.e., when f is a
randomized function.

3 Lossy Wasserstein Distance, Flexible Accuracy, and Robust Pri-
vacy

In this section, we formally define lossy Wasserstein distance, flexible accuracy, and robust privacy.

3.1 Lossy Wasserstein Distance
Central to the formalization of all the results in this work is a new notion of distance between distributions
over a metric space, that we call lossy Wasserstein distance. Lossy Wasserstein distance generalizes the notion
of Wasserstein distance, or Earth Mover Distance, which is the minimum cost of transporting probability
mass (“earth”) of one distribution to make it match the other. Loss refers to the fact that some of the mass is
allowed to be lost during this transportation. We shall use the “infinity norm” version, where the cost paid is
the maximum distance any mass is transported.

Formally, consider a metric space with ground set Ω, and metric d, where Wasserstein distance can be
defined. For example, one may consider Ω = Rn and the metric d being an `p-metric.

For θ ∈ [0, 1], and distributions P,Q over the metric space (Ω, d), we define the set of θ-lossy couplings
of P and Q, Φθ(P,Q) as consisting of joint distributions φ over Ω2 with marginals φ1 and φ2 such that
∆(φ1, P ) + ∆(φ2, Q) ≤ θ. Note that Φ0(P,Q) consists of joint distributions with marginals exactly equal to
P and Q.
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Definition 4 (θ-Lossy ∞-Wasserstein Distance). Let P and Q be two distributions over a metric space
(Ω, d). For θ ∈ [0, 1], the θ-lossy ∞-Wasserstein distance between P and Q is defined as:

W∞θ (P,Q) = inf
φ∈Φθ(P,Q)

max
(x,y)←φ

d(x, y). (1)

For simplicity, we write W∞(p, q) to denote W∞0 (p, q).
Lossy ∞-Wasserstein distance is a generalization of the guarantee of being “Probably Approximately

Correct” (PAC). A PAC guarantee states that a randomized quantity G is, except with some small probability
γ, within an approximation radius β of a desired deterministic quantity f : i.e., Prg←G[|g − f | > β] ≤ γ.
Representing f by a point distribution Ff , this can be equivalently written as W∞γ (Ff , G) ≤ β. It also
generalizes total variation distance between two distributions 1

2‖F −G‖1 (treating distributions as probability
vectors), since W∞γ (F,G) = 0 iff ‖F −G‖1 ≤ γ.

Now we discuss further important properties of W∞θ , namely, the triangle inequality (Lemma 3.1) and the
effect of adding independent noise (Lemma 3.2), both of which we prove in Appendix A. These properties
will be useful in proving our results.

Lemma 3.1. For distributions P , Q, and R over a metric space (Ω, d), and for γ1, γ2 ∈ [0, 1], we have.

W∞γ1+γ2
(P,R) ≤W∞γ1

(P,Q) +W∞γ2
(Q,R). (2)

To study the effect of adding independent noise onW∞θ , we need the metric to satisfy additional conditions.
Specifically, we shall require that the metric corresponds to the metric in a normed vector space (e.g., Rd).

Lemma 3.2. Let X,Y and Z be three random variables over a normed vector space, Ω with Z being
independent of X and Y , and let p0 denote the distribution with all its mass at 0. Then, the lossy ∞-
Wasserstein distance defined using the metric induced by the norm of Ω satisfies the following: ∀γ, γ1 such
that γ, γ1 ≥ 0 and γ1 ≤ γ/2, we have

W∞γ (X + Z, Y + Z)
(a)
≤ W∞γ (X,Y )

(b)
≤ W∞γ−2γ1

(X + Z, Y + Z) + 2W∞γ1
(p0, Z). (3)

3.1.1 Average Version of the Lossy Wasserstein Distance

Our definition of W∞θ uses a worst case notion of distance. Many of the results using this notion have
analogues using an average case version. We present this definition below, as it may be of interest elsewhere.

Definition 5 (θ-Lossy Average Wasserstein Distance). Let P and Q be two probability distributions over a
metric space (Ω, d), and let θ ∈ [0, 1]. The θ-lossy average Wasserstein distance between P and Q is defined
as:

Wθ(P,Q) = inf
φ∈Φθ(P,Q)

E
(x,y)←φ

[d(x, y)]. (4)

The following lemma relates lossy average Wasserstein and lossy ∞-Wasserstein distances, and is proved
in Appendix A.1.

Lemma 3.3. For any two distributions P,Q, and 0 ≤ β′ < β ≤ 1,

Wβ(P,Q) ≤W∞β (P,Q) ≤ Wβ′(P,Q)

(β − β′)
.

3.2 Flexible Accuracy
The high-level idea of flexible accuracy is to allow for some distortion of the input before measuring accuracy.
We would like to define “natural” distortions of a database, that are meaningful for the function in question.
For many functions, removing a few entries (say, outliers) would be a natural distortion. On the other hand,
adding new entries – even just one – is often not a reasonable distortion. As such, distortion is defined not
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using a metric over databases, but a quasi-metric (which is not required to be symmetric). We shall use
quasi-metrics with range R≥0 ∪ {∞}, where ∞ indicates that one database cannot be distorted into another
one.

Definition 6 (Measure of Distortion). Ameasure of distortion on a set X is a function ∂ : X×X → R≥0∪{∞}
which forms a quasi-metric over X .

An important example of a measure of distortion is ∂drop. It is defined when each element in X is a finite
multiset over a ground set G. Formally, x ∈ X is a function x : G → N that outputs the multiplicity of each
element of G in x. Then, for finite x,x′ ∈ X , we define

∂drop(x,x′) :=

{∑
g∈G x(g)−x′(g)∑

g∈G x(g) if ∀g ∈ G,x(g) ≥ x′(g),

∞ otherwise.
(5)

That is, ∂drop(x,x′) measures the fraction of elements in x that are to be dropped for it to become x′ (unless
x′ cannot be derived thus). We present other useful examples of measures of distortion in Section 5.1.5,
which also allow moving the data points (when G is a metric-space).

Informally, flexible accuracy with a distortion bound α guarantees that on input x, a mechanism shall
produce an output that corresponds to f(x′) for some x′ such that ∂(x,x′) ≤ α. In addition to such input
distortion, we may allow the output to be also probably approximately correct, with an approximation error
parameter β and an error probability parameter γ. Formally, the probabilistic approximation guarantee of
the output is given as a bound of β on a γ-lossy ∞-Wasserstein distance.

Definition 7 ((α, β, γ)-accuracy). Let ∂ be a measure of distortion on a set X and f : X → Y be a
randomized function such that Y admits a metric. A mechanismM is said to be (α, β, γ)-accurate for f with
respect to ∂, if for each x ∈ X , there is a random variable X ′ with support contained in {x′|∂(x,x′) ≤ α}
such that W∞γ (f(X ′),M(x)) ≤ β.

Flexible accuracy generalizes existing accuracy definitions. In particular:

• As mentioned in Section 3.1, (0, β, γ)-accuracy already extends the PAC guarantees.
• (α, 0, 0)-accuracy for specific functions like median was implicitly used in other contexts in the DP

literature [BSU16].
• Blum et al. [BLR13] introduced usefulness to measure accuracy with respect to a “perturbed” function.
While adequate for the function classes they considered (half-space queries, range queries etc.), it is not
applicable to queries like maximum. Flexible accuracy generalizes usefulness (see Section 5.1.6).

As we show later, flexible accuracy lets us develop DP mechanisms for highly sensitive functions (e.g.,
max), for which existing DP mechanisms offered only limited, if not vacuous, guarantees.

3.3 Robust Privacy
We define a mechanism whose output is in a metric space to be robustly private if, roughly, it holds that
whenever two input distributions result in output distributions that are close in Wasserstein distance, then
the output distributions are also “indistinguishable.” Unlike in the definition of differential privacy, where an
input neighborhood is specified, here the neighborhood is implicitly defined by the mechanism itself.

To understand robust privacy, consider utility of a mechanism as being unaffected by small perturbations
of the output. Now, the output of the mechanism may contain hints as to the input, which do not contribute to
its utility. Robust privacy deals with removing such “non-utile signals” in the output. In general, modifying the
mechanism to remove these hints could also result in degradation of the utility, and render more information
non-utile. A robust mechanism could be seen as a fixed point of this iteration of removing non-utile signals.

Before formally defining robust privacy, we define closeness and indistinguishability of two distributions.
Below, θ, ρ, ε, δ ∈ R≥0, with δ, θ ≤ 1.
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Definition 8 ((ρ, θ)-closeness, (ε, δ)-indistinguishability). A pair of distributions D0 and D1 over a set Y
with a metric d are said to be (ρ, θ)-close w.r.t. d if W∞θ (D0, D1) ≤ ρ (where W∞θ is defined w.r.t. d). D0

and D1 are said to be (ε, δ)-indistinguishable if for all measurable subsets S ⊆ Y , and b ∈ {0, 1}, it holds that
Pry←Db [y ∈ S] ≤ eε · Pry←D1−b [y ∈ S] + δ.

Closeness models that the two distributions are almost equally useful in all applications that are robust
to small perturbations (e.g., the application does not rely on steganographic information encoded in the less
significant digits). The definition of indistinguishability above is as used in differential privacy (Definition 2):
a mechanismM is (ε, δ)-DP iff for all x ∼ x′,M(x) andM(x′) are (ε, δ)-indistinguishable.

For a distribution P over X , we writeM(P ) to denote the output distribution ofM when its input is
drawn from P .

Definition 9 ((ρ, θ, ε, δ)-robust privacy). A mechanismM : X → Y is said to be (ρ, θ, ε, δ)-robustly private
w.r.t. a metric d over Y if, for all distributions P,Q over X such thatM(P ) andM(Q) are (ρ, θ)-close w.r.t.
d,M(P ) andM(Q) are also (ε, δ)-indistinguishable.

We remark that by only referring to the output ofM rather than a desired function f , the definition of
robust privacy avoids baking in a specific notion of accuracy into it. Thus, as in the case of DP, it can be
used in combination with separately defined notions of accuracy. Further, again like DP, this definition does
not rely on data distributions (in contrast with the distributional privacy notion of [BLR13]).

4 Composition Theorems
It is often convenient to design a mechanism as the function composition of two mechanisms,M =M2 ◦M1.
We present “composition theorems” which yield flexible accuracy, differential privacy, and robust privacy
guarantees forM in terms of those forM1 andM2.

4.1 Flexible Accuracy Under Composition
As we shall need distortion measure between two distributions in our accuracy guarantees, it is rather useful
to extend the distortion measure to distributions. This can be done in same way as W∞, but with respect to
a quasi-metric rather than a metric.

Definition 10 (Extension of a Measure of Distortion to Distributions). For a measure of distortion ∂ over a
set X , we define ∂̂ as its extension to distribution, which maps a pair of distributions P,Q over X to a real
number as

∂̂(P,Q) = inf
φ∈Φ0(P,Q)

sup
(x,y):

φ(x,y)6=0

∂(x, y).

If P is a point distribution with all its mass on a point x, we denote ∂̂(P,Q) as ∂̂(x,Q).

The following lemmas, proven in Appendix B.1, show that flexible accuracy w.r.t. ∂ implies a similar
condition w.r.t. ∂̂.

Lemma 4.1. If ∂ is a measure of distortion over A, then ∂̂ is a quasi-metric.

Lemma 4.2. IfM : A→ B is an (α, β, γ)-accurate mechanism for f w.r.t. ∂, then for any random variable
X over A, there is a random variable X∗ such that

∂̂(X,X∗) ≤ α, W∞γ (f(X∗),M(X)) ≤ β.

Now we define two new sensitivity notions: distortion sensitivity for a function and error sensitivity for a
mechanism. These notions will be used in our composition theorem for flexible accuracy.
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Definition 11 (Distortion sensitivity). Let f : A→ B be a randomized function where B admits Wasserstein
distances. Let ∂1, ∂2 be measures of distortion on A,B respectively. Then, the distortion-sensitivity of f
w.r.t. (∂1, ∂2) and θ ∈ [0, 1] and ω ≥ 0, is defined as the function σθ,ωf : R≥0 ∪ {∞} → R≥0 ∪ {∞} given by

σθ,ωf (α) = sup
x,Y :

∂̂2(f(x),Y )≤α

inf
X:

W∞θ (f(X),Y )≤ω

∂̂1(x,X) (6)

where x ∈ A, and the random variables X and Y are distributed over A and B, respectively. Above, infimum
over an empty set is defined to be ∞.

In all the applications of our main results in this paper, we apply distortion sensitivity with θ = ω = 0.
So, for simplicity, we write σθf to denote σθ,0f and σf to denote σ0,0

f .
To intuitively understand the notion of distortion sensitivity, assume θ = ω = 0. With this, if a function f

has distortion sensitivity σf , then arbitrarily distorting f(x) within an α radius can be modeled as distorting
x within a σf (α) radius.

Remark 4.1. The distortion sensitivity of the identity function f : A → A with respect to (∂̂, ∂̂) for any
distortion measure ∂̂ over A satisfies σf (α) ≤ α.

Definition 12 (Error sensitivity). LetM : A→ B be any mechanism for a function f : A→ B, where both
A and B have associated Wasserstein distances. Let ∂̂ be a measure of distortion on A. Then, for α2, γ2 ≥ 0,
the error-sensitivity τα2,γ2

M : R≥0 × [0, 1]→ R≥0 ofM w.r.t. f is defined as:

τα2,γ2

M,f (β1, γ1) = sup
X,X′:W∞γ1

(X,X′)≤β1

inf
Y :∂̂(X′,Y )≤α2

W∞γ2
(M(X), f(Y )). (7)

In other words, if τα2,γ2

M,f (β1, γ1) = β2, then for distributions X,X ′ over A which are (β1, γ1)-close to each
other, one can α2-distort X ′ to Y in such a way thatM(X) and f(Y ) are (β2, γ2)-close to each other. Note
that τM,f generalizes the parameters of flexible accuracy: Any mechanismM for computing a function f is
(α, τα,γM,f (0, 0), γ)-accurate.

We need the following lemma, shown in Appendix B.1, to prove our composition theorem for flexible
accuracy.

Lemma 4.3. Suppose f : A→ B has distortion sensitivity σθ,ωf , w.r.t. (∂1, ∂2). Then, for random variables
X0 over A, and Y over B such that ∂̂2(f(X0), Y ) ≤ α, there exists a distribution X over A such that
W∞θ (f(X), Y ) ≤ ω and ∂̂1(X0, X) ≤ σθ,ωf (α).

Having defined the distortion and error sensitivities of a mechanism, we shall now see how they play in a
composition M2 ◦M1 for f2 ◦ f1 where M1,M2 are mechanisms with (α, β, γ) accuracy guarantees.

Theorem 4.1 (Flexible Accuracy Composition). Let M1 : A → B and M2 : B → C be mechanisms,
respectively with (α1, β1, γ1)-accuracy for f1 : A→ B and τM2,f2

error sensitivity for f2 : B → C, with respect
to measures of distortion ∂1, ∂2 defined on A,B and metrics d1, d2 defined on B,C respectively. Then, for
any θ ∈ [0, 1], ω ≥ 0, α2 ≥ 0 and γ2 ∈ [0, 1], the mechanism M2 ◦M1 : A→ C is (α, β, γ)-accurate for the
function f2 ◦ f1 w.r.t. ∂1 and d2, where α = α1 + σθ,ωf1

(α2), β = τα2,γ2

M2,f2
(β1, γ1) + τ0,θ

f2,f2
(ω, θ), and γ = γ2 + θ.

Theorem 4.1 is a general composition theorem for flexible accuracy. In all the applications in this paper,
we use a simplified version of the above composition theorem with θ = ω = 0. An illustration of how the
composition theorem works is given as a pebbling game in Figure 1.

Proof of Theorem 4.1. To compare f2 ◦ f1 andM2 ◦M1, we consider the hybrid mechanismM2 ◦ f1, For a
given element x ∈ A, sinceM1 is (α1, β1, γ1)-accurate mechanism for f1, there exists a random variable X ′
with distribution X ′ such that,

∂̂1(x,X ′) ≤ α1 (8)
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M1

f1

f1

M2

f2

M1

f1

α1 (β1, γ1)

α1 (β1, γ1)

α2σf1(α2)

f1

f1

σf1(α) α

M2

f2

α2

(β1, γ1)
(β2, γ2)
β2 = τα2,γ2

M2, f2(β1, γ1)

(β2, γ2)

Accuracy of  w.r.t.  M1 f1 Error Sensitivity of  w.r.t.  M2 f2

Distortion Sensitivity of  f1 Accuracy of  w.r.t.   M2 ∘ M1 f2 ∘ f1

Figure 1: An illustration of the composition theorem, Theorem 4.1. Dotted arrows indicate closeness in
terms of distortion between histograms (or distributions thereof), and the solid arrows indicate closeness
in terms of lossy Wasserstein distance. Each figure shows the corresponding guarantee (accuracy, error
sensitivity or distortion sensitivity) as a pebbling game: The white boxes with black pebbles corresponds to
given histograms, and the yellow boxes indicate histograms that are guaranteed to exist, such that the given
closeness relations hold. This allows those boxes to be pebbled. Accuracy guarantee of M2 ◦M1 is derived
by first applying the pebbling rule of accuracy of M1 (to obtain the purple pebbles), then that of the error
sensitivity of M2 (to get the pink pebbles) and finally using the pebbling rule of the distortion sensitivity of
f1 to pebble the remaining yellow box.

W∞γ1
(f1(X ′),M1(x)) ≤ β1. (9)

Now, applying the mechanism M2 on M1(x), we incur an overall error by at most τα2,γ2

M2,f2
(β1, γ1) to the

output of function f2 over a distorted input (see Definition 12). Therefore, there exists a random variable Y ∗
such that,

∂̂2(f1(X ′), Y ∗) ≤ α2, (10)
W∞γ2

(f2(Y ∗),M2(M1(x))) ≤ τα2,γ2

M2,f2
(β1, γ1) (11)

From (10) and Lemma 4.3, there exists X over A such that

∂̂1(X ′, X) ≤ σθ,ωf1
(α2) (12)

W∞θ (f1(X), Y ∗) ≤ ω. (13)

9



Now by Lemma 4.1, since ∂1 being a quasi-metric, so is ∂̂1. Hence, combined with (8), we have

∂̂1(x,X) ≤ α1 + σθ,ωf1
(α2). (14)

Now, using triangle inequality from Lemma 3.1, we can write

W∞γ2+θ(f2(f1(X)),M2(M1(x))) ≤W∞γ2
(f2(Y ∗),M2(M1(x)))

+W∞θ (f2(f1(X)), f2(Y ∗)) (15)

We can bound the first term on the RHS of (15) using (11). This yields

W∞γ2+θ(f2(f1(X)),M2(M1(x))) ≤ τα2,γ2

M2,f2
(β1, γ1) +W∞θ (f2(f1(X)), f2(Y ∗)). (16)

Note that we haveW∞θ (f1(X), Y ∗) ≤ ω from (13). Applying f2 on f1(X) and Y ∗ and using Definition 12 gives
W∞θ (f2(f1(X)), f2(Y ∗)) ≤ τ0,θ

f2,f2
(ω, θ). Substituting this back in (16) givesW∞γ2+θ(f2(f1(X)),M2(M1(x))) ≤

τα2,γ2

M2,f2
(β1, γ1) + τ0,θ

f2,f2
(ω, θ). This, together with (14), concludes the proof of Theorem 4.1.

4.2 Differential Privacy and Robust Privacy Under Composition
We prove “pre-processing” theorems for both differential privacy as well as robust privacy. The pre-processing
theorem for DP can be viewed as complementing the “post-processing” theorem for DP (see [DR14, Proposition
2.1]), which states that ifM1 is (ε, δ)-DP, then for any mechanismM2, the composed mechanismM2 ◦M1

would remain (ε, δ)-DP. Our pre-processing theorem for DP states that if M2 is private, then so would
M2 ◦M1 be (i.e., pre-processing does not hurt privacy), provided thatM1 is well behaved.Following is a
notion of being well-behaved that suffices for our purposes.

Definition 13 (Neighborhood preserving Mechanism). A mechanismM : A→ B is neighborhood preserving
w.r.t. neighborhood relations ∼A over A and ∼B over B, if for all x, y ∈ A s.t. x ∼A y, there exists a pair of
jointly distributed random variables (X,Y ) s.t. X =M(x), Y =M(y), and Pr[X ∼B Y ] = 1.

Theorem 4.2 (Differential Privacy Composition). LetM1 : A→ B andM2 : B → C be any two mechanisms.
IfM1 is neighborhood-preserving w.r.t. neighborhood relations ∼A and ∼B over A and B, respectively, and
M2 is (ε, δ)-DP w.r.t. ∼B, thenM2 ◦M1 : A→ C is (ε, δ)-DP w.r.t. ∼A.

Proof sketch. Since M1 is a neighborhood-preserving mechanism, two elements which are neighbors in
the input space of M1 are also neighbors in the input space of M2. Thus, for any two neighbors x, y ∈ A,
M2 ◦M1(x) andM2 ◦M1(y) are (ε, δ)-indistinguishable. We formalize this intuition and provide a complete
proof in Appendix B.2. �

Theorem 4.3 (Robust Privacy Composition). LetM1 : A→ B andM2 : B → C be any two mechanisms.
IfM2 is (ρ, θ, ε, δ)-robustly private w.r.t. a metric d, thenM2 ◦M1 is also (ρ, θ, ε, δ)-robustly private w.r.t.
the metric d.

Proof. Since robust privacy is defined entirely in terms of the output distributions, it is always preserved
under pre-processing. In the following, we make this argument formal.

In order to prove that M2 ◦ M1 is (ρ, θ, ε, δ)-robustly private, we need to show that for any two
input distributions P and Q, if M2 ◦ M1(P ) and M2 ◦ M1(Q) are (ρ, θ)-close, then they are also (ε, δ)-
indistinguishable. Let us denote M1(P ) and M1(Q) by P ′ and Q′, respectively. We now need to prove
that if M2(P ′) and M2(Q′) are (ρ, θ)-close, then they are also (ε, δ)-indistinguishable. But since M2 is
(ρ, θ, ε, δ)-robustly private, this statement trivially holds by definition of robust privacy (see Definition 9).

10



5 Mechanisms
In this section, we propose and analyze concrete mechanisms for several important functions. First, we
present a new DP mechanism for the histogram function with flexible accuracy and then extend it to any
“histogram based statistic” (e.g., max and support).

We also show that by using appropriate measures of distortion, all the error in the above mechanism can
be attributed to input distortion, allowing it to be used to obtain DP mechanisms for arbitrary function
families via composition. This yields DP mechanisms for complex (and highly sensitive) hypotheses classes
in machine learning like maximum-margin separators, provided that the accompanying flexible accuracy
guarantee is acceptable. Finally, we also note that, mechanisms (e.g., for half-space queries) which required
[BLR13] to introduce the accuracy notion of usefulness can be cast in the framework of flexible accuracy.

For clear exposition of ideas, we defer the discussion on robust privacy of these mechanisms to Section 5.2,
where we present a general compiler that takes any mechanism (over the reals) and, via composition, makes
it robustly private, without (significantly) degrading its flexible accuracy or differential privacy guarantees.

We also present a mechanism for differentially-private sampling that also achieves our new notions of
flexible accuracy and robust privacy in Section 5.3.

5.1 Exploiting Flexible Accuracy
Multisets form an abstraction of datasets that is widely applicable. Each element in the multiset can be a
vector encoding attributes (including labels), or more abstractly, belongs to a ground set G. Formally, a
multiset x over the ground set G is a function x : G → N that outputs the multiplicity of elements in G. The
size and support of x are defined as |x| :=

∑
i∈G x(i) and supp(x) := {i ∈ G : x(i) 6= 0}, respectively. We

shall be interested in finite-sized multisets, which we refer to as histograms. We denote the domain of all
histograms over G by HG . For DP, the standard notion of neighborhood among histograms is defined as
x ∼hist x

′ iff
∑
i∈G |x(i)− x′(i)| ≤ 1. Later, we shall also require G to be a metric space, endowed with a

metric d.
We start with a new mechanism, the truncated Laplace mechanism,Mτ,G

trLap : HG → HG (Construction 1)
for the identity function. It simply decreases the multiplicity of each element by a bounded quantity sampled
from a carefully chosen distribution. Our choice of this noise distribution – a truncated Laplace distribution –
lets us prove the following DP and accuracy guarantees.

5.1.1 Derivation of the Truncated Laplace Mechanism

As a warm up, consider a Boolean task of reporting whether a given set is empty or not. The only input
distortion we are allowed is to drop some elements – i.e., we cannot report an empty set as non-empty. Since
we seek to limit the extent of distortion, let us add a constraint that if a set has q or more elements, then with
probability 1 (or very close to 1) we should report the set as being non-empty. Let pk denote the probability
that a set of size k ∈ [0, q] is reported as being non-empty, so that p0 = 0 and pq = 1.

Now, for privacy, we consider two sets to be neighbors if their sizes differ by at most one. For our scheme
to be (ε, δ)-differential private, we require

pk ≤ pk+1e
ε + δ, pk+1 ≤ pkeε + δ

(1− pk) ≤ (1− pk+1)eε + δ, (1− pk+1) ≤ (1− pk)eε + δ,

for 0 ≤ k < q, with boundary conditions p0 = 0 and pq = 1. We are interested in simultaneously reducing ε
and δ subject to the above constraints. The pareto-optimal (ε, δ) turn out to be given by δ

(
e(q/2)ε−1
eε−1

)
= 1

2 ,
with corresponding values of pk being given by

pk = δ

(
ekε − 1

eε − 1

)
, k ≤ q/2 pk = 1− pq−k, k ≥ q/2. (17)
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Figure 2: The probability function in the optimal mechanism for reporting whether a set is empty or not (left),
which can be interpreted as adding a noise according to a truncated Laplace distribution with a negative
mean (right).

In particular, we may choose ε = O
(

1√
q

)
, and δ = O

(
e−
√
q/2

√
q

)
, providing a useful privacy guarantee when

q is sufficiently large.
In Figure 2, on the left, we plot the probabilities pk against k/q for this choice of (ε, δ).
To generalize this Boolean mechanism to a full-fledged histogram mechanism, we reinterpret it. In a

histogram mechanism, where again, the distortion allowed in the input is to only drop elements, we can add
a negative noise to the count in each “bar” of the histogram. (If the reduced count is negative, we report it
as 0.) We seek a noise function such that the probability of the reported count being 0 (when the actual
count is k ∈ [0, q]) is the same as that of the above mechanism reporting that a set of size k is empty. That
is, the probability of adding a noise ν ≤ −k should be 1− pk. That is, if the noise distribution is given by
the density function σ, we require that∫ −k

−q
σ(t) · dt = 1− pk (18)

σ(t) = 0 for t 6∈ [−q, 0]

Substituting the expression for pk from (17), and then differentiating this identity with respect to k, we
obtain the following expression for σ(t), for t ∈ [−q, 0]:

σ(t) =
1

1− e−εq/2
Lap(t | −q

2
,

1

ε
),

where Lap is the Laplace noise distribution with mean − q2 and scale parameter 1/ε. The plot on the right
side in Figure 2 shows this noise distribution.

The final histogram mechanism (Construction 1) is derived by adding this noise to each bar of the
histogram, followed by rounding to the nearest integer (or to 0, if it is negative).

5.1.2 The Truncated Laplace Mechanism

We describe the truncated Laplace mechanism (Construction 1) in Figure 3. The goal of this mechanism is to
output a histogram by distorting the given histogram as little as possible, while obtaining a DP guarantee.
The following theorem summarizes the privacy and flexible accuracy guarantees achieved byMτ,G

trLap.

Theorem 5.1. On histograms of size at least n, i.e., |x| > n, Mτ,G
trLap from Construction 1 satisfies the

following guarantees:

• Mτ,G
trLap is

(
O( 1√

τn
), e−Ω(

√
τn)
)
-differentially private w.r.t. ∼hist, and
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• If |supp(x)| ≤ t, thenMτ,G
trLap is (τt, 0, 0)-accurate for the identity function, w.r.t. the distortion measure

∂drop.

Note that, since we obtain (α, 0, 0)-accuracy in the result above, we did not use any metric over HG
for stating it. This result shows that as the database size grows, Mτ,G

trLap can be used to obtain (ε, δ)-DP
guarantee where ε tends to 0. The following version of this result, stated for Mτ,ε,G

trLap, allows setting the
parameter ε directly (and is used in our empirical comparisons):

Theorem 5.2. On inputs x s.t. |x| ≥ 2
ετ e
− ετ2 ,Mτ,ε,G

trLap is
(
ε, eε−1

2(eεnτ/2−1)

)
-DP w.r.t. ∼hist.

Both these results are proved in Appendix C. The proofs rely on the following lemma, whose proof we
sketch below.

Lemma 5.1. For any ν ≥ 0 and on inputs x s.t. |x| ≥ 2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
,Mτ,ε,G

trLap is
(

(1 + ν)ε, eε−1
2(eεq/2−1)

)
-

DP w.r.t. ∼hist.

Proof. We shall in fact prove that a mechanism which outputs ŷ with ŷ(i) := x(i) + zi (without rounding,
and without replacing negative values with 0) is already differentially private as desired. Then, since the
actual mechanism is a post-processing of this mechanism, it will also be differentially private with the same
parameters.

Let x and x′ be two neighbouring histograms. For simplicity, for every i ∈ G, define xi := x(i) and
x′i := x′(i). Since x ∼ x′, there exists a i∗ ∈ G such that ∀i 6= i∗, x(i) = x′(i∗), and |x(i∗) − x′(i∗)| = 1,
which implies that there exists i∗ ∈ G such that |xi∗ − x′i∗ | = 1 and that xi = x′i for every i 6= G \ {i∗}.
Without loss of generality, assume that xi∗ = x′i∗ + 1. Let |x| = |x′| + 1 = n + 1. Let q = τ(n + 1) and
q′ = τn. For simplicity of notation, we will denote supp(y) by Gy for any y ∈ {x,x′}.

In order to prove the lemma, for every subset S ⊆ HG , we need to show that

Pr[Mτ,ε,G
trLap(x) ∈ S] ≤ e(1+ν)ε Pr[Mτ,ε,G

trLap(x′) ∈ S] + δ, (19)

Pr[Mτ,ε,G
trLap(x′) ∈ S] ≤ e(1+ν)ε Pr[Mτ,ε,G

trLap(x) ∈ S] + δ, (20)

where δ = eε−1
2(eεq/2−1)

. We only prove (20); (19) can be shown similarly.

Fix an arbitrary subset S ⊆ HG . Since Mτ,ε,G
trLap adds independent noise to each bar of the histogram

according to Dq(z), we have that for every s ∈ HG , we have Mτ,ε,G
trLap(x)(s) =

∏
i∈Gx Dq(si − xi) where

si = s(i). Thus we have

Pr[Mτ,ε,G
trLap(x) ∈ S] =

∫
S

[ ∏
i∈Gx

Dq(si − xi)
]

ds (21)

Pr[Mτ,ε,G
trLap(x′) ∈ S] =

∫
S

[ ∏
i∈Gx′

Dq′(si − x′i)
]

ds (22)

Now, using the fact that ∀k 6= i∗, nk = n′k and xi∗ = x′i∗ + 1, we partition S into 3 disjoint sets:

1. S0 := {s ∈ HG : si∗ − x′i∗ < −q′} ∪ {s ∈ HG : 0 < si∗ − x′i∗}.
2. S1 := {s ∈ HG : −q′ ≤ si∗ − x′i∗ < −q′ + (1− τ)}.
3. S2 := {s ∈ HG : −q′ + (1− τ) ≤ si∗ − x′i∗ ≤ 0)}.

We first prove the following claim in Appendix C:

Claim 5.1. Whenever s ∈ Sk, k ∈ {0, 2}, we have Dq′(si∗ − x′i∗) ≤ e(1+ν)εDq(si∗ − xi∗), provided n ≥
2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
.
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Construction 1 (Truncated Laplace Mechanism,Mτ,ε,G
trLap).

Parameters: Threshold τ ∈ [0, 1), a ground set G, and ε > 0.
Input: A histogram, x : G → N.
Output: A histogram, y : G → N.

1: for all g ∈ G do
2: zg ← Dq, where q := τ |x| and

Dq(z) =

{
1

1−e−ε
q
2

Lap(z | − q2 ,
1
ε ) if z ∈ [−q, 0],

0 otherwise.

3: y(g) := max(0, bx(g) + zge) . zg need not be computed for g s.t. x(g) = 0

4: Return y

MechanismMτ,G
trLap on input x returnsM

τ, 1√
τ|x| ,G

trLap (x).

Figure 3: Truncated Laplace mechanism for computing Histogram.

Note that this cannot not hold for S1, as for s ∈ S1, we have Dq(si∗ − xi∗) = 0 and Dq′(si∗ − x′i∗) > 0,
which does not satisfy the above inequality.

Now, define S−1 := S \ S1. We shall prove the following two claims in Appendix C:

Claim 5.2. Pr[Mτ,ε,G
trLap(x′) ∈ S−1] ≤ e(1+ν)ε Pr[Mτ,ε,G

trLap(x) ∈ S−1]

Claim 5.3. Pr[Mτ,ε,G
trLap(x′) ∈ S1] ≤ δ, where δ = eε−1

2(eεq/2−1)
.

These together imply (19) as follows:

Pr[Mτ,ε,G
trLap(x′) ∈ S] = Pr[Mτ,ε,G

trLap(x′) ∈ S−1] + Pr[Mτ,ε,G
trLap(x′) ∈ S1]

≤ e(1+ν)ε Pr[Mτ,ε,G
trLap(x) ∈ S−1] + δ

≤ e(1+ν)ε Pr[Mτ,ε,G
trLap(x) ∈ S] + δ

This completes the proof of Lemma 5.1.

5.1.3 Bucketed Truncated Laplace Mechanism

For a given τ , the parameters in Theorem 5.1 improve with the input size n, as long as the support size
t remains constant. To handle larger supports, this mechanism can be composed with a simple bucketing
mechanism which reduces the support size to t. Here, for simplicity, we present our results for G = [0, B)d,
but they can all be generalized to other metric spaces. Our bucketing mechanismMt,[0,B)d

buc (Construction 2)
and the final bucketed-histogram mechanismMα,β,[0,B)d

bucHist (Construction 3) is presented in Figure 4.
Note thatMα,β,[0,B)d

bucHist =Mτ,[0,B)d

trLap ◦Mt,[0,B)d

buc is defined as a composition of two mechanism. So, in order

to prove the accuracy and privacy guarantees ofMα,β,[0,B)d

bucHist using our composition theorems Theorem 4.1 and
Theorem 4.2, respectively, first we need to show some properties ofMt,[0,B)d

buc andMτ,[0,B)d

trLap , which we show

below. Claim 5.4 proves thatMt,[0,B)d

buc is a neighborhood-preserving mechanism and Claim 5.5 establishes
its guarantees for the identity function; Claim 5.6 and Claim 5.7 bound the distortion sensitivity of the
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Construction 2 (Bucketing Mechanism,Mt,[0,B)d

buc ).

Parameters: Desired number of buckets t, range of inputs [0, B)d.
Input: A histogram x with elements in [0, B)d.
Output: A histogram y with elements in {Bt (i− 1

2 ) : i ∈ [t]} with |y| = |x|.

1: for all i = (i1, . . . , id) ∈ [t
1
d ]d do

2: y
(
B(i1− 1

2 )

t
1
d

, . . . ,
B(id− 1

2 )

t
1
d

)
:=
∑

(g1,...,gd):gj∈
[
B(ij−1)

t
1
d

,
Bij

t
1
d

)
,∀j∈[d]

x(g)

3: Return y . y(v) = 0 by default

Construction 3 (BucketHist,Mα,β,[0,B)d

bucHist ).

Parameters: Accuracy parameters α, β; range of inputs [0, B)d.
Input: A histogram x with elements in [0, B)d.
Output: A histogram over [0, B)d.

1: t := d( B2β )de, τ := α/t

2: ReturnMτ,[0,B)d

trLap ◦Mt,[0,B)d

buc (x)

Figure 4: Mechanisms for computing Histogram.

histogram function and the error sensitivity of the truncated Laplace mechanism, respectively. All these
claims are proved in Appendix C.

Claim 5.4. Mt,[0,B)d

buc is a neighborhood-preserving mechanism, i.e., for any two histograms x,x′ such that

x ∼hist x
′, we haveMt,[0,B)d

buc (x) ∼hist Mt,[0,B)d

buc (x′).

SinceMt,[0,B)d

buc introduces error in the output space, we need a metric over H[0,B)d to analyze its flexible
accuracy. We use the following natural metic dhist over H[0,B)d , which is defined as dhist(y,y

′) := W∞( y
|y| ,

y′

|y′| ).
Here, y

|y| is treated as a probability distribution.

Claim 5.5. On all inputs x, Mt,[0,B)d

buc is
(

0, B
√
d

2t
1
d
, 0
)
-accurate for the identity function w.r.t the metric

dhist and any measure of distortion.

Claim 5.6. The distortion sensitivity of the histogram identity function w.r.t. (∂drop, ∂drop) at θ = ω = 0 is
the identity function.

Claim 5.7. For any β ∈ R and on inputs restricted to t bars, we have τα,0
Mτ,ε,G

trLap,fid
(β, 0) ≤ β w.r.t. ∂drop where

α = τt and fid is the identity function.

Now we ready to prove the accuracy and privacy guarantees of theMα,β,[0,B)d

bucHist mechanism.

Theorem 5.3. On histograms of size at least n,Mα,β,[0,B)d

bucHist is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP w.r.t. ∼hist, where

σ = α( 2β
B )d, and (α, β, 0)-accurate for the identity function, w.r.t. the distortion measure ∂drop and metric

dhist.
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Proof. We have Mα,β,[0,B)d

bucHist = Mτ,[0,B)d

trLap ◦ Mt,[0,B)d

buc , with t = d( B2β )de, τ = α
t . Let σ = τ = α( 2β

B )d, and

let fid (which is the identity function) denote the underlying function thatMt,[0,B)d

buc computes. Note that
Mα,β,[0,B)d

bucHist ,Mτ,[0,B)d

trLap , andMt,[0,B)d

buc compute the same underlying function fid. First we prove the privacy
guarantee and the show the flexible accuracy guarantee.

• Differential privacy. We have from Claim 5.4 thatMt,[0,B)d

buc is a neighborhood-preserving mechanism
w.r.t. the neighborhood relation ∼hist. Note thatMt,[0,B)d

buc outputs a histogram whose support size is at
most t. We also have from Theorem 5.1 thatMτ,[0,B)d

trLap on input histograms with support size at most t is

differentially-private with the required parameters. Now, it follows from Theorem 4.2 thatMα,β,[0,B)d

bucHist is(
O( 1√

σn
), e−Ω(

√
σn)
)
-differentially private w.r.t. ∼hist.

• Flexible accuracy. We have from Claim 5.5 thatMt,[0,B)d

buc is (0, β, 0)-accurate. We have from Claim 5.6
that σfid(α) = α for all α ≥ 0, i.e., fid has identity θ-distortion sensitivity for θ = 0. (We are taking
ω = θ = 0 in the definition of σθ,ωfid in Definition 11.)

Note that since Mτ,[0,B)d

trLap operates on input histograms with support size at most t, we have from

Theorem 5.1 that Mτ,[0,B)d

trLap is (τt, 0, 0)-accurate w.r.t. the distortion measure ∂drop and metric dhist(, ),
and (O( 1√

σn
), e−Ω(

√
σn))-differentially private.

By Claim 5.7, we have, τα,0
Mτ,[0,B)d

trLap ,fid
(β, 0) ≤ β. Also note that, since θ = ω = 0, we have that

τ0,θ

Mτ,ε,[0,B)d

trLap

(ω, θ) = 0.

Now, applying Theorem 4.1 toMα,β,[0,B)d

bucHist =Mτ,[0,B)d

trLap ◦Mt,[0,B)d

buc , we have thatMα,β,[0,B)d

bucHist is (α, β, 0)-
accurate.

This completes the proof of Theorem 5.3.

5.1.4 Histogram-Based-Statistics

Theorem 5.3 provides a powerful tool to obtain a DP mechanism for any deterministic histogram-based-statistic
fHBS : HG → A, simply by composingMα,β,[0,B)d

fHBS
= fHBS ◦Mα,β,[0,B)d

bucHist , as described in Construction 4 in
Figure 5. To analyze the flexible accuracy ofMfHBS

, we define the metric sensitivity function of fHBS:

Construction 4 (Histogram-Based-Statistics (HBS) Mechanism,Mα,β,[0,B)d

fHBS
).

Parameters: Accuracy parameters α, β; data range [0, B)d.
Input: A histogram x with elements in [0, B)d.
Output: Output of fHBS on x.

1: Return fHBS ◦Mα,β,[0,B)d

bucHist (x)

Figure 5: Mechanism for computing a deterministic histogram-based-statistic HBS defined over histograms.

Definition 14. The metric sensitivity of a histogram-based-statistic fHBS : H[0,B)d → A, is given by
∆fHBS

: R≥0 → R≥0, in terms of a metric dA over A,

∆fHBS
(β) = sup

x,x′∈H
[0,B)d

:dhist(x,x
′)≤β

dA(fHBS(x), fHBS(x′)). (23)
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We need the following lemma to establish the accuracy guarantees of our HBS mechanism in the proof of
Theorem 5.4 below.

Lemma 5.2. Let f : A → B be a deterministic function with dA, dB metrics defined in A,B, respectively.
Then we have,

sup
X,X′:

W∞(X,X′)≤β

W∞(f(X), f(X ′)) = sup
y,y′∈A:

dA(y,y′)≤β

dB(f(y), f(y′))

Theorem 5.4. On inputs of size at least n,Mα,β,[0,B)d

fHBS
is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP, where σ = α( 2β

B )d, and
(α,∆fHBS

(β), 0)-accurate for fHBS w.r.t. distortion ∂drop and metric dA.

Proof. SinceMα,β,[0,B)d

fHBS
= fHBS◦Mα,β,[0,B)d

bucHist is a composed mechanism, we will use our composition theorems
to establish its accuracy and privacy guarantees.

We have from Theorem 5.3 thatMα,β,[0,B)d

bucHist is (O( 1√
σn

), e−Ω(
√
σn))-DP, where σ = α( 2β

B )d, and (α, β, 0)-
accurate w.r.t. the distortion measure ∂drop and the metric dhist(·, ·). Trivially, by definition, fHBS is
(0, 0, 0)-accurate for computing fHBS.

Now we compute the parameters required for composition. Since α2 = 0 for composition, we trivially
have σ0

fid
(0) = 0, where fid is the identity function. (We are taking ω = θ = 0 in the definition of σθ,ωf1

in
Definition 11.)

The error-sensitivity of fHBS at required parameters is τ0,0
fHBS

(β, 0). We have,

τ0,0
fHBS

(β, 0) = sup
X,X′:

W∞(X,X′)≤β

inf
Y :

∂̂(X′,Y )≤0

W∞(fHBS(X), fHBS(Y ))

= sup
X,X′:

W∞(X,X′)≤β

W∞(fHBS(X), fHBS(X ′))

≤ sup
x,x′∈HG :

dhist(x,x
′)≤β

dA(fHBS(x), fHBS(x′)) (Using Lemma 5.2)

= ∆fHBS
(β)

Thus we have τ0,0
fHBS

(β, 0) ≤ ∆fHBS
(β). Also note that, since θ = ω = 0, we have that τ0,θ

Mτ,ε,G
trLap

(ω, θ) = 0.

Hence, by Theorem 4.1, the composed mechanismMα,β,B
fHBS

is (α,∆fHBS(β), 0)-accurate. For the privacy
guarantee, note that this composition can be viewed as a post processing over the histogram mechanism,
thusMα,β,B

fHBS
is also a (O( 1√

σn
), e−Ω(

√
σn))-differentially private mechanism for fHBS, where σ = α( 2β

B )d.

Examples of New Applications. Theorem 5.4 has direct applications to functions which have high
sensitivity (defined w.r.t. the neighborhood relation ∼), but low metric sensitivity. As examples of functions
for which no previous solutions offered non-trivial guarantees, consider fmax defined as fmax(x) := max{g :
g ∈ supp(x)}, and fsupp defined to be the same as supp. For fmax the metric over its range is the absolute
difference metric over R; for fsupp, we use a metric dsupp over the set of (finite) subsets of R, defined by
dsupp(X,Y ) := max {maxx∈X miny∈Y |x− y|, maxy∈Y minx∈X |x− y|}. (dsupp measures the farthest that a
point in one of the sets is from any point on the other set.) Hence, when fHBS is either of these functions, we
state the results in Corollary 5.1 and Corollary 5.2, respectively. Using the results, we can see that, e.g., for
any (small) constant 0 < α < 1, Mα,αB,B

fHBS
is a (O( 1√

n
), e−Ω(

√
n))-DP mechanism with (α, αB, 0) accuracy

w.r.t. ∂drop and the metric from above.

Corollary 5.1. On inputs of size at least n, Mα,β,[0,B)d

max is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP, where σ = α( 2β

B )d,
and (α, β, 0)-accurate w.r.t. the distortion measure ∂drop and the standard metric for R, for the function fmax.
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Proof. For any two histograms y, y′, by definition of dhist(, ) and fmax, we have |fmax(y) − fmax(y′)| ≤
dhist(y,y

′). Using this in (23) implies that ∆fmax(β) = β for every β ∈ R, i.e., ∆fmax is upper-bounded by
the identity function. Then, the corollary follows from Theorem 5.4, with fHBS = fmax.

Remark 5.1. By taking σ = 1
nε2 and β

B and d to be constants (which means that the output error β is a

constant fraction of the entire range B), we have that Mα,β,[0,B)d

max is an (ε, e−Ω( 1
2ε ))-differentially private

mechanism that works with a input distortion of α = O( 1
nε2 ), i.e., it drops O( 1

ε2 ) data points.

Corollary 5.2. On inputs of size at least n, Mα,β,[0,B)d

supp is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP, where σ = α( 2β

B )d,
and (α, β, 0)-accurate w.r.t. the distortion measure ∂drop and metric dsupp(·, ·) for the function fsupp.

Proof. For any two histograms y, y′, by definition of dhist(, ) and fsupp, we have, dsupp(fsupp(y), fsupp(y′)) ≤
dhist(y,y

′). Using this in (23) implies that ∆fsupp
(β) = β for every β ∈ R, i.e., ∆fsupp

is upper-bounded by
the identity function. Then, the corollary follows from Theorem 5.4, with fHBS = fsupp.

5.1.5 Further Applications: Beyond ∂drop

Useful variants of Theorem 5.4 can be obtained with measures of distortion other than ∂drop. In particular,
we define ∂mv (which is a metric, see Claim E.1) to allow moving the data points, and ∂ηdrmv (which is a
quasi-metric, see Claim E.3) to allow both dropping and moving, as follows:

∂mv(x,y) =

{
W∞( x

|x| ,
y
|y| ) if |x| = |y|

∞ otherwise
∂ηdrmv(x,y) = inf

z
(∂drop(x, z) + η · ∂mv(z,y)) .

The following theorem provides the guarantees obtained by using ∂ηdrmv as the distortion measure in any
deterministic histogram-based-statistic, and we prove it in Appendix E.

Theorem 5.5. For any deterministic histogram-based-statistic fHBS : H[0,B)d → A, there exists a mechanism

which, on inputs of size at least n, is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP, where σ = α

(
2β
B

)d
, and (α+ηβ, 0, 0)-accurate

for the identity function, w.r.t. the distortion measure ∂ηdrmv.

This is analogous to Theorem 5.4, but with the important difference that it does not refer to the metric
sensitivity of the function fHBS, and does not even require a metric over its codomain A. This makes this
result applicable to complex function families like maximum-margin separators or neural net classifiers.
However, the accuracy notion uses a measure of distortion that allows dropping a (small) fraction of the data
and (slightly) moving all data points, which may or may not be acceptable to all applications.

5.1.6 Usefulness [BLR13] vs. Flexible Accuracy

To express accuracy guarantees of their mechanisms, Blum et al. [BLR13] introduced a notion of (β, γ, ψ)-
usefulness that parallels (α, β, γ)-accuracy, except that ψ measures perturbation of the function rather than
input distortion. Indeed, mechanisms which are (β, γ, 0)-useful are (0, β, γ)-accurate (in [BLR13], such
mechanisms were given for interval queries). But even general usefulness can be translated to flexible accuracy
generically, by redefining the function to have an extra input parameter that specifies perturbation. Further,
the specific (β, γ, ψ)-useful DP mechanism of [BLR13] for half-space counting queries – with data points on
a unit sphere, and the perturbation of the function corresponded to rotating the half-space by ψ radians –
is (ψ, β, γ)-accurate for the same functions, w.r.t. the distortion ∂mv. This is because, the rotation of the
half-space can be modeled as moving all the points on the unit sphere by a distance of at most ψ.
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5.2 Mechanism for Robust Privacy
In this section, first we give a compiler that transforms any mechanism (whose range is real numbers) into a
robustly private mechanism that preserves its differential privacy and does not degrade the accuracy by much.
For simplicity, we consider the output space of the mechanisms to be R.

Theorem 5.6 (Robust privacy compiler). Suppose a mechanism M : A → R is (ε, δ)-DP and (α, β, γ)-
accurate for some function f : A→ R, w.r.t. distortion ∂ and metric d. Then, for any ρ ≥ 0, θ ∈ [0, 1], ε̂ > ln 2

and γ′ ∈ (γ, 1], there exists an (ε, δ)-DP mechanism M′ for f with (ρ, θ, ε̂, δ̂)-robust privacy w.r.t. d, and
(α, β + β′, γ′)-accuracy w.r.t. distortion ∂ and metric d, where δ̂ = θ(1 + ε̂

2 ) and β′ = 2ρ
ε̂−ln 2 ln 1

(γ′−γ) .

In order to prove Theorem 5.6, we first give a construction of a robust mechanism for the identity function
and state its guarantees in Theorem 5.7. We then give the proof of Theorem 5.6.

5.2.1 A Robustly Private Mechanism for the Identity Function over R

We now show that the Laplace mechanism stated in Section 2.1.1 for the identity function is also robust
and flexibly accurate. Specifically, we define Mid,b

Lap : R → R as follows: for any input y ∈ R, output
Mid,b

Lap(y) = y + Lap(b).

Theorem 5.7. For any θ, γ ∈ [0, 1] and ρ ≥ 0, Mid,b
Lap is (θ, ρ, ε, δ)-robust and (0, β, γ)-accurate w.r.t.

the absolute difference metric in R, and for all β1 ≥ 0, γ, γ1 > 0, has error sensitivity upper bounded as,
τ0,γ+γ1

Mb
Lap

(β1, γ1) ≤ β1 + β, where

ε =
2ρ

b
+ ln(2); δ =

ρθ

b(1− e− ρb )
; β = b ln(1/γ).

Theorem 5.7 follows from Lemma 5.3, Lemma 5.4, and Lemma 5.5 below.

Lemma 5.3. For any θ ∈ [0, 1] and ρ ≥ 0,Mid,b
Lap achieves

(
θ, ρ, 2ρb + ln(2), ρθ

b(1−e−
ρ
b )

)
-robustness.

Proof. For convenience, we prove this lemma for discrete input distributions only; the arguments can be
readily extended to continuous distributions.

Fix a θ ∈ [0, 1]. Suppose Q and Q′ denote two input distributions defined over a discrete subset U ⊆ R,
taking the value u ∈ U with probability Q(u) and Q′(u) respectively. Let P and P ′ denote the corresponding
output distributions ofMb

Lap. Also, let W
∞
θ (P, P ′) ≤ ρ.

Note that P (x) =
∑
u∈U Q(u)Lap(x|u, b). That is, P is a convex combination of Laplace distributions.

The same holds for P ′. Claim 5.8 below shows that such distributions are log-Lipschitz, and then Claim 5.9
establishes the robustness claimed in Lemma 5.3.

Claim 5.8. Suppose P is a distribution that is a convex combination of Laplace distributions {Lap(u, b) :

u ∈ U} for some (discrete) set U ⊆ R. Then, for every d ∈ R, we have P (x)
P (x+d) ∈ [e

−|d|
b , e

|d|
b ]. Equivalently,

ln(P ) is a 1
b -Lipschitz function.

Claim 5.9. Suppose two distributions P,Q (defined over the same alphabet) both satisfy the log-Lipschitz
condition given in Claim 5.8, and W∞θ (P,Q) ≤ ρ. Then P,Q satisfy the (ε, δ)-DP condition (i.e., for every
S ⊆ R, we have Prx←P [x ∈ S] ≤ eε Prx←Q[x ∈ S] + δ), where ε = 2ρ

b + ln(2) and δ = ρθ

b(1−e−
ρ
b )
.

Claim 5.8 and Claim 5.9 are proved in Appendix F.1.

Lemma 5.4. For every γ ∈ [0, 1],Mid,b
Lap is (0, β, γ)-accurate, where β = b ln( 1

γ ).
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Lemma 5.5. The error sensitivity ofMid,b
Lap has the following upper-bound for all β1, γ > γ1:

τ0,γ

Mb
Lap

(β1, γ1) ≤ β1 + b ln
( 1

γ − γ1

)
.

Lemma 5.4 and Lemma 5.5 are proved in Appendix F.2.
We now give the proof of Theorem 5.6.

Proof of Theorem 5.6. The mechanismM′ is given byMid,b
Lap ◦M. We use our composition theorems from

Section 4 and some simplifications to calculate the parameters ofM′. Note that all the parameters ofMid,b
Lap

required for our composition theorem are given by Theorem 5.7. The privacy and accuracy guarantees ofM′
given by the composition theorem are as follows:

• M′ is (ε, δ)-DP: SinceM is (ε, δ)-DP and post-processing preserves differential privacy [DR14, Proposition
2.1],Mid,b

Lap ◦M is also (ε, δ)-DP.
• M′ is (α, β + β′, γ′)-accurate, where β′ = b ln( 1

γ′−γ ): We get the result by applying Theorem 4.1 to
Mid,b

Lap ◦M, substituting the parameters ofMid,b
Lap andM and using σf (0) = 0.

• M′ has (ρ, θ, ε̂, δ̂)-robust privacy, where ε̂ = 2ρb + ln(2) and δ̂ = θ
ρ/b

1−e−ρ/b : SinceMid,b
Lap is (ρ, θ, ε̂, δ̂)-

robustly private and pre-processing preserves robust privacy (Theorem 4.3),Mid,b
Lap ◦M is also (ρ, θ, ε̂, δ̂)-

robustly private.

We can simplify the expression for δ by upper-bounding it using a better expression. Since x+ 1 ≥ x
1−e−x

holds for all x > 0,2 we can write δ̂ = θ
ρ/b

1−e−ρ/b ≤ θ(
ρ
b + 1). Note that while we only prove this for ρ

b > 0, this
holds for ρ

b = 0 too.
Now, we put the value of b in terms of ε̂. This gives us the following bound on δ̂:

δ ≤ θ(1 +
ρ

b
) = θ(1 +

ε̂− ln(2)

2
) ≤ θ(1− ln(2)

2
+
ε̂

2
) ≤ θ(1 +

ε̂

2
)

which is the required value.
Putting the value of b in β′ gives β′ = 2ρ

ε̂−ln 2 ln 1
(γ′−γ) , which is the required value. This completes the

proof of Theorem 5.6.

5.3 Mechanism for Private Sampling
Now we introduce differentially private sampling. For a given randomized function f : X → Y, where, for
each x ∈ X , f(x) is a probability distribution over Y, we would like to design a DP mechanismM s.t., for
every x ∈ X ,M(x) is close to the distribution f(x). For this we extend the definition of (neighborhood)
sensitivity to sampling queries.

Definition 15 (Parameterized Sensitivity of a Randomized Query). For θ ∈ [0, 1], we define θ-sensitivity of
a randomized function f , denoted by Sθ(f), as:

Sθ(f) := max
x,x′∈X :
x∼x′

W∞θ (f(x), f(x′)). (24)

Now we give a natural extension of the Laplace mechanism given in Section 2.1.1 that can be applied
to obtain differential privacy for a randomized queries. For a randomized query f : X → R, we define
Mf,b

Lap : X → R as follows: for an input x ∈ X , sample y ∼ f(x) and z ∼ Lap(b), and output y + z.

2Note that ex ≥ x+ 1 holds for every x > 0. Now x+ 1 ≥ x
1−e−x

holds from the following sequence of equivalent expressions:
ex ≥ x+ 1⇔ e−x ≤ 1

x+1
⇔ 1− e−x ≥ x

x+1
⇔ x+ 1 ≥ x

1−e−x
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To make the notation different from that of deterministic functions, for convenience, we denote the above
Laplace mechanism for a randomized query f byMf,b

rand, which, for any input x, first samples y ∼ f(x) and
z ∼ Lap(b), and then outputs y + z.

The following theorem establishes the robustness, privacy, and accuracy guarantees ofMf,b
rand.

Theorem 5.8. For a randomized query f ,Mf,b
rand is

1. ∀θ′ ∈ [0, 1], ρ ≥ 0, (θ′, ρ, ε̂, δ̂)-robust where ε̂ = 2ρb + ln(2), δ̂ = θ′(1 + ρ
b ),

2. (ε, δ)-differentially private for every δ ≥ 0, where ε = Sδ(f)
b , and

3. (0, β, γ)-accurate where β = b ln( 1
γ ).

Proof. Observe that f can be treated as a mechanism for f with (0, 0, 0)-accuracy and (∞, 0)-privacy and
also that Mf,b

rand := Mid,b
Lap ◦ f . The robustness and accuracy bounds are obtained from Theorem 5.6. To

show thatMf,b
rand is (ε, δ)-differentially private, consider any two neighbouring databases x,x′ ∈ Xn. Since

x ∼ x′, it follows from (24) in Definition 15 that W∞θ (f(x), f(x′)) ≤ Sθ(f). Let P and Q denote f(x), f(x′)
respectively. By Corollary A.1, there is a P ′ such that ∆(P, P ′) ≤ θ and W∞(P ′, Q) = Sθ(f). Let φ be
the optimal joint distribution for W∞. Let R(x) = P (x) − P ′(x). Let L(P ), L(P ′) and L(Q) denote the
distributions after adding laplacian noise. We show one direction of proving DP in Appendix G; the other
direction (i.e., Pr[L(Q) ∈ S] ≤ eε Pr[L(P ) ∈ S] + δ) can be shown by switching the role of P and Q.

Remark 5.2. Note that the Laplace mechanism stated in Section 2.1.1 is known to give (ε, 0)-DP for a
deterministic function f . Here, we use it for achieving (ε, δ)-DP for a potentially randomized function. This
is made possible by our new definition of parameterized sensitivity of a (randomized) function, which extends
the existing notion of sensitivity of a deterministic function (by taking θ = 0).

6 Empirical Evaluation

We empirically compare our basic mechanism Mτ,ε,G
trLap (Construction 1) on a ground set G = {1, · · · , B},

against various competing mechanisms, for accuracy on a few histogram-based statistics computed on it. We
plot average errors (actual and flexible), on different histograms for functions maxk(x) := max{i | x(i) ≥ k},
max := max1, and mode(x) := arg maxi x(i). The parameters forMτ,ε,G

trLap that we will use in the section are
given in Theorem 5.2.

We stress that the plots are only indicative of performance on the specific histograms, and do not suggest
worst-case accuracy guarantees. On the other hand, our theorems do provide worst-case accuracy guarantees
(Theorem 4, w.r.t. ∂drop apply to max and maxk, and Theorem 5 w.r.t. ∂ηdrmv applies to mode).

Next, we shall briefly describe the other mechanisms we compare against.
Exponential Mechanism. The Exponential Mechanism [MT07] can be tailored for an abstract utility
function. We consider the negative of the error, −err(x, y) as the utility of a response y on input histogram
x. However, for both maxk and mode, error has high sensitivity – changing a single element in the histogram
can change the error by as much as the number of bars in the histogram. Since the mechanism produces
an output r with probability proportional to e

εerr(x,r)
2∆err , where ∆err is the sensitivity of err, having a large

sensitivity has the effect of moving the output distribution close to a uniform distribution. This is reflected
in the performance of this mechanism in all our plots.
Propose-Test-Release Mechanism (PTR). We consider the commonly used form of the PTR mechanism
of Dwork and Lei [DL09], namely, “releasing stable values” (see [Vad17]). On input x, the mechanism either
releases the correct result f(x) or refuses to do so (replacing it with a random output value), depending on
whether the radius of the neighborhood of x where it remains constant is sufficiently large (after adding some
noise). For computing a function f and a setting of parameter β = 0, privacy parameters ε, δ, the mechanism
calculates this radius for a input x as, r = d(x, {x′ : LSf (x′) > 0}) + Lap(1/ε), where d(, ) is the closest
hamming distance between a point, set in input histogram space and LSf is local sensitivity of function f . If
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Figure 6: For each evaluation, a typical histogram used is shown in inset. The different data distributions
elicit a variety of behaviors of the different mechanisms. Experiment (2) shows an instance which is hard
for all the mechanisms without considering flexible accuracy; on the other hand, in Experiment (3), flexible
accuracy makes no difference (the plots overlap). In these two experiments BNS and the new mechanism
match each other. In all the other experiments, the new mechanism dominates the others, with or without
considering flexible accuracy.
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this radius r is greater than ln (1/δ)/ε, the mechanism will output the exact answer f(x), otherwise it outputs
a random value from the domain. For the functions we consider, this radius of stable region can be computed
efficiently and is typically small or even empty for input distributions considered which is reflected in our
plots.
Smooth-sensitivity Mechanism (SS). This mechanism, due to Nissim et al. [NRS07], uses the smooth
sensitivity of query f as SSεf (x) = max{LSf (x′)e−εd(x,x′)|x′ ∈ HG}, where LSf (x′) denotes the local
sensitivity of f at x′, and d(·, ·) is the hamming distance. Given an input histogram x, the mechanism adds
noise roughly O(SSεf (x)/ε) to f(x) for (ε, δ)-privacy. For functions like maxk and mode, again, the local
sensitivity tends to be large on many histograms, and this affects the performance of this mechanism on such
inputs.
Stability-Based Sanitized Histogram of Bun et al. (BNS). Bun et al. [BNS19] (also see [Vad17])
gave a mechanism for releasing histograms, with provable worst-case guarantees. However, these guarantees
are in terms of the errors in the individual bar heights of the histogram, and doesn’t necessarily translate to
the histogram based functions we consider. Nevertheless, this mechanism provides a potential candidate for a
mechanism for any histogram based statistic.

The mechanism adds Laplace noise to each non-zero bar of the histogram, and the resulting value is
reported only if it is more than 2 ln (2/δ)/εn+ 1/n , otherwise sets it to 0. While this mechanism does not
degenerate to providing random answers, in comparison with the Truncated Laplace mechanism, it creates
larger room for error by adding (large) positive noise to (sufficiently large) bars; while this happens with a
small probability for each bar, the probability of the union of this event over a large number of bars can be
substantial.
Choosing-Based Histogram of Beimel et al. (SanPoints). In [BNS16], Beimel et al. presented a
mechanism SanPoints for producing a sanitized histogram, with formal (α, β) PAC-guarantees for approxi-
mating the height of each bar of the histogram. For a given α, β and privacy paramters ε, δ, on an input x
with m elements, the mechanism adds little noise, Lap(1/mε) to heights of bars which are iteratively chosen
without repetition as per a choosing mechanism. The choosing mechanism privately picks the index with
maximum bar height. It either chooses the max height index if its bar height is sufficiently large after adding
some Laplace noise or otherwise chooses as per an exponential mechanism with bar height as an index’s score.

For a given input x withm elements and parameters β, ε, δ, the mechanism guarantees α = O(
(√ln (1/δ) ln (ln (1/δ))

εm

)2/3).
Again though the mechanism doesn’t give formal guarantees for the functions we consider, such a histogram-
release mechanism can be heuristically used for any histogram based statistic. In our evaluations, SanPoints
yields mixed results, but is dominated by BNS and our new mechanism.

6.1 Evaluations Carried Out
In each of the following empirical evaluations, a histogram distribution and one of the following functions was
fixed: maxk(x) := max{i | x(i) ≥ k}, max := max1, and mode(x) := arg maxi x(i).

(1) Function max. Histogram of about 10,000 items drawn from a Cauchy distribution with median 45 and
scale 4, restricted to 100 bars, with the last 10 set to empty bars.

(2) Function max. Step histogram with two steps (height × width) : [1000× 50, 1× 50].
(3) Function max500. Same histogram distribution as in (1) above, but without zeroing out the right-most

bars.
(4) Function max500. Step histogram with 100 bars, with two steps (height × width) : [540× 50, 490× 50].
(5) Function mode. Histogram of 30 bars, each bar has height drawn from i.i.d Poisson with mean 250.
(6) Function mode. Noisy step histogram, with steps [130× 120, 200× 5, 185× 85, 190× 10, 130× 80].

The results are shown in Figure 6. In each experiment, a range of values for ε are chosen, while we fixed
δ = 2−20. Errors are shown in the y-axis as a percentage of the full range [0, B). In all experiments, for each
mechanism we also compute flexible accuracy allowing distortion of ∂drop = 0.005.
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7 Conclusion
DP has been a highly successful approach to modeling and solving privacy issues arising in statistical databases.
However, there remain several avenues for improvement in DP, and more generally in the area of privacy.

The new notions of flexible accuracy and robustness introduced in this work greatly increase the applicability
of the DP framework. Towards defining them formally, we introduced lossy Wasserstein distances (which
may be of independent interest). Our definitions naturally handle mechanisms for randomized functions, as
well as deterministic functions.

We illustrated the usefulness of flexible accuracy by giving new DP mechanisms for support and maximum
functions, with worst-case guarantees of (flexible) accuracy. While the basic idea of dropping outliers used
in these mechanisms is not new, flexible accuracy allows deriving quantitative guarantees within the DP
framework, and without assuming a distribution on the data.

Our composition theorems open up a new avenue for DP. The quantities developed for framing the
composition theorems – namely, distortion sensitivity and error sensitivity – provide new gauges in the
dashboard when designing mechanisms for simple functions that are to be composed into more complex
functions (e.g., layers of a deep neural network).

Finally, our results on robustness could be seen as a step towards privacy beyond DP. We leave it for
future work to further pursue this line of investigation, and also to build applications that exploit our current
extensions.
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A Omitted Details from Section 3.1 (Lossy Wasserstein Distance)
In this section we collect a few results on the lossy Wasserstein distance that will be used in the subsequent
proofs. For simplicity, we assume that the infimum in the definition of lossy Wasserstein distance is always
achieved; all our proofs can be easily extended to work without this assumption by taking appropriate limits
when working with infinitesimal quantities.

Lemma A.1. Let P and Q be any two distributions over a metric space (Ω, d). If W∞θ (P,Q) = β, then for
all θ1 ∈ [0, θ], there exist distributions P ′ and Q′ s.t. ∆(P, P ′) ≤ θ1, ∆(Q,Q′) ≤ θ− θ1, and W∞(P ′, Q′) = β.

Proof. Let P and Q be any two distributions over a metric space (Ω, d). Let us assume that the optimal
W∞θ (P,Q) (= β) is obtained at the joint distribution φopt. Let the first and the second marginal distributions
of φopt be Popt and Qopt, respectively. Let ∆(P, Popt) = θopt, which implies that ∆(Q,Qopt) ≤ θ − θopt.
Define a function Ropt : Ω→ R as Ropt(ω) := Popt(ω)− P (ω) for all ω ∈ Ω. Clearly,

∫
Ω
Ropt(ω) dω = 0 and∫

Ω
|Ropt(ω)|dω = 2θopt.
In the discussion below, we shall take a general θ1 ∈ [0, θopt) and construct distributions P ′ and Q′ s.t.

∆(P, P ′) ≤ θ1, ∆(Q,Q′) ≤ θ − θ1, and W∞(P ′, Q′) = β, as required in the conclusion of Lemma A.1. We
can show a similar result for the other case also when θ1 ∈ (θopt, θ] (by swapping the roles of P and Q in the
above as well as in the argument below). This will complete the proof of Lemma A.1.

Define a function R′ : Ω→ R as R′(ω) := θ1
θopt

Ropt(ω). For any ω ∈ Ω, let P ′(ω) = P (ω) +R′(ω). After

substituting the value of Ropt(ω) = Popt(ω)− P (ω), we get P ′(ω) = θ1
θopt

Popt(ω) +
(

1− θ1
θopt

)
P (ω). Since P ′
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is a convex combination of two distributions, it is also a valid distribution. It is easy to see that ∆(P, P ′) = θ1.
Define a joint distribution φ′ as follow: for every (x, y) ∈ Ω× Ω, define

φ′(x, y) :=

{
φopt(x, y) P ′(x)

Popt(x) if Popt(x) > 0

P ′(x)δ(x− y) otherwise

where δ(·) is the Dirac delta function. It follows from the definition that
∫

Ω
φ′(x, y) dy = P (x), i.e., the first

marginal of φ′ is P (·). This also implies that φ′ is a valid joint distribution because (i) φ′(x, y) ≥ 0 for all
(x, y) ∈ Ω× Ω, and (ii)

∫
Ω×Ω

φ′(x, y) dx dy =
∫

Ω
P ′(x) dx = 1.

Let the second marginal of φ′ be Q′. We show below that ∆(Q,Q′) ≤ θ − θ1:

∆(Q,Q′) ≤ ∆(Q,Qopt) + ∆(Qopt, Q
′)

≤ θ − θopt +
1

2

∫
Ω

|Qopt(y)−Q′(y)| dy (Since ∆(Q,Qopt) ≤ θ − θopt)

=
1

2

∫
Ω

∣∣∣∣∫
Ω

φopt(x, y) dx−
∫

Ω

φ′(x, y) dx

∣∣∣∣ dy + (θ − θopt)

≤ 1

2

∫
Ω

∫
Ω

|φopt(x, y)− φ′(x, y)| dx dy + (θ − θopt)

=
1

2

∫
Ω

∫
x∈Ω:Popt(x)>0

|φopt(x, y)− φ′(x, y)| dx dy

+
1

2

∫
Ω

∫
x∈Ω:Popt(x)=0

|φopt(x, y)− φ′(x, y)| dx dy + (θ − θopt) (25)

We bound the two integral on the RHS of (25) separately, depending on whether Popt(x) is zero or not.
Define Ω1 := {x ∈ Ω : Popt(x) > 0}.

Case 1. Popt(x) > 0. :

1

2

∫
Ω

∫
Ω1

|φopt(x, y)− φ′(x, y)| dx dy =
1

2

∫
Ω

∫
Ω1

φopt(x, y)

∣∣∣∣1− P ′(x)

Popt(x)

∣∣∣∣ dxdy

=
1

2

∫
Ω1

∣∣∣∣1− P ′(x)

Popt(x)

∣∣∣∣ dx

∫
Ω

φopt(x, y) dy

=
1

2

∫
Ω1

|Popt(x)− P ′(x)| dx (Since
∫

Ω
φopt(x, y) dy = Popt(x))

(a)
=

1

2

∫
Ω1

∣∣∣∣(1− θ1

θopt

)
Ropt(x)

∣∣∣∣ dx

=
(θopt − θ1)

2θopt

∫
Ω1

|Ropt(x)| dx

≤ (θopt − θ1)

2θopt

∫
Ω

|Ropt(x)| dx (Since Ω1 ⊆ Ω)

= θopt − θ1 (Since
∫

Ω
|Ropt(ω)|dω = 2θopt)

Here (a) follows because for every x ∈ Ω, we have Popt(x)− P ′(x) = Ropt(x) + P (x)− P ′(x) = Ropt(x)−
R′(x) = Ropt(x)− θ1

θopt
Ropt(x).

Case 2. Popt(x) = 0. Note that this also implies φopt(x, y) = 0 for all y ∈ Ω:

1

2

∫
Ω

∫
Ω\Ω1

|φopt(x, y)− φ′(x, y)| dxdy =
1

2

∫
Ω

∫
Ω\Ω1

|φ′(x, y)| dxdy
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=
1

2

∫
Ω

∫
Ω\Ω1

P ′(x)δ(x− y) dxdy

=
1

2

∫
Ω\Ω1

P ′(x) dx

=
1

2

∫
Ω\Ω1

|Popt(x)− P ′(x)| dx (Since Popt(x) = 0 whenever x ∈ Ω \ Ω1)

≤ 1

2

∫
Ω

|Popt(x)− P ′(x)| dx (Since Ω \ Ω1 ⊆ Ω)

= θopt − θ1

The last equality follows from the steps that we took in the first case.

Substituting these bounds in (25) gives ∆(Q,Q′) ≤ θ − θ1.
The only thing left to prove is to show that W∞(P ′, Q′) = β for the above constructed P ′ and Q′. First,

note that, since W∞θ (P,Q) = β, we have W∞(P ′, Q′) ≥ β. This follows because

W∞θ (P,Q)
(a)
= inf

φ∈Φθ(P,Q)
max

(x,y)←φ
d(x, y)

(b)
= inf

P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤θ

inf
φ∈Φ0(P̂ ,Q̂)

max
(x,y)←φ

d(x, y)

(c)
= inf

P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤θ

W∞(P̂ , Q̂), (26)

≤W∞(P ′, Q′), (27)

where (a) follows from the definition of γ-Lossy ∞-Wasserstein distance; (b) trivially holds by viewing the
infimum set differently; in (c) we substituted the definition of W∞; and (d) follows because P ′, Q′ satisfies
∆(P, P ′) + ∆(Q,Q′) ≤ θ.

Therefore, showing W∞(P ′, Q′) ≤ β suffices.
For the sake of contradiction, let us assume that W∞(P ′, Q′) > β. Then there is a pair (x, y) ∈ Ω2

such that φ′(x, y) > 0 and d(x, y) > β. This implies that φopt(x, y) = 0, because, otherwise, we would
have W∞(Popt, Qopt) > β, which contradicts our hypothesis that W∞(Popt, Qopt) = β. So, we know
that φ′(x, y) > 0 and φopt(x, y) = 0. From the definition of φ′, this is only possible if Popt(x) = 0 and
P ′(x)δ(x− y) > 0. This can happen only if x = y, but this implies d(x, y) = 0 ≤ β, which is a contradiction.
Hence W∞(P ′, Q′) ≤ β.

This completes the proof.

Corollary A.1. Let P and Q be any two distributions over a metric space (Ω, d). If W∞θ (P,Q) = β, then
there exists a distribution P ′ s.t. ∆(P, P ′) ≤ θ and W∞(P ′, Q) = β. Similary, there exists a distribution Q′
s.t. ∆(Q,Q′) ≤ θ and W∞(P,Q′) = β

Proof. Using Lemma A.1 with θ1 = θ, there exists distributions P ′ and Q′ such that ∆(P, P ′) ≤ θ,
∆(Q,Q′) ≤ 0 and W∞(P ′, Q′) = β. Note that ∆(Q,Q′) ≤ 0 is possible if and only if Q = Q′, which
gives the result. Similary, the second statement can be proved sing Lemma A.1 with θ1 = 0

We now show that θ-lossy ∞-Wasserstein distance follows triangle-inequality. In the proof, we will use
the fact that Wasserstein distance is a metric, which is proved in [Vil08].

Lemma (Restating Lemma 3.1). For distributions P , Q, and R over a metric space (Ω, d), and γ1, γ2 ∈ [0, 1].

W∞γ1+γ2
(P,R) ≤W∞γ1

(P,Q) +W∞γ2
(Q,R). (28)
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Proof. Let W∞γ1
(P,Q) = β1 and W∞γ2

(Q,R) = β2. Using Corollary A.1, we get a P ′ such that ∆(P, P ′) ≤ γ1

and W∞(P ′, Q) = β1. Similarly, we get a R′ such that ∆(R,R′) ≤ γ2 and W∞(Q,R′) = β2. Using
the fact that the Wasserstein distance is a metric, we get W∞(P ′, R′) ≤ β1 + β2. Let φ be the optimal
joint distribution for W∞(P ′, R′). Since ∆(P, P ′) ≤ γ1 and ∆(R,R′) ≤ γ2, φ ∈ Φγ1+γ2(P,R). Therefore,
W∞γ1+γ2

≤ β1 + β2.

The following result, used in Appendix F is proven when the metric satisfies additional conditions.
Specifically, we shall require that the metric corresponds to the metric in a normed vector space (e.g., Rd).

Lemma (Restating Lemma 3.2). Let X,Y and Z be three random variables over a normed vector space, Ω
with Z being independent of X and Y , and let p0 denote the distribution with all its mass at 0. Then, the
lossy ∞-Wasserstein distance defined using the metric induced by the norm of Ω satisfies the following: ∀γ, γ1

such that γ, γ1 ≥ 0 and γ1 ≤ γ/2, we have

W∞γ (X + Z, Y + Z)
(a)
≤ W∞γ (X,Y )

(b)
≤ W∞γ−2γ1

(X + Z, Y + Z) + 2W∞γ1
(p0, Z). (29)

Proof. Let d denote the metric induced by the norm on the vector space.
First we prove (a) and then we prove (b).

Proof of (a). LetW∞γ (X,Y ) = β and let φ ∈ Φγ(X,Y ) be any joint distribution with max(x,y)←φ d(x, y) = β.
Let φ1, φ2 denote its marginals, i.e., φ1(x) =

∫
Ω
φ(x, y) dy and φ2(y) =

∫
Ω
φ(x, y) dx. Consider the following

joint distribution φ′:

φ′(x, y) =

∫
Ω

Z(z)φ(x− z, y − z) dz. (30)

Now we show that φ′ ∈ Φγ(X + Z, Y + Z). For this, let φ′1, φ′2 denote the marginals of φ′. We can easily
show that φ′1(x) =

∫
Ω
Z(z)φ1(x− z) dz and φ′2(y) =

∫
Ω
Z(z)φ2(y − z) dz. Now, we compute the statistical

difference between X + Z and φ′1:

∆(X + Z, φ′1) =
1

2

∫
Ω

|X + Z(x)− φ′1(x)|dx

=
1

2

∫
Ω

∫
Ω

Z(z)|X(x− z)− φ1(x− z)|dz dx

=

∫
Ω

Z(z)

[
1

2

∫
Ω

|X(x− z)− φ1(x− z)|dx
]

dz

=

∫
Ω

Z(z)∆(X,φ1) dz

= ∆(X,φ1).

Similarly, we can show ∆(Y + Z, φ′2) = ∆(Y, φ2). This, together with ∆(X,φ1) + ∆(Y, φ2) ≤ γ (which
follows because φ ∈ Φγ(X,Y )) implies ∆(X + Z, φ′1) + ∆(Y + Z, φ′2) ≤ γ. Thus, we have shown that
φ′ ∈ Φγ(X + Z, Y + Z).

Now, we show that max(x,y)←φ′ d(x, y) ≤ max(x,y)←φ d(x, y). For the sake of contradiction, suppose
max(x,y)←φ d(x, y) = β and ∃(x∗, y∗) s.t. d(x∗, y∗) > β and φ′(x∗, y∗) > 0. Since d is a metric induced
by the norm on the vector space, we have that ∀z, d(x∗ − z, y∗ − z) = d(x∗, y∗). This, together with
d(x∗, y∗) > β and max(x,y)←φ d(x, y) = β implies that φ(x∗ − z, y∗ − z) = 0 for all z. Therefore, φ′(x∗, y∗) =∫

Ω
Z(z)φ(x∗ − z, y∗ − z) dz = 0, which is the required contradiction. Now, the inequality (a) of (29) follows

from

W∞γ (X + Z, Y + Z) = inf
φ′∈Φγ(X+Z,Y+Z)

max
(x,y)←φ′

d(x, y)

≤ max
(x,y)←φ′

d(x, y) (for the specific φ′ constructed in (30))
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≤ max
(x,y)←φ

d(x, y)

= W∞γ (X,Y ).

Proof of (b). By Lemma 3.1, we can show that

W∞γ (X,Y ) ≤W∞γ−2γ1
(X + Z, Y + Z) +W∞γ1

(X,X + Z) +W∞γ1
(Y, Y + Z).

It follows from (a) that

W∞γ1
(X,X + Z) ≤W∞γ1

(0, Z)

W∞γ1
(Y, Y + Z) ≤W∞γ1

(0, Z).

Combining the above three inequalities gives the required inequality (b) in (29). This completes the proof of
Lemma 3.2.

A.1 Average Version of Lossy Wasserstein Distance
Lemma (Restating Lemma 3.3). For any two distributions P,Q, and 0 ≤ β′ < β ≤ 1,

Wβ(P,Q) ≤W∞β (P,Q) ≤Wβ′(P,Q)/(β − β′).

Proof. Clearly from the definitions, Wβ(P,Q) ≤W∞β (P,Q).
Suppose Wβ′(P,Q) = γ and φ ∈ Φβ

′
(P,Q) is an optimal coupling that realizes this. Then, in φ, the total

mass that is transported more than a distance γ′ is at most γ/γ′ and the total mass that is lost is at most β′.
By choosing to simply not transport this mass at all, one loses β′ + γ/γ′ mass, but no mass is transported
more than a distance γ′. Choosing γ′ = γ/(β − β′) this upper bound on loss is β, and hence this modified
coupling shows that W∞β (P,Q) ≤ γ′.

B Omitted Details from Section 4 (Composition Theorems)

B.1 Flexible Accuracy Under Composition
In this section, we prove Lemma 4.1, Lemma 4.2, and Lemma 4.3.

Lemma (Restating Lemma 4.1). If ∂ is a measure of distortion over A, then ∂̂ is a quasi-metric.

Proof. We need to show that for any three distributions P , Q, and R over the same space A, we have
(i) ∂̂(P,Q) ≥ 0, where the equality holds if and only if P = Q, and (ii) ∂̂ satisfies the triangle inequality:
∂̂(P,Q) ≤ ∂̂(P,R) + ∂̂(R,Q). We show them one by one below:

1. The first property follows from the definition of ∂̂ (see Definition 10): If ∂̂(P,Q) = 0, then the optimal
φ ∈ Φ(P,Q) is a diagonal distribution, which means that P = Q. On the other hand, if P = Q, then there
exists a coupling φ in Φ(P,Q), which is a diagonal distribution and hence ∂̂(P,Q) = 0.

2. For the second property, let φ2 ∈ Φ(P,R) and φ3 ∈ Φ(R,Q) denote the optimal couplings for ∂̂(P,R)

and ∂̂(R,Q), respectively, i.e., ∂̂(P,R) = sup (x,y):
φ2(x,y)6=0

∂(x, y) and ∂̂(R,Q) = sup (y,z):
φ3(y,z)6=0

∂(y, z). It follows

from the Gluing Lemma [Vil08] that we can find a coupling φ′ over A×A×A such that the projection of
φ′ onto its first two coordinates is equal to φ2 and its last two coordinates is equal to φ3. Let φ1 denote
the projection of φ′ onto its first and the third coordinates. Note that φ1 ∈ Φ(P,Q), but it may not be an
optimal coupling for ∂̂(P,Q). Now the triangle inequality follows from the following set of inequalities:

∂̂(P,Q) = inf
φ∈Φ(p,q)

sup
(x,z):

φ(x,z) 6=0

∂(x, z) ≤ sup
(x,z):

φ1(x,z) 6=0

∂(x, z) = sup
(x,y,z):

φ′(x,y,z)6=0

∂(x, z)
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(a)
≤ sup

(x,y,z):
φ′(x,y,z) 6=0

∂(x, y) + ∂(y, z)

= sup
(x,y,z):

φ′(x,y,z)6=0

∂(x, y) + sup
(x,y,z):

φ′(x,y,z)6=0

∂(y, z)

= sup
(x,y):

φ2(x,y)6=0

∂(x, y) + sup
(y,z):

φ3(y,z)6=0

∂(y, z)

= ∂̂(P,R) + ∂̂(R,Q),

where (a) follows from the fact that ∂ is a measure of distortion, which is a quasi-metric.

Lemma (Restating Lemma 4.2). IfM : A→ B is an (α, β, γ)-accurate mechanism for f w.r.t. ∂, then for
any random variable X over A, there is a random variable X∗ such that

∂̂(X,X∗) ≤ α, W∞γ (f(X∗),M(X)) ≤ β.

Proof. From the accuracy guarantee of M, we have for each x, there is a random variable Xx such that
supp(Xx) ⊆ {x′ | ∂(x, x′) ≤ α} and W∞γ (f(Xx),M(x)) ≤ β, where supp(Y ) denotes the support of Y .

The first condition in the statement of the lemma follows by considering φ in the definition of ∂̂ to be
the distribution of the pairs (x, x′) where x is sampled according to X, and then x′ is sampled according to
Xx. The random variable X∗ is defined by the distribution of x′ in the above experiment. Then, note that
φ ∈ Φ0(X,X∗) and for all (x, x′) in its support, ∂(x, x′) ≤ α.

To see the second part, let φx denote the optimal distribution for W∞γ (f(Xx),M(x)). That is, for each
x, φx ∈ Φγ(f(Xx),M(x)) and W∞γ (f(Xx),M(x)) = max(a,b)←φx d(a, b). Let φ be defined by φ(a, b) =
X(x)φx(a, b). It is easy to verify that φ ∈ Φγ(f(X∗),M(X)). Further,

W∞γ (f(X∗),M(X)) ≤ max
(a,b)←φ

d(a, b) = max
x←X

max
(a,b)←φx

d(a, b)

= max
x←X

W∞γ (f(Xx),M(x)) ≤ β.

This completes the proof of Lemma 4.2.

The following lemma translates the definition of distortion sensitivity (Definition 11) to apply to distortion
of input distributions. It is stated assuming that all infima in the definition of σ are achieved. This is the
case, e.g., when the measure of distortion is discrete.

Lemma (Restating Lemma 4.3). Suppose f : A→ B has distortion sensitivity σθ,ωf , w.r.t. (∂1, ∂2). Then,
for random variables X0 over A, and Y over B such that ∂̂2(f(X0), Y ) ≤ α, there exists a distribution X

over A such that W∞θ (f(X), Y ) ≤ ω and ∂̂1(X0, X) ≤ σθ,ωf (α).

Proof. Fix random variables X0 over A, and Y over B such that ∂̂2(f(X0), Y ) ≤ α. Let φ be an optimal
coupling that achieves the infimum in the definition of ∂̂2(f(X0), Y ), i.e.,

∂̂2(f(X0), Y ) = sup
(u,y)←φ

∂2(u, y). (31)

For each x0 ∈ supp(X0), consider the conditional distribution φx0
= φ|{X0 = x0}. Clearly, the first marginal

of φx0
is f(x0). Let its second marginal be denoted by Yx0

. First we show that for each x0 ∈ supp(X0), we
have ∂̂2(f(x0), Yx0

) ≤ α.

∂̂2(f(x0), Yx0
) = inf

φ∈Φ0(f(x0),Yx0
)

sup
(u,y)←φ

∂2(u, y)
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≤ sup
(u,y)←φx0

∂2(u, y)

(a)
≤ sup

(u,y)←φ
∂2(u, y)

(b)
= ∂̂2(f(X0), Y )

≤ α.

Here (a) follows from the fact that supp(φx0
) ⊆ supp(φ) and (b) follows from (31). Thus for each x0 ∈

supp(X0), we have ∂̂2(f(x0), Yx0
) ≤ α. By the definition of σθ,ωf , there exist Xx0

such that,

W∞θ (f(Xx0), Yx0) ≤ ω, ∂̂1(x0, Xx0) ≤ σθ,ωf (α)

Now, define X =
∑
x0∈supp(X0)X0(x0)Xx0

. Now, using a similar argument as used to prove the second part
of Lemma 4.2, in the following we show that W∞θ (f(X), Y ) ≤ ω and ∂̂1(X0, X) ≤ σθ,ωf (α).

• Showing W∞θ (f(X), Y ) ≤ ω: For each x0 ∈ supp(X0), let ψx0 be the optimal coupling that achieves
the infimum in the definition of W∞θ (f(Xx0), Yx0). That is, for each x0, ψx0 ∈ Φθ(f(Xx0), Yx0) and
W∞θ (f(Xx0

), Yx0
) = E(a,b)←ψx0

[d(a, b)]. Let ψ be defined by ψ(a, b) = X0(x0)ψx0
(a, b). It is easy to verify

that ψ ∈ Φθ(f(X), Y ). Further,

W∞θ (f(X), Y ) ≤ max
(a,b)←ψ

d(a, b)

= max
x0←X0

max
(a,b)←ψx0

[d(a, b)

= max
x0←X0

[W∞θ (f(Xx0
), Yx0

)]

≤ ω.

• Showing ∂̂1(X0, X) ≤ σθ,ωf (α): For each x0 ∈ supp(X0), let ψx0
be the optimal coupling that achieves

the infimum in the definition of ∂̂1(x0, Xx0
). That is, for each x0, ψx0

∈ Φ0(x0, Xx0
) and ∂̂1(x0, Xx0

) =
sup(a,b)←ψx0

∂1(a, b). Let ψ be defined by ψ(a, b) = X0(x0)ψx0
(a, b). It is easy to verify that ψ ∈ Φ0(X0, X).

Further,

∂̂1(X0, X) ≤ sup
(a,b)←ψ

∂1(a, b)

= sup
x0←X0

sup
(a,b)←ψx0

∂1(a, b)

= sup
x0←X0

∂̂1(x0, Xx0
)

≤ σθ,ωf (α).

This completes the proof of Lemma 4.3.

B.2 Differential Privacy Under Composition
Theorem (Restating Theorem 4.2). LetM1 : A→ B andM2 : B → C be any two mechanisms. IfM1 is
neighborhood-preserving w.r.t. neighborhood relations ∼A and ∼B over A and B, respectively, and M2 is
(ε, δ)-DP w.r.t. ∼B, thenM2 ◦M1 : A→ C is (ε, δ)-DP w.r.t. ∼A.

Proof. For simplicity, we consider the case when B is discrete. The proof can be generalized to the continuous
setting.

31



Since the mechanism M1 is neighborhood preserving, for x, x′ ∈ A s.t. x1 ∼A x2, there exists a
pair of jointly distributed random variables (X1, X2) over B × B s.t, X1 = M1(x), X2 = M1(x′) and
Pr[X1 ∼B X2] = 1. So, for all (x1, x2) such that X1, X2(x1, x2) > 0, we have x1 ∼B x2 and hence, by the
(ε, δ)-differential privacy of the mechanismM2, for all subsets S ⊆ C, we have,

Pr(M2(x1) ∈ S) ≤ eε Pr(M2(x2) ∈ S) + δ.

Thus, if x ∼A x′, then for any subset S ⊆ C, we have,

Pr[M2(M1(x)) ∈ S] =
∑
x1

X1(x1) Pr[M2(x1) ∈ S]

=
∑

(x1,x2)

X1, X2(x1, x2) Pr[M2(x1) ∈ S]

≤
∑

(x1,x2)

X1, X2(x1, x2) (eε Pr[M2(x2) ∈ S] + δ)

= eε

 ∑
(x1,x2)

X1, X2(x1, x2) Pr[M2(x2) ∈ S]

+ δ

= eε

(∑
x2

X2(x2) Pr[M2(x2) ∈ S]

)
+ δ

= eε Pr[M2(M1(x′)) ∈ S] + δ

C Omitted Details from Section 5.1.2 (Histogram Mechanism)

Claim (Restating Claim 5.1). Whenever s ∈ Sk, k ∈ {0, 2}, we have, Dq′(si∗ − x′i∗) ≤ e(1+ν)εDq(si∗ − xi∗),
provided n ≥ 2

ετ ln
(

1 + 1−e−
ετ
2

eε(ν+ τ
2

)−1

)
.

Proof. For s ∈ S0, Dq′(si∗ − x′i∗) = 0 so the inequality trivially holds. For s ∈ S2, both Dq′(si∗ − x′i∗) > 0

and Dq(si∗ − xi∗) > 0; hence, we will be done if we show that Dq′ (si∗−x
′
i∗ )

Dq(si∗−xi∗ ) ≤ e
(1+ν)ε. Note that we are given

the following inequality:

n ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
,

which can be rewritten as

ln

(
1− e−ε

τ(n+1)
2

1− e−ε τn2

)
≤ ε(ν +

τ

2
). (32)

By substituting q = τ(n+ 1) and q′ = τn, (32) is equivalent to

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+ (1− τ

2
) ≤ 1 + ν.

This, using the triangle inequality, implies that

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+
∣∣∣si∗ − xi∗ +

q

2

∣∣∣− ∣∣∣si∗ − xi∗ +
q

2
+ (1− τ

2
)
∣∣∣ ≤ 1 + ν.
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Putting q′ = q − τ and x′i∗ = xi∗ − 1, we get

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+
∣∣∣si∗ − xi∗ +

q

2

∣∣∣− ∣∣∣∣si∗ − x′i∗ +
q′

2

∣∣∣∣ ≤ 1 + ν.

By taking exponents of both sides, this is equivalent to showing

(1− e−ε
q
2 )

(1− e−ε q
′

2 )

e−ε|si∗−x
′
i∗+ q′

2 |

e−ε|si∗−xi∗+ q
2 |
≤ e(1+ν)ε

By substituting the values of Dq(si∗−xi∗) and Dq′(si∗−x′i∗), this can be equivalently written as Dq′ (si∗−x
′
i∗ )

Dq(si∗−xi∗ ) ≤
e(1+ν)ε, which concludes the proof of Claim 5.1.

Claim (Restating Claim 5.2). Pr[Mτ,ε,G
trLap(x′) ∈ S−1] ≤ e(1+ν)ε Pr[Mτ,ε,G

trLap(x) ∈ S−1].

Proof.

Pr[Mτ,ε,G
trLap(x′) ∈ S−1] =

∫
S−1

[ ∏
i∈Gx′

Dq′(si − x′i)
]

ds

=

∫
S−1

[ ∏
i∈Gx′ :i6=i

∗

Dq′(si − x′i)
]
Dq′(si∗ − x′i∗) ds

≤
∫
S−1

[ ∏
i∈Gx:i 6=i∗

Dq(si − xi)
]
e(1+ν)εDq(si∗ − xi∗) ds

(Using Claim 5.1 and that xi = x′i,∀i 6= i∗)

= e(1+ν)ε

∫
S−1

[ ∏
i∈Gx

Dq(si − xi)
]

ds

= e(1+ν)ε Pr[Mτ,ε,G
trLap(x) ∈ S−1]

Claim (Restating Claim 5.3). Pr[Mτ,ε,G
trLap(x′) ∈ S1] ≤ eε−1

2(eεq/2−1)
.

Proof. Observe that, for every s ∈ S1, we have −q′ ≤ si∗ − x′i∗ < −q′ + (1− τ). Recall that Gx′ = supp(x′)
and |x′| = n. Let |Gx′ | = t for some t ≤ n, and, for simplicity, assume that Gx′ = {1, 2, . . . , t}. For i ∈ [t],
define S1(i) := {ŝi : ∃s ∈ S1 s.t. ŝi = si}.

Pr[Mτ,ε,G
trLap(x′) ∈ S1] =

∫
S1

[ t∏
i=1

Dq′(si − x′i)
]

ds

=

∫
S1(1)

. . .

∫
S1(i∗)

. . .

∫
S1(t)

[ t∏
i=1

Dq′(si − x′i)
]

dst . . . dsi∗ . . . ds1

=

∫
S1(i∗)

Dq′(si∗ − x′i∗)
(∫

S1(1)

. . .

∫
S1(t)

[ t∏
i=1:i 6=i∗

Dq′(si − x′i)
]

dst . . . ds1

)
︸ ︷︷ ︸

≤ 1

dsi∗

≤
∫
S1(i∗)

Dq′(si∗ − x′i∗) dsi∗

=

∫ q′+(1−τ)

q′
Dq′(z) dz (∀s ∈ S1, (si∗ − x′i∗) ∈ [−q′,−q′ + (1− τ)))
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=
e(1−τ)ε − 1

2(1− e−εq/2)
e−ε

q/2

≤ eε − 1

2(eεq/2 − 1)
. (Since τ > 0)

Theorem (Restating Theorem 5.1). On histograms of size at least n, i.e., |x| > n,Mτ,G
trLap from Construction 1

satisfies the following guarantees:

• Mτ,G
trLap is

(
O( 1√

τn
), e−Ω(

√
τn)
)
-differentially private w.r.t. ∼hist, and

• If |supp(x)| ≤ t, thenMτ,G
trLap is (τt, 0, 0)-accurate for the identity function, w.r.t. the distortion measure

∂drop.

Proof. First we show the privacy part and then show the accuracy part. Note that the requirement of
|supp(x)| ≤ t is only needed for accuracy.

• Differential privacy. We use Lemma 5.1 and put a restriction that ν should be > 0. We will analyze the
effect of this restriction on the bound of |x|. We restate the bound on |x| here again for convenience:

|x| ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
It can be easily checked that for any fixed ε, ν > 0, the RHS is a decreasing function of τ . Hence, if we set
τ to its minimum value, we get a lower bound on |x| which is independent of τ . Since this expression is
not defined at τ = 0, we will take its one-sided limit as τ → 0+, i.e.,

lim
τ→0+

2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
We will replace ετ

2 with l. As τ → 0+, l→ 0+, and we get

lim
τ→0+

2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
= lim
l→0+

1

l
ln

(
1 +

1− e−l

eεν+l − 1

)
= lim
l→0+

1

l
ln

(
1 +

1− e−l

eεν+l − 1

)(
1− e−l

eεν+l − 1

)(
eεν+l − 1

1− e−l

)

= lim
l→0+

(
1

eεν+l − 1

)(
1− e−l

l

) ln
(

1 + 1−e−l
eεν+l−1

)
1−e−l
eεν+l−1


=

1

eεν − 1
(limx→0+

1−e−x
x = 1; limx→0+

ln(1+x)
x = 1)

We have proved that on inputs x s.t. |x| > 1
eεν−1 and ν > 0, Mτ,ε,G

trLap is
(

(1 + ν)ε, eε−1
2(eεnτ/2−1)

)
-DP w.r.t.

∼hist. However, we are given |x| > n, not |x| > 1
eεν−1 . So, in order to prove the result, we will set the

values of ε, ν such that 1
eεν−1 ≤ n holds. We can take any ε, ν that satisfy εν ≥ ln

(
1 + 1

n

)
. In particular,

we can take ε = O( 1√
τn

) and ν = 1. This would imply thatMτ,ε,G
trLap is

(
O( 1√

τn
), e−Ω(

√
τn)
)
-differentially

private.
• Flexible accuracy. Note that noise added byMτ,ε,G

trLap in each bar of the histogram is bounded by −τ |x|
which can lead to a drop of at most τ fraction of elements. Combined with the fact that |supp(x)| ≤ t, the
maximum number of elements that can be dropped are τt. Hence,Mτ,G

trLap is (τt, 0, 0)-accurate.
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This completes the proof of Theorem 5.1.

Theorem (Restating Theorem 5.2). On inputs x s.t. |x| ≥ 2
ετ e
− ετ2 , Mτ,ε,G

trLap is
(
ε, eε−1

2(eεnτ/2−1)

)
-DP w.r.t.

∼hist.

Proof. Substituting ν = 0 in Lemma 5.1 gives that when x satisfies |x| ≥ 2
ετ ln

(
1 + 1−e−

ετ
2

e
ετ
2 −1

)
, we have that

Mτ,ε,G
trLap is

(
ε, eε−1

2(eεnτ/2−1)

)
-DP w.r.t. ∼hist. Now, the corollary follows because

2

ετ
e−

ετ
2 ≥ 2

ετ
ln
(
1 + e−

ετ
2

)
=

2

ετ
ln

(
1 +

1− e−ε τ2
eε
τ
2 − 1

)
,

where the first inequality uses x ≥ ln(1 + x).

Claim (Restating Claim 5.4). Mt,[0,B)d

buc is a neighborhood-preserving mechanism, i.e., for any two histograms

x,x′ such that x ∼hist x
′, we haveMt,[0,B)d

buc (x) ∼hist Mt,[0,B)d

buc (x′).

Proof. Removing any one element changes the output of bucketing by at most one element. Hence, neighbours
remain neighbours after bucketing.

Claim (Restating Claim 5.5). On all inputs x,Mt,[0,B)d

buc is
(

0, B
√
d

2t
1
d
, 0
)
-accurate for the identity function

w.r.t the metric dhist and any measure of distortion.

Proof. We are using dhist as the metric, which is basically the Wasserstein distance between histograms
treated as probability distributions after normalization. Since the target function is the identity function, the
accuracy is essentially the Wasserstein distance between the input and output histograms. Since every point
in the input histogram is moved to the center of its bucket, which means that the maximum distance any
point can move is the maximum distance of the center of a bucket from any point in that bucket, which is
B
√
d

2t
1
d
.

Claim (Restating Claim 5.6). The distortion sensitivity of the histogram identity function w.r.t. (∂drop, ∂drop)
at θ = ω = 0 is the identity function.

Proof. Setting the function f in Definition 11 as the identity function and putting θ = ω = 0, we get

σf (α) = sup
x,Y :∂̂drop(x,Y )≤α

inf
X:X=Y

∂̂drop(x,X)

= sup
x,Y :∂̂drop(x,Y )≤α

∂̂drop(x, Y )

= α

Claim (Restating Claim 5.7). For any β ∈ R and on inputs restricted to t bars, we have τα,0
Mτ,ε,G

trLap,fid
(β, 0) ≤ β

w.r.t. ∂drop where α = τt and fid is the identity function.

Proof. Consider any two histograms x, y over G such that dhist(x,y) ≤ β. Let dG(·, ·) be the underlying
metric over G(consists of t elements) and |x| denote number of elements in the histogram x. By definition
of dhist(·, ·), we have dhist(x,y) = W∞(norm(x), norm(y)). Let φ be an optimal coupling of norm(x) and
norm(y) such that

sup
(a,b)←φ

dG(a, b) = β. (33)

35



From a coupling φ, we define transform fφ as, given a histogram z that is α-distorted from x, returns
fφ(z), an α-distorted histogram from y as below. Recall that for a histogram x and a ∈ G, we denote by
x(a) the multiplicity of a in x.

fφ(z)(b) := |y|
∑
a∈G

z(a)φ(a, b)

x(a)
.

To see that fφ(z) is α-distorted from y, we need to show two things: (i) fφ(z)(b) ≤ y(b) holds for every
b ∈ G, and (ii)

∑
b∈G fφ(z)(b) = (1 − α)

∑
b∈G y(b). The first condition holds because z(a) ≤ x(a),∀a ∈ G

and
∑
a∈G φ(a, b) = y(b)

|y| . For the second condition,∑
b∈G

fφ(z)(b) =
∑
b∈G

|y|
∑
a∈G

z(a)φ(a, b)

x(a)

= |y|
∑
a∈G

z(a)

x(a)
φ(a) (where φ(a) :=

∑
b∈G φ(a, b))

= |y|
∑
a∈G

z(a)

x(a)

x(a)

|x|
(Since φ(a) = x(a)

|x| )

=
|y|
|x|
∑
a∈G

z(a)

= (1− α)|y| (Since
∑
a∈G z(a) = |z| = (1− α)|x|)

Therfore, fφ(z) is α-distorted from y.
Infact, the transform fφ doesn’t amplify dhist(, ) metric. To see this, define φ′(a, b) = z(a)|x|φ(a,b)

x(a)|z| . It

can be easily verified that the first marginal,
∑
b∈G φ

′(a, b) = z(a)
|z| for all a ∈ G and the second marginal,∑

a∈G φ
′(a, b) =

fφ(z)(b)
|fφ(z)| for all b ∈ G. This means that φ′(a, b) is a valid coupling of z, fφ(z). Now, by

definition of φ′, we have that support(φ′) ⊆ support(φ), and hence, dhist(z, fφ(z)) ≤ dhist(x,y) = β.
Finally, in order to prove the required result, with fphi defined as above, consider the random variable

Y = fφ

(
Mτ,ε,G

trLap(x)
)
, i.e.,

Pr(Y = fφ(z)) = Pr(Mτ,ε,G
trLap(x) = z).

The support ofMτ,ε,G
trLap(x) consists of α-distorted histograms from x where α = τt (see Theorem 5.1). From

previous arguments, this implies that Y is also a distribution over α-distorted histograms from y. Therefore,
W∞(Y,Mτ,ε,G

trLap(x)) ≤ β. Since this holds for any two histograms x,y, we have,

sup
x,y:

dhist(x,y)≤β

inf
Y :

∂̂(y,Y )≤α

W∞(Y,Mτ,ε,G
trLap) ≤ β

We can extend this construction of Y for distributions X,X ′ on histograms with the same guarantee.
Therefore,

τα,0
Mτ,ε,G

trLap

(β, 0) = sup
X,X′:

W∞(X,X′)≤β

inf
Y :

∂̂(X′,Y )≤α

W∞(Y,Mτ,ε,G
trLap) ≤ β.

This completes the proof of Claim 5.7.

D Omitted Details from Section 5.1.4 (Histogram-Based-Statistics)
Lemma (Restating Lemma 5.2). Let f : A → B be a deterministic function with dA, dB metrics defined in
A,B, respectively. Then we have,

sup
X,X′:

W∞(X,X′)≤β

W∞(f(X), f(X ′)) = sup
y,y′∈A:

dA(y,y′)≤β

dB(f(y), f(y′))
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Proof. We first prove that L.H.S. ≥ R.H.S.:

sup
X,X′:

W∞(X,X′)≤β

W∞(f(X), f(X ′)) ≥ sup
x,x′:

W∞(x,x′)≤β

W∞(f(x), f(x′))

(considering only point distributions restricts the set of supremum)

= sup
x,x′:

dA(x,x′)≤β

dB(f(x), f(x′))

(Wasserstein distance for point distributions is just the distance between the points)

= sup
y,y′:

dA(y,y′)≤β

dB(f(y), f(y′)) (renaming)

Now we prove the other direction. Consider two distributions X,X ′ over A s.t, W∞(X,X ′) ≤ β. Let φ1 be
the optimal coupling between X,X ′ for which this is true. Therefore, we have

sup
(x,x′)←φ1

dA(x,x′) ≤ β.

We can define a coupling φ2 between f(X), f(X ′) as follows,

Pr[φ2(a,b)] =
∑
x,x′:

f(x)=a,f(x′)=b

Pr[φ1(x,x′)]

It can be verified that φ2 is indeed a valid coupling between f(X), f(X ′). Now

W∞(f(X), f(X ′)) = inf
φ∈Φ(f(X),f(X′))

sup
(a,b)←φ

dB(a,b)

≤ sup
(a,b)←φ2

dB(a,b)

= sup
(x,x′)←φ1

dB(f(x), f(x′)))

≤ sup
x,x′∈A:

dA(x,x′)≤β

dB(f(x), f(x′)))

Note that the RHS of the last inequality does not depend on X,X ′. So, taking supremum over all distributions
X,X ′ such that W∞(X,X ′) ≤ β gives the required result.

E Omitted Details from Section 5.1.5 (Beyond ∂drop)
We introduced two new distortions: ∂mv(x,y) and ∂ηdrmv(x,y). We first prove the following results before
giving the applications. We present the definitions again here for convenience:

∂mv(x,y) =

{
W∞( x

|x| ,
y
|y| ) if |x| = |y|

∞ otherwise
∂ηdrmv(x,y) = inf

z
(∂drop(x, z) + η · ∂mv(z,y)) .

Note that in the definition of ∂mv, when |x| = |y| = 0, we define ∂mv(x,y) = 0.

Claim E.1. ∂mv(·, ·) is a metric.
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Proof. Since ∂mv(·, ·) is defined as the Wasserstein distance between normalized histograms, we can conclude
that ∂mv(·, ·) is a metric from the fact that Wasserstein distance is a metric. Note that when |x| = |y| = 0,
the Wasserstein distance is undefined, but we have defined ∂mv(x,y) in this case separately as 0 which is
consistent with the properties of a metric.

We first give an intermediate result which will be used in proving that ∂ηdrmv is a quasi-metric.

Claim E.2. Let x, y and z be any three histograms over a ground set G ,associated with a metric d, such
that ∂mv(x, z) = α1 and ∂drop(z,y) = α2 with α1 ≥ 0 and α2 < 1. Then there exists a histogram s such that
∂drop(x, s) = α2 and ∂mv(s,y) ≤ α1.

Proof. Using the definitions of ∂drop and ∂mv, we have the following:

Z.1 |x| = |z|
Z.2 W∞( x

|x| ,
z
|z| ) ≤ α1. We will use φz to denote the optimal joint distribution which achieves the infimum

in the definition of W∞( x
|x| ,

z
|z| ).

Z.3 |y| = (1− α2)|z|
Z.4 For all g ∈ G, 0 ≤ y(g) ≤ z(g)

Now we want to prove the existence of a histogram s with the following property:

S.1 |s| = (1− α2)|x|
S.2 For all g ∈ G, 0 ≤ s(g) ≤ x(g)

S.3 |s| = |y|
S.4 W∞( s

|s| ,
y
|y| ) ≤ α1.

Consider the following joint distribution φs:

φs(gx, gy) =

{
1

1−α2
φz(gx, gy)

y(gy)
z(gy) if z(gy) > 0

0 otherwise
(34)

We denote the first marginal of φs by s
|s| , where s corresponds to the histogram that we want to show exists.

By definition, for all gx, gy ∈ G, we have φs(gx, gy) ≥ 0. Also note that, if z(gy) = 0, then for all gx ∈ G,
we have φz(gx, gy) = 0; this is because z

|z| is the second marginal of φz. Now we show that the above-defined
φs satisfies properties S.1-S.4 – we show these in the sequence of S.4, S.3, S.1, S.2.

• Proof of S.4. Note that the first marginal of φs is assumed to be s
|s| . Now we show that its second marginal

is y
|y| and that max(gx,gy)←φs d(gx, gy) ≤ α1. Note that these together imply that W∞( s

|s| ,
y
|y| ) ≤ α1.

– Second marginal of φs is y
|y| : We show it in two parts, first for gy ∈ G for which z(gy) = 0 and then

for the rest of the gy ∈ G. Note that when z(gy) = 0, we have from Z.4 that y(gy) = 0. Now we
show that

∫
G φs(gx, gy) dgx = 0. It follows from (34) that for all gy such that z(gy) = 0, we have

φs(gx, gy) = 0,∀gx ∈ G, which implies that
∫
G φs(gx, gy) dgx = 0. Now we analyze the case when

z(gy) > 0. ∫
G
φs(gx, gy) dgx =

∫
G

1

1− α2
φz(gx, gy)

y(gy)

z(gy)
dgx (using (34))

=
1

1− α2

y(gy)

z(gy)

∫
G
φz(gx, gy) dgx

=
1

1− α2

y(gy)

z(gy)

z(gy)

|z|
(using Z.2)

=
y(gy)

(1− α2)|z|

=
y(gy)

|y|
. (Using Z.3)
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– W∞( s
|s| ,

y
|y| ) ≤ α1: We have shown that the first and the second marginals of φs are s

|s| and
y
|y| ,

respectively. So, it suffices to show that max(gx,gy)←φs d(gx, gy) ≤ α1. Consider any pair (gx, gy) ∈ G2

s.t. φs(gx, gy) > 0. This is possible only if φz(gx, gy) > 0 (see (34)), which, when combined with Z.2,
gives d(gx, gy) ≤ α1. Hence, for any pair (gx, gy) ∈ G2 s.t. φs(gx, gy) > 0, we have d(gx, gy) ≤ α1.

• Proof of S.3. Note that (34) gives the normalized s, but we still have the freedom to choose |s|. To
satisfy S.3, we set |s| = |y|.

• Proof of S.1. Note that S.1 is already satisfied using Z.1, Z.3, and S.3.
• Proof of S.2. Let us denote {g ∈ G | z(g) > 0} by Gz. We will show that for any g ∈ G, we have
x(g)− s(g) ≥ 0:

x(g)− s(g) = |x|
∫
G
φz(g, gy) dgy − |s|

∫
G
φs(g, gy) dgy (using Z.2 and S.4)

= |x|
∫
Gz
φz(g, gy) dgy − |s|

∫
G
φs(g, gy) dgy (Since z(gy) = 0⇒ φz(g, gy) = 0,∀g ∈ G; Z.2)

= |x|
∫
Gz
φz(g, gy) dgy − |s|

∫
Gz

1

1− α2
φz(g, gy)

y(gy)

z(gy)
dgy (using (34))

= |x|
∫
Gz
φz(g, gy) dgy −

(1− α2)|x|
1− α2

∫
Gz
φz(g, gy)

y(gy)

z(gy)
dgy (using S.1)

= |x|
∫
Gz
φz(g, gy) dgy − |x|

∫
Gz
φz(g, gy)

y(gy)

z(gy)
dgy

= |x|
∫
Gz
φz(g, gy)

(
1− y(gy)

z(gy)

)
dgy

≥ 0 (using Z.4, y(gy)
z(gy) ≤ 1)

Thus, we have shown that the joint distribution φs defined in (34) satisfies all four properties S.1-S.4. This
completes the proof of Claim E.2.

Claim E.3. For all η ∈ R≥0, ∂
η
drmv(·, ·) is a quasi metric.

Proof. Note that both ∂drop and ∂mv are quasi-metrics. Hence, for any x,y, ∂drop(x,y) ≥ 0 and ∂mv(x,y) ≥ 0.
This implies that for every x,y, ∂ηdrmv(x,y) ≥ 0. Now we one by one prove that ∂ηdrmv satisfies the properties
of quasi-metric:

Property #1: For all x and y, x = y ⇔ ∂ηdrmv(x,y) = 0.

1. For all x, ∂ηdrmv(x,x) = 0:

∂ηdrmv(x,x) = inf
z

(∂drop(x, z) + η · ∂mv(z,x))

≤ ∂drop(x,x) + η · ∂mv(x,x) (infimum over a set is ≤ the value at any fixed point in set)
= 0

Since ∂ηdrmv(x,x) ≥ 0 as well as ≤ 0, ∂ηdrmv(x,x) = 0.
2. For all x,y, ∂ηdrmv(x,y) = 0⇒ x = y:
∂ηdrmv(x,y) = 0 implies that infz (∂drop(x, z) + η · ∂mv(z,y)) = 0. As both ∂drop(x, z) and ∂mv(z,y)
are ≥ 0 for any value of x,y, z, this is possible only if ∂drop(x, z) = ∂mv(z,y) = 0 which means that
x = z = y. Hence x = y.

Property #2: For all x, y and z, ∂ηdrmv(x, z) ≤ ∂ηdrmv(x,y) + ∂ηdrmv(y, z).
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We assume that the infimum in both ∂ηdrmv(x,y) and ∂ηdrmv(y, z) is achieved by s1 and s2, respectively
(the proof can be easily extended to the case when the infimum is not achieved). This means that there exists
a, b, c, d ≥ 0, such that

∂drop(x, s1) = a; ∂mv(s1,y) = b; ∂drop(y, s2) = c; ∂mv(s2, z) = d,

which implies ∂ηdrmv(x,y) = a + ηb and ∂ηdrmv(y, z) = c + ηd. We need to show that ∂ηdrmv(x, z) ≤
(a+ c) + η(b+ d).

Using Claim E.2 with ∂mv(s1,y) = b and ∂drop(y, s2) = c, we get that there is a y′ such that ∂drop(s1,y
′) =

c and ∂mv(y′, s2) ≤ b. This gives the following:

∂drop(x, s1) = a; ∂drop(s1,y
′) = c; ∂mv(y′, s2) ≤ b; ∂mv(s2, z) = d.

Now we prove that ∂ηdrmv(x, z) ≤ (a+ c) + η(b+ d):

∂ηdrmv(x, z) = inf
z

(∂drop(x,y) + η · ∂mv(y, z))

≤ ∂drop(x,y′) + η · ∂mv(y′, z)

≤ ∂drop(x, s1) + ∂drop(s1,y
′) + η · ∂mv(y′, z) (∂drop is a quasi-metric)

≤ ∂drop(x, s1) + ∂drop(s1,y
′) + η · (∂mv(y′, s2) + ∂mv(s2, z)) (∂mv is a metric)

≤ (a+ c) + η(b+ d).

This concludes the proof of Claim E.3

Theorem (Restating Theorem 5.5). For any deterministic histogram-based-statistic fHBS : H[0,B)d → A,

there exists a mechanism which, on inputs of size at least n, is
(
O( 1√

σn
), e−Ω(

√
σn)
)
-DP, where σ = α

(
β
B

)d
,

and (α+ ηβ, 0, 0)-accurate for the identity function, w.r.t. the distortion measure ∂ηdrmv.

Proof. As is easy to see, this closely resembles the guarantees of Theorem 5.4 but without the metric sensitivity
in the accuracy. To prove this, we first show that we can achieve the exact same guarantees for the identity
functions over histograms. After we show such a mechanism, it is easy to see that we can compose it with
any fHBS without any change in parameters. This is because the second parameter (which corresponds to the
output error) in (α+ ηβ, 0, 0)-accuracy is 0 and that ∆fHBS

(0) = 0 for all deterministic fHBS. Hence, showing
a mechanism with same guarantees for the identity function over histogram will complete the proof.

We do this by first recalling Theorem 5.3 which gave the final privacy and accuracy guarantees for identity
function for d-dimensional histograms. We will prove that this exact mechanism satisfied our requirements.
Since the privacy guarantees remain the same, we focus on the accuracy guarantees. We will now show that
the (α, β, 0)-accuracy guarantee provided by Theorem 5.3 w.r.t. ∂drop as the measure of distortion and dhist

as the metric is equivalent to (α+ ηβ, 0, 0)-accuracy w.r.t. ∂ηdrmv measure of distortion and any metric.
We show this by converting the output error into the distortion. Note that the definition of dhist (the

metric used for giving accuracy guarantees in Theorem 5.3) is exactly the same as that of ∂mv. Hence, an
error of β in the output can be attributed to (or can be handled by) a distortion of β in the ∂mv-part of ∂

η
drmv.

Doing this results in the accuracy of (α + ηβ, 0, 0)-accuracy for the identity function w.r.t. the distortion
measure ∂ηdrmv and any metric.

F Omitted Details from Section 5.2 (Robust Privacy Mechanism)
In this section, we prove the omitted proofs from Section 5.2. We prove Claim 5.8 and Claim 5.9 in
Appendix F.1 and Lemma 5.4 and Lemma 5.5 in Appendix F.2.
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F.1 Proofs of Claim 5.8 and Claim 5.9
Claim (Restating Claim 5.8). Suppose P is a distribution that is a convex combination of Laplace distributions
{Lap(u, b) : u ∈ U} for some (discrete) set U ⊆ R. Then, for every d ∈ R, we have P (x)

P (x+d) ∈ [e
−|d|
b , e

|d|
b ].

Equivalently, ln(P ) is a 1
b -Lipschitz function.

Proof. Let P (x) =
∑
u∈U Q(u)Lap(x|u, b), where

∑
u∈U Q(u) = 1 and Q(u) ≥ 0. Then we have

P (x)

P (x+ d)
=

∑
u∈U Q(u)Lap(x|u, b)∑

u∈U Q(u)Lap((x+ d)|u, b)
(35)

It follows from the definition of Laplace distribution that

Lap(x|µ, b)
Lap(x+ d|µ, b)

= e(|x−µ|−|x+d−µ|)/b ≤ e|d|/b, (36)

Lap(x|µ, b)
Lap(x+ d|µ, b)

= e(|x−µ|−|x+d−µ|)/b ≥ e−|d|/b. (37)

Using (36) in (35) yields P (x)
P (x+d) ≤ e

|d|/b as follows:

P (x)

P (x+ d)
=

∑
u∈U Q(u)Lap(x|u, b)∑

u∈U Q(u)Lap((x+ d)|u, b)

≤
∑
u∈U Q(u)e|d|/bLap((x+ d)|u, b)∑

u∈U Q(u)Lap((x+ d)|u, b)
≤ e|d|/b

Using (37) in (35) yields P (x)
P (x+d) ≥ e

−|d|/b as follows:

P (x)

P (x+ d)
≥
∑
u∈U Q(u)e−|d|/bLap((x+ d)|u, b)∑

u∈U Q(u)Lap((x+ d)|u, b)
= e−|d|/b

This proves Claim 5.8.

Claim (Restating Claim 5.9). Suppose two distributions P,Q (defined over the same alphabet) both satisfy
the log-Lipschitz condition given in Claim 5.8, and W∞θ (P,Q) ≤ ρ. Then P,Q satisfy the (ε, δ)-DP condition
(i.e., for every S ⊆ R, we have Prx←P [x ∈ S] ≤ eε Prx←Q[x ∈ S] + δ), where ε = 2ρ

b + ln(2) and δ = ρθ

b(1−e−
ρ
b )
.

Proof. SinceW∞θ (P,Q) ≤ ρ, we have from Corollary A.1 that there is a distribution P ′ such that ∆(P, P ′) ≤ θ
and W∞(P ′, Q) ≤ ρ.

For x ∈ R, define two functions a(x) and z(x) as follows:

a(x) = max{0, P (x)− P ′(x)} (38)

z(x) =

∫ y=x+ρ

y=x−ρ
a(y) dy. (39)

Note that a(x) is non-negative and P ′(x) ≥ P (x)− a(x) holds for every x ∈ R. We shall use the following
claim in the proof.

Claim F.1.
∫
R z(x) dx = 2ρ

∫
R a(x) dx ≤ 2ρθ.
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Proof. The first equality follows by exchanging the order of integration in the expansion of
∫
R z(x) dx as follows:∫

R z(x) dx =
∫
R

(∫ y=x+ρ

y=x−ρ a(y) dy
)

dx =
∫
R

(∫ x=y+ρ

x=y−ρ a(y) dx
)

dy =
∫
R a(y)

(∫ x=y+ρ

x=y−ρ dx
)

dy = 2ρ
∫
R a(y) dy.

For the second inequality, note that
∫
R a(x) dx =

∫
R max{0, P (x)− P ′(x)} dx

(a)
= 1

2

∫
R |P (x)− P ′(x)| dx =

∆(P, P ′) ≤ θ. Here (a) follows from the fact that
∫
x :P ′(x)≥P (x)

(P ′(x)− P (x)) dx =
∫
x :P ′(x)<P (x)

(P (x)−
P ′(x)) dx.

Fix an arbitrary point x ∈ R. Let MP ,MP ′ denote the respective probability masses of P, P ′ in the
interval [x− ρ, x+ ρ], and let MQ denote the probability mass of Q in the interval [x− 2ρ, x+ 2ρ]. Since
P (x′) ≥ P (x)− a(x) and by the definition of z(x) from (39), we have MP ′ ≥MP − z(x). We shall also prove
the following inequality and use it in our proof.

Claim F.2. MQ ≥MP ′

Proof. Let φ ∈ Φ(P ′, Q) be the optimal coupling such that max(u,v):φ(u,v)6=0 |u− v| = W∞(P ′, Q). A crucial
observation is the following: it follows from W∞(P ′, Q) ≤ ρ that, for every (u, v) such that φ(u, v) 6= 0, if
u ∈ [x− ρ, x+ ρ], then we have that v ∈ [x− 2ρ, x+ 2ρ]. The above observation implies that MP ′ ≤ MQ.
Note that P ′ may not satisfy the log-Lipschitz condition of Claim 5.8, but we do not need this in order to
prove the claim.

Since P and Q satisfy the log-Lipschitz condition of Claim 5.8, we have that P (y)
P (x) ≥ e

−|x−y|
b and

Q(y)
Q(x) ≤ e

|x−y|
b hold for every x, y ∈ R. We can lower-bound MP and upper-bound MQ as follows:

Mp =

∫ x+ρ

x−ρ
P (y) dy

≥
∫ x+ρ

x−ρ
e−
|x−y|
b P (x) dy

= P (x)

∫ x+ρ

x−ρ
e−
|x−y|
b dy

= P (x) · 2b(1− e−
ρ
b ) (40)

MQ =

∫ x+2ρ

x−2ρ

Q(y) dy

≤
∫ x+2ρ

x−2ρ

e
|x−y|
b Q(x) dy

= Q(x)

∫ x+2ρ

x−2ρ

e
|x−y|
b dy

= Q(x) · 2b(e
2ρ
b − 1) (41)

By substituting the bounds on MP and MQ from (40) and (41), respectively, we have that

P (x) · 2b(1− e−
ρ
b ) ≤ Q(x) · 2b(e

2ρ
b − 1) + z(x)

⇒ P (x) ≤ Q(x)
( e 2ρ

b − 1

1− e− ρb
)

+
z(x)

2b(1− e− ρb )

= Q(x)e
ρ
b (
e

2ρ
b − 1

e
ρ
b − 1

) +
z(x)

2b(1− e− ρb )

= Q(x)e
ρ
b (e

ρ
b + 1) +

z(x)

2b(1− e− ρb )
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≤ Q(x)2e
2ρ
b +

z(x)

2b(1− e− ρb )

which implies P (x) ≤ eεQ(x) + z(x)

2b(1−e−
ρ
b )
, where ε = 2ρ

b + ln(2). Using this and integrating over an arbitrary

subset S ⊆ R and using
∫
S z(x) dx ≤

∫
R z(x) dx ≤ 2ρθ (from Claim F.1) gives

Pr
x←P

[x ∈ S] ≤ eε Pr
x←Q

[x ∈ S] +
ρθ

b(1− e− ρb )
. (42)

Take δ = ρθ

b(1−e−
ρ
b )
. Note that δ → 0 as θ → 0. This concludes the proof of Claim 5.9.

F.2 Proofs of Lemma 5.4 and Lemma 5.5
Now we establish an accuracy result for our mechanismMb

Lap in the following lemma.

Lemma (Restating Lemma 5.4). For every γ ∈ [0, 1],Mb
Lap is (0, β, γ)-accurate, where β = b ln( 1

γ ).

Proof. Fix a γ ∈ [0, 1] and any input x ∈ R. Instead of treating x as a real number, for this proof, we will treat
x as a point distribution over R. Clearly, this is equivalent to treating x as a deterministic input. Let Q denote
the output distribution ofMb

Lap when the input is drawn from x. We want to show that W∞γ (x,Q) ≤ β, for
the above-mentioned β. By definition of W∞γ , we have W∞γ (x,Q) = inf

φ∈Φγ(x,Q)
max

(y,t)←φ
[|y − t|].

Consider the following φ∗:

φ∗(i, t) =

{
0 if t < −b ln( 1

γ ) + i or t > b ln( 1
γ ) + i;

1
1−γLap(t|b, i)x(i) if t ∈ [−b ln( 1

γ ) + i, b ln( 1
γ ) + i].

It can be verified that ∆(φ∗1, x) = 0 and ∆(φ∗2, q) ≤ γ, which implies that φ∗ ∈ Φγ(x,Q). This in turn implies
that W∞γ (x,Q) ≤ max(y,t)←φ∗ [|y − t|]. It follows from the definition of φ∗ that max(y,t)←φ∗ [|y − t|] = b ln( 1

γ ),
which gives W∞γ (x,Q) ≤ b ln( 1

γ ). This concludes the proof of Lemma 5.4.

Lemma (Restating Lemma 5.5). The error sensitivity of Mb
Lap has the following upper bounded, for all

β1, γ > γ1, τ
0,γ

Mb
Lap

(β1, γ1) ≤ β1 + b ln( 1
γ−γ1

).

Proof. SinceMb
Lap adds independent Laplacian noise, using Lemma 3.2 we have,

max
P,Q:

W∞θ (P,Q)≤β1

W∞θ (Mb
Lap ◦ P,Mb

Lap ◦Q)
(a)
≤ max

P,Q:
W∞θ (P,Q)≤β1

W∞θ (P,Q)

= β1.

It follows from Lemma 3.2 (if P and Q are independent, thenW∞γ (P+Q,Q) ≤W∞γ (P, p0)) and Lemma 5.4
that for any γ > 0 and random variable X, we have

W∞γ (Mb
Lap(X), X)) ≤ b ln(

1

γ
).

Using these inequalities and that Mb
Lap is a mechanism for the identity function, for γ > γ1, we can

upper-bound τ0,γ

Mb
Lap

(β1, γ1) as follows,

τ0,γ

Mb
Lap

(β1, γ1) = sup
X,X′:

W∞γ1
(X,X′)≤β1

inf
Y :

∂̂(X′,Y )=0

W∞γ (Mb
Lap(X), Y )
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= sup
X,X′:

W∞γ1
(X,X′)≤β1

W∞γ (Mb
Lap(X), X ′)

= sup
X,X′:

W∞γ1
(X,X′)≤β1

W∞γ1+γ−γ1
(Mb

Lap(X), X ′)

(a)
≤ sup

X,X′:
W∞γ1

(X,X′)≤β1

(
W∞γ1

(Mb
Lap(X),Mb

Lap(X ′)) +W∞γ−γ1
(Mb

Lap(X ′), X ′)
)

≤ sup
X,X′:

W∞γ1
(X,X′)≤β1

W∞γ1
(Mb

Lap(X),Mb
Lap(X ′)) + sup

X
W∞γ−γ1

(Mb
Lap(X), X)

(b)
≤ sup

X,X′:
W∞γ1

(X,X′)≤β1

W∞γ1
(X,X ′) + sup

X
W∞γ−γ1

(Mb
Lap(X), X)

≤ β1 + b ln(
1

γ − γ1
)

Here, (a) follows from Lemma 3.1 and (b) follows from Lemma 3.2.

G Omitted Details from Section 5.3 (Private Sampling)
Claim G.1. For any S ⊂ R, we have Pr[L(P ) ∈ S] ≤ eε Pr[L(Q) ∈ S] + δ

Proof. Take an arbitrary (measurable) subset S ⊂ R.

Pr[L(P ) ∈ S] =
1

2b

∫
S

∫
R
P (x)e−

|s−x|
b dxds

=
1

2b

∫
S

∫
R

(P ′(x) +R(x))e−
|s−x|
b dxds

=
1

2b

∫
S

∫
R
P ′(x)e−

|s−x|
b dxds+

1

2b

∫
S

∫
R
R(x)e−

|s−x|
b dxds

=
1

2b

∫
S

∫
R
P ′(x)e−

|s−x|
b dxds+

∫
R
R(x)

∫
S

1

2b
e−
|s−x|
b dsdx

≤ 1

2b

∫
S

∫
R
P ′(x)e−

|s−x|
b dxds+

∫
R:R(x)>0

R(x)

∫
S

1

2b
e−
|s−x|
b dsdx

≤ 1

2b

∫
S

∫
R
P ′(x)e−

|s−x|
b dxds+

∫
R:R(x)>0

R(x) · 1

≤ 1

2b

∫
S

∫
R
P ′(x)e−

|s−x|
b dxds+ θ

=
1

2b

∫
S

∫
R

∫
R
φ(x, y)e−

|s−x|
b dy dxds+ θ

=
1

2b

∫
S

∫
R

∫
R
φ(x, y)e−

|s−x|
b dx dy ds+ θ

≤ 1

2b

∫
S

∫
R

∫
R
φ(x, y)e

|x−y|
b e−

|s−y|
b dxdy ds+ θ

(Using the triangle inequality |s− x| ≥ |s− y| − |x− y|)

≤ 1

2b

∫
S

∫
R

∫
R
φ(x, y)e

Sθ(f)
b e−

|s−y|
b dx dy ds+ θ

(Since for all (x, y) such that φ(x, y) 6= 0, we have |x− y| ≤ Sθ(f))
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= e
Sθ(f)
b

1

2b

∫
S

∫
R

∫
R
φ(x, y)e−

|s−y|
b dx dy ds+ θ

= e
Sθ(f)
b

1

2b

∫
S

∫
R
Q(y)e−

|s−y|
b dy ds+ θ

= e
Sθ(f)
b Pr[L(Q) ∈ S] + θ

Since the above calculations hold for an arbitrary subset of R, they hold for all subsets of R too.
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