
NISC:
Non-Interactive Secure 

Computation

Yuval Ishai
Eyal Kushilevitz
Rafail Ostrovsky

Manoj Prabhakaran
Amit Sahai



NISC: A motivation



NISC: A motivation
Dating for cryptographers



NISC: A motivation
Dating for cryptographers

+--------+

| Alice |
+--------+

status: looking

Prefs
Age range:

Sex:
Interests 
include:

encrypted preferences



NISC: A motivation
Dating for cryptographers

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests 
include:

encrypted preferences



NISC: A motivation
Dating for cryptographers

Functionality: Inputs: Preferences from Alice & Profile from Bob
                Output: If match, then give Bob’s contact information to
                          Alice (Bob learns nothing)

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests 
include:

encrypted preferences
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Dating for cryptographers

Functionality: Inputs: Preferences from Alice & Profile from Bob
                Output: If match, then give Bob’s contact information to
                          Alice (Bob learns nothing)

Feature: Alice can post her preferences and go offline

match notification (encrypted)

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests 
include:

encrypted preferences
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Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y 
(and without Bob learning about x) [Y’86]

Combined with a 2-message OT protocol: A non-interactive scheme, 
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her
Security only against honest-but-curious Bob (even if ideal OT)

Our Problem: Obtain the same result against malicious players
With blackbox PRG (and as little overhead as possible)

OT

garbled circuit

key pairs for 
Alice’s inputsinput

keys

NIZK 
no good!
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NISC/OT
(NISC over OT)

Functionality (single instance version): Alice and Bob give x and y 
respectively. Alice gets f(x,y).

Structure of protocol:

Alice and Bob invoke several instances of OT in parallel with Alice as 
receiver

Alice then carries out a local computation, and outputs f(x,y) (or 
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H

NISC/OT can be converted to NISC/CRS using [PVW’08]

Alice doesn’t get any output until she 
gives inputs to all OT instances
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NISC for general (poly-time computable) functions:
Honest-but-curious players: 

NISC/OT using Yao’s garbled circuit [Y’86]

NISC from fully homomorphic encryption [RAD’78,G’09,GHV’10,...]: Low 
communication (but currently less practical); uses more than PRG+OT

Malicious players:
Use a NIZK to prove correctness of messages sent [CCKM’00,HK’07]: 
Expensive, and non-blackbox use of PRG (used for encryption in Yao)
[IPS’08 (full version)]: using “MPC-in-the-head.” Non-blackbox use of PRG
Today: NISC/OT using PRG as a black-box 

Wide Open: Statistically secure NISC/OT (even constant round 
MPC) possible for general functions? 

Open for honest-majority and honest-but-curious settings too
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Our Results
Today: NISC/OT using PRG as a black-box

Also, few PRG calls: polylog(!) per gate of the function’s (large) circuit 
(previously !(!) even for interactive constant-round SFE [LP’07])

A relaxed security notion allows constant number of PRG calls per 
gate

Also, Reusable NISC in CRS model (using PRG + OT protocol): One 
reusable “public-key” that Alice publishes and uses in many executions.

Issue: public-key must be refreshed each time Alice interacts with the 
environment (possibly after receiving messages from many Bobs)

We show how to allow t such interactions before refreshing, with 
public-key much shorter than t times the original
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Input-Dependent Abort
Intermediate security notions (also useful by themselves) [K’88,LP’07,...]

General input-dependent abort security: Corrupt Bob can enforce that 
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

Input Value Disjunction (IVD) predicate: 
  PS(x)=1 iff xi=bi for some (i,bi) ∈ S

Wire Value Disjunction (WVD) predicate: 
  PT,y(x)=1 iff in circuit C(x,y), wire w has value bw for some (w,bw) ∈ T

Maybe good enough in practice: leaks at most one bit (or less, if Alice 
aggregates many executions before taking any action) of information 
about Alice’s input
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Oblivious MAC (OM)
Verifier gets a receipt that can be used to verify the MAC when the 
message and tag are delivered

Obliviousness: If tag chosen at random, then receipt by itself reveals no 
information about msg
Correctness: Verify(msg,tag;key,rcpt) = 1
Unforgeability: can’t find (msg,tag) and (msg’,tag’) s.t. msg’ " msg, and for 
rcpt=OMkey(msg,tag), Verify(msg’,tag’;key,rcpt)  = 1
Concretely implemented using a one-time (statistically) secure MAC

(msg,tag)

(msg,tag)key

rcpt

rcpt = MACkey(msg) ⊕ tag
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can cause Alice to abort (if a wrong c’ or tag is kept encrypted)

But if no abort, then throughout the evaluation, for each (G,a’,b’) the c’ 
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NISC/OT using blackbox PRG

Few PRG calls, low communication overhead over Yao

Open questions: Better efficiency (in OT usage, in reusability, …)? 
Statistical security?
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