
NISC:
Non-Interactive Secure

Computation

Yuval Ishai
Eyal Kushilevitz
Rafail Ostrovsky

Manoj Prabhakaran
Amit Sahai

NISC: A motivation

NISC: A motivation
Dating for cryptographers

NISC: A motivation
Dating for cryptographers

+--------+

| Alice |
+--------+

status: looking

Prefs
Age range:

Sex:
Interests
include:

encrypted preferences

NISC: A motivation
Dating for cryptographers

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests
include:

encrypted preferences

NISC: A motivation
Dating for cryptographers

Functionality: Inputs: Preferences from Alice & Profile from Bob
 Output: If match, then give Bob’s contact information to
 Alice (Bob learns nothing)

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests
include:

encrypted preferences

NISC: A motivation
Dating for cryptographers

Functionality: Inputs: Preferences from Alice & Profile from Bob
 Output: If match, then give Bob’s contact information to
 Alice (Bob learns nothing)

Feature: Alice can post her preferences and go offline

match notification (encrypted)

+--------+

| Alice |
+--------+

status: looking
Profile

Name:
Age:
Sex:

Interests:

Contact info

Prefs
Age range:

Sex:
Interests
include:

encrypted preferences

Yao’s Garbled Circuit

Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y
(and without Bob learning about x) [Y’86]

OT

garbled circuit

key pairs for
Alice’s inputsinput

keys

Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y
(and without Bob learning about x) [Y’86]

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her

OT

garbled circuit

key pairs for
Alice’s inputsinput

keys

Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y
(and without Bob learning about x) [Y’86]

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her
Security only against honest-but-curious Bob (even if ideal OT)

OT

garbled circuit

key pairs for
Alice’s inputsinput

keys

Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y
(and without Bob learning about x) [Y’86]

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her
Security only against honest-but-curious Bob (even if ideal OT)

Our Problem: Obtain the same result against malicious players
With blackbox PRG (and as little overhead as possible)

OT

garbled circuit

key pairs for
Alice’s inputsinput

keys

Yao’s Garbled Circuit
Allows Alice to compute f(x,y) without learning anything more about y
(and without Bob learning about x) [Y’86]

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her
Security only against honest-but-curious Bob (even if ideal OT)

Our Problem: Obtain the same result against malicious players
With blackbox PRG (and as little overhead as possible)

OT

garbled circuit

key pairs for
Alice’s inputsinput

keys

NIZK
no good!

NISC/OT
(NISC over OT)

NISC/OT
(NISC over OT)

Functionality (single instance version): Alice and Bob give x and y
respectively. Alice gets f(x,y).

Structure of protocol:

Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

NISC/OT
(NISC over OT)

Functionality (single instance version): Alice and Bob give x and y
respectively. Alice gets f(x,y).

Structure of protocol:

Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Alice doesn’t get any output until she
gives inputs to all OT instances

NISC/OT
(NISC over OT)

Functionality (single instance version): Alice and Bob give x and y
respectively. Alice gets f(x,y).

Structure of protocol:

Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H

Alice doesn’t get any output until she
gives inputs to all OT instances

NISC/OT
(NISC over OT)

Functionality (single instance version): Alice and Bob give x and y
respectively. Alice gets f(x,y).

Structure of protocol:

Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H

NISC/OT can be converted to NISC/CRS using [PVW’08]

Alice doesn’t get any output until she
gives inputs to all OT instances

NISC Results

NISC Results
NISC considered in [RAD’78,Y’86,SYY’99,...]

NISC Results
NISC considered in [RAD’78,Y’86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

NISC/OT using Yao’s garbled circuit [Y’86]

NISC from fully homomorphic encryption [RAD’78,G’09,GHV’10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:
Use a NIZK to prove correctness of messages sent [CCKM’00,HK’07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)
[IPS’08 (full version)]: using “MPC-in-the-head.” Non-blackbox use of PRG

NISC Results
NISC considered in [RAD’78,Y’86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

NISC/OT using Yao’s garbled circuit [Y’86]

NISC from fully homomorphic encryption [RAD’78,G’09,GHV’10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:
Use a NIZK to prove correctness of messages sent [CCKM’00,HK’07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)
[IPS’08 (full version)]: using “MPC-in-the-head.” Non-blackbox use of PRG
Today: NISC/OT using PRG as a black-box

NISC Results
NISC considered in [RAD’78,Y’86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

NISC/OT using Yao’s garbled circuit [Y’86]

NISC from fully homomorphic encryption [RAD’78,G’09,GHV’10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:
Use a NIZK to prove correctness of messages sent [CCKM’00,HK’07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)
[IPS’08 (full version)]: using “MPC-in-the-head.” Non-blackbox use of PRG
Today: NISC/OT using PRG as a black-box

Wide Open: Statistically secure NISC/OT (even constant round
MPC) possible for general functions?

Open for honest-majority and honest-but-curious settings too

Our Results

Our Results
Today: NISC/OT using PRG as a black-box

Also, few PRG calls: polylog(!) per gate of the function’s (large) circuit
(previously !(!) even for interactive constant-round SFE [LP’07])

A relaxed security notion allows constant number of PRG calls per
gate

Our Results
Today: NISC/OT using PRG as a black-box

Also, few PRG calls: polylog(!) per gate of the function’s (large) circuit
(previously !(!) even for interactive constant-round SFE [LP’07])

A relaxed security notion allows constant number of PRG calls per
gate

Also, Reusable NISC in CRS model (using PRG + OT protocol): One
reusable “public-key” that Alice publishes and uses in many executions.

Our Results
Today: NISC/OT using PRG as a black-box

Also, few PRG calls: polylog(!) per gate of the function’s (large) circuit
(previously !(!) even for interactive constant-round SFE [LP’07])

A relaxed security notion allows constant number of PRG calls per
gate

Also, Reusable NISC in CRS model (using PRG + OT protocol): One
reusable “public-key” that Alice publishes and uses in many executions.

Issue: public-key must be refreshed each time Alice interacts with the
environment (possibly after receiving messages from many Bobs)

We show how to allow t such interactions before refreshing, with
public-key much shorter than t times the original

Input-Dependent Abort

Input-Dependent Abort
Intermediate security notions (also useful by themselves) [K’88,LP’07,...]

Input-Dependent Abort
Intermediate security notions (also useful by themselves) [K’88,LP’07,...]

General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

Input-Dependent Abort
Intermediate security notions (also useful by themselves) [K’88,LP’07,...]

General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

Input Value Disjunction (IVD) predicate:
 PS(x)=1 iff xi=bi for some (i,bi) ∈ S

Wire Value Disjunction (WVD) predicate:
 PT,y(x)=1 iff in circuit C(x,y), wire w has value bw for some (w,bw) ∈ T

Input-Dependent Abort
Intermediate security notions (also useful by themselves) [K’88,LP’07,...]

General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

Input Value Disjunction (IVD) predicate:
 PS(x)=1 iff xi=bi for some (i,bi) ∈ S

Wire Value Disjunction (WVD) predicate:
 PT,y(x)=1 iff in circuit C(x,y), wire w has value bw for some (w,bw) ∈ T

Maybe good enough in practice: leaks at most one bit (or less, if Alice
aggregates many executions before taking any action) of information
about Alice’s input

Roadmap for NISC/OT

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Step 1: NISC/OT for NC0
functions (with IVD-abort)

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Private
circuits

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Private
circuits

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

CB

A

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Private
circuits

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts
C: polylog(!) factor more comm./PRG calls over Yao

For smaller circuits, B may be better

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

CB

A

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Roadmap for NISC/OT

Private
circuits

Step 1: NISC/OT for NC0
functions (with IVD-abort)
Step 2: NISC/H for NC0 function H. Use H to
compile Yao’s garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC0 into NISC/NC0 schemes
Step 4: Handle IVD/WVD-aborts
C: polylog(!) factor more comm./PRG calls over Yao

For smaller circuits, B may be better
All use PRG in a black-box manner (like Yao)

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

CB

A

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient O(!) overhead

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC for
cert-OT with
IVD-abort

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”
O(!) overhead

Step 1

Implemented using “MPC-in-the-head” (a la [IKOS’07])

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”
O(!) overhead

Step 1

Implemented using “MPC-in-the-head” (a la [IKOS’07])

Uses MPC protocol from [DIK’10] to keep views small

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”
O(!) overhead

Step 1

Implemented using “MPC-in-the-head” (a la [IKOS’07])

Uses MPC protocol from [DIK’10] to keep views small

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”
O(!) overhead

polylog(!) overhead

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”

Step 1

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Use certified-OT (instead of OT) in perfectly secure Yao’s
garbled secure protocol for NC0 functions

Semi-honest perfectly
secure NISC for NC0

For NC0 functions, unconditionally
secure NISC/OT [Kilian’88,IPS’08],
but not very efficient

First build NISC/OT with IVD-abort for “certified-OT”

Step

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

2

Step

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

2

Step

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

All variants rely on Yao’s Garbled Circuit
and “oblivious MAC”

2

Yao’s Garbled Circuit

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Store [c’,Kw(c’)]G,a’,b’ : (c’,Kw(c’)) encrypted
using Ku(a’) & Kv(b’)

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Store [c’,Kw(c’)]G,a’,b’ : (c’,Kw(c’)) encrypted
using Ku(a’) & Kv(b’)

Alice can evaluate the circuit if (zw’,Kw(zw’))
known for all input wires w, with value zw

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Store [c’,Kw(c’)]G,a’,b’ : (c’,Kw(c’)) encrypted
using Ku(a’) & Kv(b’)

Alice can evaluate the circuit if (zw’,Kw(zw’))
known for all input wires w, with value zw

Bob sends (yw’,Kw(yw’)) for his input wires

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Store [c’,Kw(c’)]G,a’,b’ : (c’,Kw(c’)) encrypted
using Ku(a’) & Kv(b’)

Alice can evaluate the circuit if (zw’,Kw(zw’))
known for all input wires w, with value zw

Bob sends (yw’,Kw(yw’)) for his input wires

Alice picks up Kw(xw) for her input wires using OT

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Yao’s Garbled Circuit
Bob sends a garbled circuit to Alice

Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(1). rw = 0 for
Alice’s input wires and the output wires.

For each gate G, and each pair of masked
values (a’,b’) of inputs to the gate, let c’ be
the masked output

Store [c’,Kw(c’)]G,a’,b’ : (c’,Kw(c’)) encrypted
using Ku(a’) & Kv(b’)

Alice can evaluate the circuit if (zw’,Kw(zw’))
known for all input wires w, with value zw

Bob sends (yw’,Kw(yw’)) for his input wires

Alice picks up Kw(xw) for her input wires using OT

Gate a’ b’ c’=FG(a,b)’
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

...
N 0 0 1

N 0 1 0

N 1 0 1

N 1 1 1

G1

a’ b’

c’

u v

w

Malicious Bob can pick arbitrary c’!

Oblivious MAC (OM)

Oblivious MAC (OM)
Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

(msg,tag)

(msg,tag)key

rcpt

Oblivious MAC (OM)
Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg
Correctness: Verify(msg,tag;key,rcpt) = 1
Unforgeability: can’t find (msg,tag) and (msg’,tag’) s.t. msg’ " msg, and for
rcpt=OMkey(msg,tag), Verify(msg’,tag’;key,rcpt) = 1

(msg,tag)

(msg,tag)key

rcpt

Oblivious MAC (OM)
Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg
Correctness: Verify(msg,tag;key,rcpt) = 1
Unforgeability: can’t find (msg,tag) and (msg’,tag’) s.t. msg’ " msg, and for
rcpt=OMkey(msg,tag), Verify(msg’,tag’;key,rcpt) = 1
Concretely implemented using a one-time (statistically) secure MAC

(msg,tag)

(msg,tag)key

rcpt

Oblivious MAC (OM)
Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg
Correctness: Verify(msg,tag;key,rcpt) = 1
Unforgeability: can’t find (msg,tag) and (msg’,tag’) s.t. msg’ " msg, and for
rcpt=OMkey(msg,tag), Verify(msg’,tag’;key,rcpt) = 1
Concretely implemented using a one-time (statistically) secure MAC

(msg,tag)

(msg,tag)key

rcpt

rcpt = MACkey(msg) ⊕ tag

A Lean NISC/NC0
With Input-Dependent Abort Security

A Lean NISC/NC0
With Input-Dependent Abort Security

NC0 functionality H:

A Lean NISC/NC0
With Input-Dependent Abort Security

ru,rv,rw,...c’=FG(a’⊕ru,b’⊕rv)⊕rw

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)

A Lean NISC/NC0
With Input-Dependent Abort Security

ru,rv,rw,...OM-key

rcpt

c’=FG(a’⊕ru,b’⊕rv)⊕rw

rcpt = MACkey(c’) ⊕ tag tagG,a’,b’

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)

A Lean NISC/NC0
With Input-Dependent Abort Security

ru,rv,rw,...OM-key

rcpt

c’=FG(a’⊕ru,b’⊕rv)⊕rw

rcpt = MACkey(c’) ⊕ tag tagG,a’,b’input

input keys
key pairsOT for input-keys

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

A Lean NISC/NC0
With Input-Dependent Abort Security

Garbled ciruit
(with encrypted tags)

ru,rv,rw,...OM-key

rcpt

c’=FG(a’⊕ru,b’⊕rv)⊕rw

rcpt = MACkey(c’) ⊕ tag tagG,a’,b’input

input keys
key pairsOT for input-keys

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

Bob sends the garbled circuit to Alice, with encryptions [c’,Kw(c’),tag]G,a’,b’

A Lean NISC/NC0
With Input-Dependent Abort Security

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

Bob sends the garbled circuit to Alice, with encryptions [c’,Kw(c’),tag]G,a’,b’

A Lean NISC/NC0
With Input-Dependent Abort Security

Prevents Bob from changing c’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong c’ or tag is kept encrypted)

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

Bob sends the garbled circuit to Alice, with encryptions [c’,Kw(c’),tag]G,a’,b’

A Lean NISC/NC0
With Input-Dependent Abort Security

Prevents Bob from changing c’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong c’ or tag is kept encrypted)

But if no abort, then throughout the evaluation, for each (G,a’,b’) the c’
value recovered is correct, and hence output is correct

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

Bob sends the garbled circuit to Alice, with encryptions [c’,Kw(c’),tag]G,a’,b’

A Lean NISC/NC0
With Input-Dependent Abort Security

Prevents Bob from changing c’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong c’ or tag is kept encrypted)

But if no abort, then throughout the evaluation, for each (G,a’,b’) the c’
value recovered is correct, and hence output is correct

Input-dependent abort security: since abort can depend on the inputs in a
fairly complicated way

NC0 functionality H:
Takes from Bob the wire masks and computes the bit c’ in each garbled
gate (G,a’,b’,c’)
For each (G,a’,b’) carries out OM for the bit c’ (using independent keys
from Alice)
Also, as in Yao’s scheme, lets Alice pick up her input wires’ keys

Bob sends the garbled circuit to Alice, with encryptions [c’,Kw(c’),tag]G,a’,b’

Step2

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

To restrict to WVD-abort, more
complex NC0 function

Step2

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

To restrict to WVD-abort, more
complex NC0 function

creates the garbled circuit, using
purported PRG values given by Bob
applies OM to those PRG values:
using “NC0 MAC” [IKOS’08]

Step2

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

To restrict to WVD-abort, more
complex NC0 function

creates the garbled circuit, using
purported PRG values given by Bob
applies OM to those PRG values:
using “NC0 MAC” [IKOS’08]
WVD-abort as wrong PRF values can be given
for certain keys and not others

Step2

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

To restrict to WVD-abort, more
complex NC0 function

creates the garbled circuit, using
purported PRG values given by Bob
applies OM to those PRG values:
using “NC0 MAC” [IKOS’08]
WVD-abort as wrong PRF values can be given
for certain keys and not others

Can avoid WVD-abort using cut&choose, but O(!) overhead

Step2

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

MPC
in the
head

NISC for
cert-OT with
IVD-abort

Honest-
Majority

MPC

Semi-honest perfectly
secure NISC for NC0

Step3

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Plug-in NISC with IVD-abort security
into the NISC/NC0 constructions

Step3

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

IVD-abort handled by using a
!-wise independent encoding of x

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

IVD-abort handled by using a
!-wise independent encoding of x
WVD-abort handled by using a “private-cricuit”
encoding of C and input x

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

IVD-abort handled by using a
!-wise independent encoding of x
WVD-abort handled by using a “private-cricuit”
encoding of C and input x

Reading up to ! wires gives no information about x

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

IVD-abort handled by using a
!-wise independent encoding of x
WVD-abort handled by using a “private-cricuit”
encoding of C and input x

Reading up to ! wires gives no information about x
Private-circuit constructed from MPC (a la [ISW’03])

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

IVD-abort handled by using a
!-wise independent encoding of x
WVD-abort handled by using a “private-cricuit”
encoding of C and input x

Reading up to ! wires gives no information about x
Private-circuit constructed from MPC (a la [ISW’03])

Size of private-circuit proportional to “work” in
the MPC. polylog(!) overhead using MPC in [DIK’10]

Step4

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Summary

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

Summary

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC/OT using blackbox PRG

Summary

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC/OT using blackbox PRG

Few PRG calls, low communication overhead over Yao

Summary

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

NISC/OT using blackbox PRG

Few PRG calls, low communication overhead over Yao

Open questions: Better efficiency (in OT usage, in reusability, …)?
Statistical security?

Summary

NISC

NISC with
WVD-abort

NISC with
IVD-abort

NISC for
NC0 with
IVD-abort

Private
circuits

MPC in
the head

NISC for
cert-OT with
IVD-abort

Semi-honest perfectly
secure NISC for NC0

NISC with
inp.dep-abort

Using Yao’s garbled circuit and Oblivious MAC

Lean NISC/NC0

with inp.dep-abort
NISC/NC0

using cut&choose
NISC/NC0

with WVD-abort

Input-
encoding

