NISC:
Non-Interactive Secure
Computation

Yuval Ishai
Eyal Kushilevitz
Rafail Ostrovsky

Manoj Prabhakaran

Amit Sahai

NISC: A motivation

@ Dating for cryptographers

status: looking

encrypted preferences

NISC: A motivation

@ Dating for cryptographers

+

+

Alice

status: looking
encrypted preferences Profile

Age:
Sex:
Interests:

Prefs

Age range:
Sex:
Interests

include: Contact info

NISC: A motivation

@ Dating for cryptographers

+

+

Alice

status: looking
encrypted preferences Profile

Age:
Sex:
Interests:

Contact info

@ Functionality: Inputs: Preferences from Alice & Profile from Bob
Output: If match, then give Bobs contact information to
Alice (Bob learns nothing)

NISC: A motivation

@ Dating for cryptographers

+

+

Alice

status: looking

ﬂ encrypted preferences N Profile
Name:
» - Age:

Sex:
Interests:

Contact info

match notification (encrypted) A

(—————

@ Functionality: Inputs: Preferences from Alice & Profile from Bob
Output: If match, then give Bobs contact information to
Alice (Bob learns nothing)

@ Feature: Alice can post her preferences and go offline

Yaos Garbled Circuit

o Allows Alice to compute f(x,y) without learning anything more about vy

(and without Bob learning about x) [Y’86]
Key pairs for
[<Alices inputs

input |

& keys

/ \ : _ garbled circuit

Yaos Garbled Circuit

o Allows Alice to compute f(x,y) without learning anything more about vy
(and without Bob learning about x) [Y'86]

Key pairs for
[<Alices inputs

input |

/ \ : | garbled circuit » & A

@ Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her

Yaos Garbled Circuit

o Allows Alice to compute f(x,y) without learning anything more about vy
(and without Bob learning about x) [Y'86]

Key pairs for
[<Alices inputs

input

/ \ : | garbled circuit » & A

@ Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her

@ Security only against honest-but-curious Bob (even if ideal OT)

Yaos Garbled Circuit

Allows Alice to compute f(x,y) without learning anything more about y

(and without Bob learning about x) [Y’86]

Key pairs for
wAlices inputs

/ \ : : | garbled circuit _ = A

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her

Security only against honest-but-curious Bob (even if ideal OT)

Our Problem: Obtain the same result against malicious players
@ With blackbox PRG (and as little overhead as possible)

Yaos Garbled Circuit

Allows Alice to compute f(x,y) without learning anything more about y

(and without Bob learning about x) [Y’86]

Key pairs for
wAlices inputs

/ \ : é | garbled circuit _ e A

Combined with a 2-message OT protocol: A non-interactive scheme,
where Alice publishes an encoding of x and Bob can transfer f(x,y) to her

Security only against honest-but-curious Bob (even if ideal OT)

Our Problem: Obtain the same result against malicious players R
& With blackbox PRG-(and-ac little avcnlsad ~a ~—eeii

NISC/OT

(NISC over OT)

@ Functionality (single instance version): Alice and Bob give x and vy
respectively. Alice gets f(x,y).

@ Structure of protocol:

@ Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

@ Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

@ Security: UC security (against active corruption) in the OT-hybrid model

NISC/OT

(NISC over OT)

@ Functionality (single instance version): Alice and Bob give x and vy

respectively. Alice gets f(x,y).

@ Structure of protocol: (

@ Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

@ Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

@ Security: UC security (against active corruption) in the OT-hybrid model

NISC/OT

(NISC over OT)

Functionality (single instance version): Alice and Bob give x and vy

respectively. Alice gets f(x,y). (

Structure of protocol:

@ Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

@ Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H

NISC/OT

(NISC over OT)

Functionality (single instance version): Alice and Bob give x and vy

respectively. Alice gets f(x,y). (

Structure of protocol:

@ Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

@ Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H
NISC/OT can be converted to NISC/CRS using [PVYW’08]

NISC Results

NISC considered in [RAD78,Y'86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

@ NISC/OT using Yaos garbled circuit [Y’86]

@ NISC from fully homomorphic encryption [RAD'78,G6'09,GHV'10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:

@ Use a NIZK fo prove correctness of messages sent [CCKM'00,HK'07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)

@ [IPS'08 (full version)]: using "MPC-in-the-head.” Non-blackbox use of PRG

D

NISC Results

NISC considered in [RAD78,Y'86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

@ NISC/OT using Yaos garbled circuit [Y’86]

@ NISC from fully homomorphic encryption [RAD'78,G6'09,GHV'10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:
@ Use a NIZK fo prove correctness of messages sent [CCKM'00,HK'07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)

@ [IPS'08 (full version)]: using "MPC-in-the-head.” Non-blackbox use of PRG
@ Today: NISC/OT using PRG as a black-box

NISC Results

NISC considered in [RAD78,Y'86,SYY’99,...]

NISC for general (poly-time computable) functions:
Honest-but-curious players:

@ NISC/OT using Yaos garbled circuit [Y’86]

@ NISC from fully homomorphic encryption [RAD'78,G6'09,GHV'10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:

@ Use a NIZK fo prove correctness of messages sent [CCKM'00,HK'07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)

@ [IPS'08 (full version)]: using "MPC-in-the-head.” Non-blackbox use of PRG

@ Today: NISC/OT using PRG as a black-box

@ Wide Open: Statistically secure NISC/OT (even constant round
MPC) possible for general functions?

@ Open for honest-majority and honest-but-curious settings too

Our Results

@ Today: NISC/OT using PRG as a black-box

o Also, few PRG calls: polylog(x) per gate of the functions (large) circuit
(previously Q(x) even for interactive constant-round SFE [LP'07])

@ A relaxed security notion allows constant number of PRG calls per
gate

Our Results

@ Today: NISC/OT using PRG as a black-box

o Also, few PRG calls: polylog(x) per gate of the functions (large) circuit
(previously Q(x) even for interactive constant-round SFE [LP'07])

@ A relaxed security notion allows constant number of PRG calls per
gate

@ Also, Reusable NISC in CRS model (using PRG + OT protocol): One
reusable “public-key” that Alice publishes and uses in many executions.

Our Results

@ Today: NISC/OT using PRG as a black-box

o Also, few PRG calls: polylog(x) per gate of the functions (large) circuit
(previously Q(x) even for interactive constant-round SFE [LP'07])

@ A relaxed security notion allows constant number of PRG calls per
gate

@ Also, Reusable NISC in CRS model (using PRG + OT protocol): One
reusable “public-key” that Alice publishes and uses in many executions.

@ Issue: public-key must be refreshed each time Alice interacts with the
environment (possibly after receiving messages from many Bobs)

@ We show how fo allow t such interactions before refreshing, with
public-key much shorter than t tfimes the original

Input-Dependent Abort

o Intermediate security notions (also useful by themselves) [K'88,LP'07,...]

Input-Dependent Abort

o Intermediate security notions (also useful by themselves) [K'88,LP'07,...]

@ General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

Input-Dependent Abort

o Intermediate security notions (also useful by themselves) [K'88,LP'07,...]

@ General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

@ Input Value Disjunction (IVD) predicate:
Ps(x)=1 iff xi=b; for some (i,bj) € S

@ Wire Value Disjunction (WVD) predicate:
Pry(x)=1 iff in circuit C(x,y), wire w has value by, for some (w,by) € T

Input-Dependent Abort

o Intermediate security notions (also useful by themselves) [K'88,LP'07,...]

@ General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

@ Input Value Disjunction (IVD) predicate:
Ps(x)=1 iff xi=b; for some (i,bi) € S

@ Wire Value Disjunction (WVD) predicate:
Pry(x)=1 iff in circuit C(x,y), wire w has value by, for some (w,by) € T

@ Maybe good enough in practice: leaks at most one bit (or less, if Alice
aggregates many executions before taking any action) of information
about Alices input

Roadmap for NISC/OT

@ Step 1: NISC/OT for NC°
functions (with IVD-abort)

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| | using cut&choose with WVD-abort

NISC for
NC° with

IVD-abort

@ Step 1: NISC/OT for NC°
functions (with IVD-abort)

@ Step 2: NISC/H for NC° function H. Use H to
compile Yaos garbled circuit. (Three variants.)

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
B »,»‘.i" e e e e e _'__- e T~ oot 5

NISC for
NC° with |00

IVD-abort

@ Step 1: NISC/OT for NC° i
functions (with IVD-abort)

@ Step 2: NISC/H for NC° function H. use H to

NISC with NISC with
IVD-abort WVD-abort
compile Yaos garbled circuit. (Three variants.)

@ Step 3: Plug-in NISC/OT for NCP into NISC/NC°® schemes

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
B »,»‘.i" e e e e e _'__- e T~ oot 5

NISC for
NC° with |00

IVD-abort

Step 1: NISC/OT for NC°

functions (with IVD-abort)
Step 2: NISC/H for NC° function H. use H to

NISC with NISC with
IVD-abort WVD-abort
compile Yaos garbled circuit. (Three variants.)

Step 3: Plug-in NISC/OT for NC° into NISC/NC° schemes

Step 4: Handle IVD/WVD-aborts

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NCO NISC/NC°
NISC for with inp.dep-abort| || using cut&choose ||| with WvD-abort
I

IVD-abort

Step 1: NISC/OT for NC°

functions (with IVD-abort)
Step 2: NISC/H for NC° function H. use H to

compile Yaos garbled circuit. (Three variants.)
Step 3: Plug-in NISC/OT for NC° into NISC/NC° schemes

Step 4: Handle IVD/WVD-aborts

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for
NC° with

IVD-abort

Step 1: NISC/OT for NC°

functions (with IVD-abort)
Step 2: NISC/H for NC° function H. use H to

| Private
compile Yaos garbled circuit. (Three variants.) | it

Step 3: Plug-in NISC/OT for NC° info NISC/NC® schemes

Step 4: Handle IVD/WVD-aborts

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for
NC° with

IVD-abort

Step 1: NISC/OT for NC°

functions (with IVD-abort)
Step 2: NISC/H for NC° function H. use H to

| Private
compile Yaos garbled circuit. (Three variants.) L

Step 3: Plug-in NISC/OT for NC° into NISC/NCO schemes

Step 4: Handle IVD/WVD-aborts

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

NISC for
NC° with |00

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

IVD-abort

Step 1: NISC/OT for NC° NISC with NISC with NISC with
functions (with IVD-abort) inp.dep-abort IVD-abort WVD-abort

Step 2: NISC/H for NC° function H. use H to
compile Yaos garbled circuit. (Three variants.)

Step 3: Plug-in NISC/OT for NC° into NISC/NC® schemes)

| Private
| circuits

Step 4: Handle IVD/WVD-aborts " *

C: polylog(x) factor more comm./PRG calls over Yao o 0
@ For smaller circuits, B may be better N,

Roadmap for NISC/OT

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort
Step 1: NISC/OT for NC° NISC with NISC with NISC with
functions (with IVD-abort) inp.dep-abort 1| IVD-abort i} WVD-abort

Step 2: NISC/H for NC° function H. use H to
compile Yaos garbled circuit. (Three variants.)

Step 3: Plug-in NISC/OT for NC° info NISC/NC® schemes Y |
Step 4: Handle IVD/WVD-aborts | |

C: polylog(x) factor more comm./PRG calls over Yao o 0
@ For smaller circuits, B may be better N,

NISC for
NC° with |00
IVD-abort

| Private
| circuits

All use PRG in a black-box manner (like Yao)

Step 1

Using Yaos garbled circuit and Oblivious MAC

NISC for
NC° with

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

IVD-abort ||

| Private
| circuits

Step 1

Using Yaos garbled circuit and Oblivious MAC

NISC for
NC° with

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

IVD-abort|

| Private
| circuits

Step 1

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort
IVD-abort | -_ ‘
NISC with ' NISC with
@ For NC° functions, unconditionally |{¥C=1L1s; - WVD-abort

NISC for
NC° with

secure NISC/OT [Kilian'88,1PS'08],
but not very efficient

| Private
| circuits

Step 1

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort
IVD-abort | -_ ‘
NISC with ' NISC with
@ For NC° functions, unconditionally |{¥C=1L1s; - WVD-abort

NISC for
NC° with

secure NISC/OT [Kilian’88,IPS/'\08],
but not very efficient [

| Private

O(x) overhead J o Lits

Step 1

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for NISC for
cert-OT with NC° with

tVD-abort 1vD-abort | I

@ For NC° functions, unconditionally
secure NISC/OT [Kilian’88,IPS/'\08],
but not very efficient [

| Private
O)overhead} | circuits

& First build NISC/OT with IVD-abort for “certified- OT" my

Step 1

Honest-

Majority Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

MPC

NISC for
NC° with

NISC for

N\ |cert-OT with
g\ IVD-abort

IVD-abort| 0

@ For NC° functions, unconditionally
secure NISC/OT I[Kilian'88,I1PS'08],
A
but not very efficient LC g Olerhead}

& First build NISC/OT with IVD-abort for “certified- OT" my

| Private
| circuits

@ Implemented using "MPC-in-the-head” (a la [IKOS'07])

Step 1

Honest-

Majority Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

MPC

NISC for
NC° with

NISC for

N\ |cert-OT with
g\ IVD-abort

IVD-abort| 0

@ For NC° functions, unconditionally
secure NISC/OT I[Kilian'88,I1PS'08],
A
but not very efficient LC g Olerhead}

& First build NISC/OT with IVD-abort for “certified- OT" my

| Private
| circuits

@ Implemented using "MPC-in-the-head” (a la [IKOS'07])

@ Uses MPC protocol from [DIK10] to keep views small

Step 1

Honest-

Majority Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

MPC

NISC for
NC° with

NISC for

N\ |cert-OT with
g\ IVD-abort

IVD-abort| 0

@ For NC° functions, unconditionally
secure NISC/OT I[Kilian'88,I1PS'08],
A
but not very efficient LC g Olerhead}

& First build NISC/OT with IVD-abort for “certified- OT" my

| Private
| circuits

@ Implemented using "MPC-in-the-head” (a la [IKOS'07])

@ Uses MPC protocol from [DIK'10] to keep views sr/r\mll

f)

Step 1

Honest-

Majority Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort
NISC with NISC with NISC with
@ For NCP° functions, unconditionally |[{i:X:C - -riadl | EA2E 1 WVD-abort

MPC

NISC for
NC° with

NISC for
N\ |cert-OT with
g! IVD-abort

IVD-abort

secure NISC/OT [Kilian'88,1PS'08],
but not very efficient

| Private
| circuits

Step 1

Honest- .
o \ Semi-honest perfectly) ; . -
Majority secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

MPC
Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
s T »,_,.‘.i e _f_.- e s e ‘

NISC for [BEN| NISC for

N |cert-OT with| g Nc° with (B
g! IVD-abort IVD-abort

NISC with
@ For NC° functions, unconditionally |{¥C-=1L1s;

secure NISC/OT [Kilian'88,1PS'08],
but not very efficient

o First build NISC/OT with IVD-abort for “certified-OT"”

@ Use certified-OT (instead of OT) in perfectly secure Yao's
garbled secure protocol for NC° functions

Honest- : P
o \ Semi-honest perfectly) ; . -
Majority secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC
MPC
‘ Lean NISC/NCO NISC/NCO NISC/NCO
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

NISC for |BIRS| NISC for

W |cert-0T with| I Nco with [0
¢! IVD-abort IVD-abort

| Private
| circuits

Honest- - I
o ‘ Semi-honest perfectly)) Bl . -
Mij\grgfy secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for [[LRS| NISC for

N |cert-OT with A NCO with (B0
¢! IVD-abort IVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

| Private
| circuits

Honest- - I
o ‘ Semi-honest perfectly)) Bl . -
Mij\grgfy secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for [[LRS| NISC for

N |cert-OT with I NCO with |0
! IVD-abort IVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

| Private

@ All variants rely on Yaos Garbled Circuit | circuits

and “oblivious MAC”

Yaos Garbled Circuit

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

Gate

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

Gate

Z | Z2) e

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

@ Store [¢' Kw(c)]ea b & (c' Kw(c')) encrypted
USing Ku(a,) & Kv(bl)

Gate

Z | Z2) e

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

@ Store [¢' Kw(c)]ea b & (c' Kw(c')) encrypted
USing Ku(a,) & Kv(b’)

o Alice can evaluate the circuit if (z. Kw(zw))
known for all input wires w, with value z,

Gate

Z | Z2) e

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask rw, and two
encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

@ Store [¢' Kw(c)]ea b & (c' Kw(c')) encrypted
USing Ku(a,) & Kv(b’)

o Alice can evaluate the circuit if (z. Kw(zw))
known for all input wires w, with value z,

@ Bob sends (yw ,Kw(yw)) for his input wires

Gate

Z | Z2) e

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask ry, and two

encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

Gate

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
the masked output

@ Store [¢' Kw(c)]ea b & (c' Kw(c')) encrypted
USing Ku(a,) & Kv(b’)

o Alice can evaluate the circuit if (z. Kw(zw))
known for all input wires w, with value z,

@ Bob sends (yw ,Kw(yw)) for his input wires

@ Alice picks up Ku(xw) for her input wires using OT

Z | Z2) e

Yaos Garbled Circuit _

@ Bob sends a garbled circuit fo Alice

® Each wire w has a secret mask ry, and two

encryption keys Kw(0) and Kw(l). rw = O for
Alices input wires and the output wires.

Gate

@ For each gate G, and each pair of masked
values (a’,b") of inputs to the gate, let ¢’ be
A
the masked outpuf (]

o Store [¢' Kw(c)]ea b & (¢ Kw(c')) encrypted
USing Ku(a,) & Kv(bl)

o Alice can evaluate the circuit if (z. Kw(zw))
known for all input wires w, with value z,

@ Bob sends (yw ,Kw(yw)) for his input wires

@ Alice picks up Ku(xw) for her input wires using OT

Z | Z2) e

Oblivious MAC (OM)

@ Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Oblivious MAC (OM)

Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Key

° e

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg

Correctness: Verify(msg,tag;key,rcpt) = 1

Unforgeability: cant find (msg,tag) and (msqg’,tag’) s.t. msq" # msg, and for
rcpt=OMey(msg,tag), Verify(msg',tag’;key,rcpt) =1

Oblivious MAC (OM)

Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

Key

° e

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg

Correctness: Verify(msg,tag;key,rcpt) = 1

Unforgeability: cant find (msg,tag) and (msqg’,tag’) s.t. msq" # msg, and for
rcpt=OMey(msg,tag), Verify(msg',tag’;key,rcpt) =1

Concretely implemented using a one-time (statistically) secure MAC

Oblivious MAC (OM)

Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

key JYrcpt = MACke,(msg) © tag S

° e

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg

Correctness: Verify(msg,tag;key,rcpt) = 1

Unforgeability: cant find (msg,tag) and (msqg’,tag’) s.t. msq" # msg, and for
rcpt=OMey(msg,tag), Verify(msg',tag’;key,rcpt) =1

Concretely implemented using a one-time (statistically) secure MAC

A Lean NISC/NC°

With Input-Dependent Abort Security

A Lean NISC/NC°

With Input-Dependent Abort Security
@ NCO° functionality H:

, ,

A A

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)

C,=FG(G’®ru,b’@rv)®rw

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:

o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)

@ For each (G,a’,b") carries out OM for the bit ¢’ (using independent keys
from Alice)

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b") carries out OM for the bit ¢’ (using independent keys
from Alice)

@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys

OM-Key
inpu%

~rcpt:
A

C,=FG(G’®ru,b,@rv)®rw

rcpt = MACkey(c’) @ tag €
OT for input-keys

input Keys

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b") carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c'),tagls,a v

OM-Key
inpu%

“rcpt
(¢ input Keys

/\

C,=FG(G’®ru,b,@rv)®rw

rcpt = MACkey(c’) @ tag €
OT for input-keys

(with encrypted tags)

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b’) carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c’),tagls,a v’

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b’) carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c’),tagls,a v’

@ Prevents Bob from changing ¢’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong ¢’ or tag is kept encrypted)

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b’) carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c’),tagls,a v’

@ Prevents Bob from changing ¢’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong ¢’ or tag is kept encrypted)

@ But if no abort, then throughout the evaluation, for each (G,a’,b’) the ¢’
value recovered is correct, and hence output is correct

A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b’) carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c’),tagls,a v’

@ Prevents Bob from changing ¢’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong ¢’ or tag is kept encrypted)

@ But if no abort, then throughout the evaluation, for each (G,a’,b’) the ¢’
value recovered is correct, and hence output is correct

@ Input-dependent abort security: since abort can depend on the inputs in a
fairly complicated way

Honest- - l
T Semi-honest perfectly : ; —— b
Mij\grgfy \ secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

f) Lean NISC/NCO NISC/NCO NISC/NC®
NISC for B AN NISC for with inp. dep ~abort usmg cut&choose [}| with WVD-abort
N |cert-OT with #1 NC° with |08

¢! IVD-abort IVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

| Private
| circuits

Honest- - l
T Semi-honest perfectly : ; —— b
Mij\grgfy \ secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

’ \ Lean NISC/NCO NISC/NCO NISC/NC°
NISC for B AN NISC for with inp. dep ~abort usmg cut&choose [}| with WVD-abort
N |cert-OT with #1 NC° with [

g| IVD-abort IVD-abort

. NISC with NISC with NISC with
@ To resfrict fo WVD-abort, more inp.dep-abort IVD-abort WVD-abort

complex NC° function

| Private
| circuits

Honest- - l
T Semi-honest perfectly : ; —— b
Mij\grgfy \ secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

f) Lean NISC/NCO NISC/NCO NISC/NC®
NISC for B AN NISC for with inp. dep ~abort usmg cut&choose [}| with WVD-abort
N |cert-OT with #1 NC° with [

g| IVD-abort IVD-abort

, NISC with NISC with NISC with
@ To restrict to WVD-abort, more inp.dep-abort ||| IVD-abort WVD-abort

complex NC° function

@ creates the garbled circuit, using
purported PRG values given by Bob

o applies OM to those PRG values:
using "NC°® MAC” [IKOS'08]

| Private
| circuits

Honest- - l
T Semi-honest perfectly : ; —— b
Mij\grgfy \ secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

’ | Lean NISC/NCO NISC/NCO NISC/NC°
NISC for LR NISC for with inp. dep ~abort usmg cut&choose [}| with WVD-abort

N |cert-OT with| Rl NCO with |
! IVD-abort IVD-abort

@ To restrict to WVD-abort, more
complex NC° function
@ creates the garbled circuit, using
purported PRG values given by Bob
o applies OM to those PRG values:
using "NC°® MAC” [IKOS'08]
® WVD-abort as wrong PRF values can be given
for certain keys and not others

| Private
| circuits

Honest- - l
T Semi-honest perfectly : ; —— b
Mij\grgfy \ secure NISC for NCO Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for [[LRS| NISC for

A |cert-OT with A NCO with [N
! IVD-abort IVD-abort

complex NC° function

@ creates the garbled circuit, using
purported PRG values given by Bob

o applies OM to those PRG values:
using "NC°® MAC” [IKOS'08]

® WVD-abort as wrong PRF values can be given
for certain keys and not others

@ Can avoid WVD-abort using cut&choose, but O(x) overhead

. NISC with NISC with NISC with
@ To resfrict fo WVD-abort, more inp.dep-abort IVD-abort WVD-abort

| Private
| circuits

Semi-honest perfectly
secure NISC for NC°

MPC in NISC for

the head cert-OT with -

IVD-abort

Step3

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with
inp.dep-abort

NISC for
NC° with

IVD-abort| 0

NISC with NISC with
IVD-abort WVD-abort

Private
{ circuits

Step3

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

Semi-honest perfectly
secure NISC for NC°

NC° with

MPC in NISC For: A
the head cert-OT with

tVD-abort 1vD-abor+t| I

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

Private
{ circuits

@ Plug-in NISC with IVD-abort security
into the NISC/NC° constructions

Step4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

secure NISC for NC°

NISC for
NC° with

e i NISC Fonf B AN
the head cert-OT with j
IVD-abort

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

IVD-abort| 0

| Private
| circuits

Step4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

secure NISC for NC°

| NISC for
1 NC° with

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with

o IVD-abort handled by using a inp.dep-abort IVD-abort WVD-abort
K-wise independent encoding of x ,,

MPC in NISC Fonf | 3 |
the head cert-OT with j

tVD-abort IVD-abort | [

| Private
| circuits

Step 4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
e N ,_,.‘.i e N~ et S _f__ e T~ oot 5

secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | 3
the head cert-OT with

tVD-abort 1vD-abort | I

@ IVD-abort handled by using a
K-wise independent encoding of x

@ WVD-abort handled by using a “private-cricuit”
encoding of C and input x

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

Private
-~ circuits

Step4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
e N ,_,.‘.i e N~ et S _f__ e T~ oot 5

secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | & |
the head cert-OT with

tVD-abort 1vD-abort | I

@ IVD-abort handled by using a
K-wise independent encoding of x
@ WVD-abort handled by using a “private-cricuit”
encoding of C and input X
@ Reading up to k wires gives no information about x

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

Private
-~ circuits

Step4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
e N ,_,.‘.i e N~ et S _f__ e T~ oot 5

secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | & |
the head cert-OT with

tVD-abort 1vD-abort | I

NISC with
@ IVD-abort handled by using a WVD-abort
K-wise independent encoding of x
@ WVD-abort handled by using a “private-cricuit”
encoding of C and input X
@ Reading up to k wires gives no information about x

@ Private-circuit constructed from MPC (a la [ISW’'03])

Private
-~ circuits

Step4

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NC° NISC/NC° NISC/NC°
with inp.dep-abort| || using cut&choose with WVD-abort
i I i
B »,»‘.i" e e e e e _'__- e T~ oot 5

secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | & |
the head cert-OT with

tVD-abort 1vD-abort | I

@ IVD-abort handled by using a

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort
K-wise independent encoding of x

@ WVD-abort handled by using a “private-cricuit”
encoding of C and input x

@ Reading up to k wires gives no information about x
@ Private-circuit constructed from MPC (a la [ISW’'03])

@ Size of private-circuit proportional to “work” in
the MPC. polylog(x) overhead using MPC in [DIK10]

Private
-~ circuits

Summary

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

secure NISC for NC°

NISC for
NC° with

e i NISC Fonf B AN
the head cert-OT with j
IVD-abort

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

IVD-abort| 0

Private
- circuits

Summary

Semi-honest perfectly Using Yaos garbled circuit and Oblivious MAC

secure NISC for NC°

NISC for
NC° with

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

MPC in NISC FO": . Y
the head cert-OT with]

tVD-abort 1vD-abort | I

| Private
| circuits

Summary

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

Semi-honest perfectly
secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | 3 |
the head cert-OT with

tVD-abort 1vD-abort | I

| Private
| circuits

@ NISC/OT using blackbox PRG

Summary

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

Semi-honest perfectly
secure NISC for NC°

MPC in NISC Fonf | & |
the head cert-OT with]
IVD-abort

| NISC for
1 NC° with

1vD-abort | N

r

N
N 4
N

NISC with
WVD-abort

| Private
| circuits

@ NISC/OT using blackbox PRG

& Few PRG calls, low communication overhead over Yao

Summary

Using Yaos garbled circuit and Oblivious MAC

Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

Semi-honest perfectly
secure NISC for NC°

| NISC for
NC° with

MPC in NISC Fonf | & |
the head cert-OT with

tVD-abort 1vD-abort | I

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort

| Private
| circuits

@ NISC/OT using blackbox PRG

& Few PRG calls, low communication overhead over Yao

@ Open questions: Better efficiency (in OT usage, in reusability, ...)?
Statistical security?

