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@ Dating for cryptographers

+

+

Alice

status: looking

ﬂ encrypted preferences N Profile
Name:
» - Age:

Sex:
Interests:

Contact info

match notification (encrypted) A

(—————

@ Functionality: Inputs: Preferences from Alice & Profile from Bob
Output: If match, then give Bobs contact information to
Alice (Bob learns nothing)

@ Feature: Alice can post her preferences and go offline
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NISC/OT

(NISC over OT)

Functionality (single instance version): Alice and Bob give x and vy

respectively. Alice gets f(x,y). (

Structure of protocol:

@ Alice and Bob invoke several instances of OT in parallel with Alice as
receiver

@ Alice then carries out a local computation, and outputs f(x,y) (or
“abort”)

Security: UC security (against active corruption) in the OT-hybrid model

Similarly NISC/H for other (non-reactive, one-sided-output) H
NISC/OT can be converted to NISC/CRS using [PVYW’08]
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NISC considered in [RAD78,Y'86,SYY’99,...]
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@ Use a NIZK fo prove correctness of messages sent [CCKM'00,HK'07]:
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@ NISC from fully homomorphic encryption [RAD'78,G6'09,GHV'10,...]: Low
communication (but currently less practical); uses more than PRG+OT

Malicious players:

@ Use a NIZK fo prove correctness of messages sent [CCKM'00,HK'07]:
Expensive, and non-blackbox use of PRG (used for encryption in Yao)

@ [IPS'08 (full version)]: using "MPC-in-the-head.” Non-blackbox use of PRG

@ Today: NISC/OT using PRG as a black-box

@ Wide Open: Statistically secure NISC/OT (even constant round
MPC) possible for general functions?

@ Open for honest-majority and honest-but-curious settings too
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Our Results

@ Today: NISC/OT using PRG as a black-box

o Also, few PRG calls: polylog(x) per gate of the functions (large) circuit
(previously Q(x) even for interactive constant-round SFE [LP'07])

@ A relaxed security notion allows constant number of PRG calls per
gate

@ Also, Reusable NISC in CRS model (using PRG + OT protocol): One
reusable “public-key” that Alice publishes and uses in many executions.

@ Issue: public-key must be refreshed each time Alice interacts with the
environment (possibly after receiving messages from many Bobs)

@ We show how fo allow t such interactions before refreshing, with
public-key much shorter than t tfimes the original
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Input-Dependent Abort

o Intermediate security notions (also useful by themselves) [K'88,LP'07,...]

@ General input-dependent abort security: Corrupt Bob can enforce that
Alice aborts the protocol iff P(x)=1 for a predicate P he specifies

@ Input Value Disjunction (IVD) predicate:
Ps(x)=1 iff xi=b; for some (i,bi) € S

@ Wire Value Disjunction (WVD) predicate:
Pry(x)=1 iff in circuit C(x,y), wire w has value by, for some (w,by) € T

@ Maybe good enough in practice: leaks at most one bit (or less, if Alice
aggregates many executions before taking any action) of information
about Alices input
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C: polylog(x) factor more comm./PRG calls over Yao o 0
@ For smaller circuits, B may be better N,
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All use PRG in a black-box manner (like Yao)
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garbled secure protocol for NC° functions
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USing Ku(a,) & Kv(bl)

o Alice can evaluate the circuit if (z. Kw(zw))
known for all input wires w, with value z,

@ Bob sends (yw ,Kw(yw)) for his input wires

@ Alice picks up Ku(xw) for her input wires using OT

Z | Z2 ) e
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Oblivious MAC (OM)

Verifier gets a receipt that can be used to verify the MAC when the
message and tag are delivered

key JYrcpt = MACke,(msg) © tag S

° e

Obliviousness: If tag chosen at random, then receipt by itself reveals no
information about msg

Correctness: Verify(msg,tag;key,rcpt) = 1

Unforgeability: cant find (msg,tag) and (msqg’,tag’) s.t. msq" # msg, and for
rcpt=OMey(msg,tag), Verify(msg',tag’;key,rcpt) =1

Concretely implemented using a one-time (statistically) secure MAC
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With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b") carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c'),tagls,a v

OM-Key
inpu%

“rcpt
(¢ input Keys

/\

C,=FG(G’®ru,b,@rv)®rw

rcpt = MACkey(c’) @ tag €
OT for input-keys

(with encrypted tags)
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A Lean NISC/NC°

With Input-Dependent Abort Security

@ NCO° functionality H:
o Takes from Bob the wire masks and computes the bit ¢’ in each garbled
gate (G,a’,b’,c’)
@ For each (G,a’,b’) carries out OM for the bit ¢’ (using independent keys
from Alice)
@ Also, as in Yaos scheme, lets Alice pick up her input wires’ keys
@ Bob sends the garbled circuit to Alice, with encryptions [c’,Ku(c’),tagls,a v’

@ Prevents Bob from changing ¢’ that Alice obtains by decrypting, but Bob
can cause Alice to abort (if a wrong ¢’ or tag is kept encrypted)

@ But if no abort, then throughout the evaluation, for each (G,a’,b’) the ¢’
value recovered is correct, and hence output is correct

@ Input-dependent abort security: since abort can depend on the inputs in a
fairly complicated way
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Lean NISC/NCO NISC/NCO NISC/NC°
with inp. dep -abort usmg cut&choose with WVD-abort

NISC for [[LRS| NISC for

A |cert-OT with A NCO with [N
! IVD-abort IVD-abort

complex NC° function

@ creates the garbled circuit, using
purported PRG values given by Bob

o applies OM to those PRG values:
using "NC°® MAC” [IKOS'08]

® WVD-abort as wrong PRF values can be given
for certain keys and not others

@ Can avoid WVD-abort using cut&choose, but O(x) overhead

. NISC with NISC with NISC with
@ To resfrict fo WVD-abort, more inp.dep-abort IVD-abort WVD-abort
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Semi-honest perfectly
secure NISC for NC°
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@ Plug-in NISC with IVD-abort security
into the NISC/NC° constructions
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@ IVD-abort handled by using a

NISC with NISC with NISC with
inp.dep-abort IVD-abort WVD-abort
K-wise independent encoding of x

@ WVD-abort handled by using a “private-cricuit”
encoding of C and input x

@ Reading up to k wires gives no information about x
@ Private-circuit constructed from MPC (a la [ISW’'03])

@ Size of private-circuit proportional to “work” in
the MPC. polylog(x) overhead using MPC in [DIK10]
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Summary
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@ NISC/OT using blackbox PRG

& Few PRG calls, low communication overhead over Yao

@ Open questions: Better efficiency (in OT usage, in reusability, ...)?
Statistical security?



