Concurrent Zero Knowledge with Logarithmic Round-Complexity

Manoj Prabhakaran Alon Roserh Amit Sahat
Princeton University Weizmann Institute of Science Princeton University

Over the past few years, we have received many re-zero-knowledge proofs have turned out to be an extremely
quests for clarifications regarding this paper. In responseuseful tool in the design of various cryptographic protscol
to these requests, we have prepared this new (Feb 2008) The original setting in which zero-knowledge proofs
annotated version of the FOCS version of our paper. Thewere investigated consisted of a single prover and verifier
text is the same as in the FOCS version of this paper, butwhich execute only one instance of the protocol at a time.
we have added various notes (in blue color, like this text) A more realistic setting, especially in the time of the Inter
that might be useful for understanding the construction andnet, is one which allows the concurrent execution of zero-
proof. Please let us know if you have any further comments. knowledge protocols [8, 6]. In the concurrent setting, many
While we believe that our construction and proof are protocols (sessions) are executed at the same time, involv-
quite simple and intuitive, we recognize that we need to in- ing many verifiers which may be talking with the same (or
troduce a fair amount of notation and several definitions in many) provers simultaneously (the so-called parallel com-
order to describe our proof formally. One of the main ob- position consideredin [12, 9, 10] is a special case). This se
jectives of this annotated version is to help the reader keepting presents the new risk of a coordinated attack in which
in mind the various definitions and how they are used in the an adversary controls many verifiers, interleaving the exe-
proof. cutions of the protocols and choosing verifiers’ messages
Abstract based on other partial executions of the protocol. Since
it seems unrealistic (and certainly undesirable) for hbnes
We show that every language MP has a (black-box) provers to coordinate their actions so that zero-knowledge

concurrent zero-knowledge proof system usidfogn) is preserved, we must assume that in each prover-verifier
rounds of interaction. The number of rounds in our protocol pair the prover acts independently.
is optimal, in the sense that any language outddp re- Loosely speaking, a zero-knowledge proof is said to

quires at least2(log n) rounds of interaction in orderto be be concurrent zero-knowledgeZK) if it remains zero-
proved inblack-boxconcurrent zero-knowledge. The zero- knowledge even when executed in the concurrent setting.
knowledge property of our main protocol is proved under Recall that in order to demonstrate that a certain proto-
the assumption that there exists a collection of claw-free col is zero-knowledge it is required to demonstrate that the
functions. Assuming only the existence of one-way func-view of every probabilistic polynomial-time adversary in-
tions, we show the existence®@flog n)-round concurrent teracting with the prover can be simulated by a probabilis-
zero-knowledge arguments for all languagesu®. tic polynomial-time machine (a.k.a. trsgmulatol). In the
concurrent setting, the verifiers’ view may include mukipl
sessions running at the same time. Furthermore, the veri-
1 Introduction fiers may have control over the scheduling of the messages
_ in these sessions (i.e., the order in which the interleaxed e
Zero-knowledge proof systems, introduced by Gold- gcytion of these sessions should be conducted). As a con-
wasser, Micali and Rackoff [14] are efficient interactive gequence, the simulator's task in the concurrent setting be
proofs that have the remarkable property of yielding noth- o mes considerably more complicated. In particular, stan-

ing beyond the validity of the assertion being proved. The 45.q techniques, based on “rewinding the adversary”, run
generality of zero-knowledge proofs has been demonstrateqyig trouble.

by Goldreich, Micali and Wigderson [13], who showed that
every NP-statement can be proved in zero-knowledge pro-

vided that one-way functions exist [16, 20]. Since then, 1.1 Previous Work

“Emall: ip@s. pri ncet on. edu. Anllnformal argl_Jr_nent concerning the difficulty of con-
tEmail: al on@i sdom wei zmann. ac. i | . structing round-efficientZK was given by Dwork, Naor,
tEmail: sahai @s. pri ncet on. edu. and Sahai in their paper introducingg [6]. The first

rigorous lower bound was given by Kilian, Petrank and using onIyO(logn) rounds of interaction. Our main result
Rackoff [19] who showed, building on the techniques is stated in the following theorem:

of [12], that for every language outsidPP there is no 4- . : .
[12] y anguag Theorem 1 (Main Theorem) Assuming the existence

round protocol whose concurrent execution is simulatable ¢ Derfectlv-hidi . h h .
in polynomial-time by alack-box simulatar(A black-box of perfectly-hiding commitment schemes, there exists an

simulator is a simulator that has only black-box access toO(lofg n)-roundf black—bclax concurrer/\\tfpzerr(])—kr_]owfledge
the adversarial verifier.) This lower bound was later im- proof system for every language € (that is, for

proved by Rosen to seven rounds [22], and was further im- €very inputz, the number of messages exchanged is at most
proved tof2(log n/ log log n) rounds by Canetti, Kilian, Pe- O(log(|z1))).

trank and Rosen [5]. o _ We stress that our protocol retains its zero-knowledgeprop
'Even ignoring issues of round efficiency, it was not a- erty even under “full fledged” concurrent composition. That
priori clear whether there existsZKC protocols for lan- s once the protocol is fixed it will remain zero-knowledge

guages outside ofPP. Richardson and Kilian were the no matter how many times it is executed concurrently (as
first to exhibit a family ofcZKC protocols (parameterized |ong as the number of concurrent sessions is polynomial in
by the number of rounds) for all languagesAfiP [21]. the size of the input).

The original analysis of the RK protocol showed how to Notice that the above theorem completes the classifica-
simulate in polynomial-time®(") concurrent sessions only tion of the round-complexity of black-boxZ/C. Namely,
when the number of rounds in the protocol is at lesisfor by combining Theorem 1 with the lower bound of Canetti
some arbitrarye > 0). This analysis has been later im- et a|. [5], we have:

proved by Kilian and Petrank [18], who show that the RK

protocol remains concurrent zero-knowledge even if it has Corollary 1 The round-complexity of black-box concurrent
O(a(n) - log” n) rounds, wherex(-) is any non-constant zero-knowledge i®(log n) rounds?

function (e.g.x(n) = loglog n). .)

In a recent breakthrough result, Barak [1] constructs a BY relaxing the soundness requirement of the protocol to
constant-round protocol for all languages AP whose hold only ggal_nst computationally bounded provers (that
zero-knowledge property is proved usingian black-box IS by considering so-ca_lled zero_-k_nowledge argumfents [14
simulator. Such a method of simulation enables him to 3]), We are able to achieve a similar result assuming only

prove that for every (predetermined) polynomiéi), there (e existence of one-way functions, namely:

exists a constant-round protoco_l t.hat Preserves Its zero-rpeqrem 2 Assuming the existence of one-way functions,
knowledge property even when it is execufgeh) times

concurrently (where, denotes the size of the comman in there exists ar@(log n)-round black-box concurrent zero-
put). This has been previously shown to be unachievabIeknOWIGdgEHr(‘:]umenByStern for every language € \'P.
via black-box simulation [5] (unles§P C BPP).

A major drawback of Barak’s protocol is that the (poly-
nomial) number of concurrent sessions relative to which the
protocol should be secure must be fixeforethe protocol
is specified. Moreover, the length of the messages in the
protocol grows linearly with the number of concurrentses- The proof of Theorem 1 builds on the protocol by
sions. Thus, from both a theoretical and a practical point Richardson and Kilian [21] and on the simulator by Kilian
of view, Barak’s protocol is still not satisfactory. What we and Petrank [18]. However, our analysis of the simulator’s
would like to have is asingle protocol that preserves its execution is more sophisticated and thus yields a stronger
zero-knowledge property even when it is executed concur-result. We introduce a novel counting argument that in-
rently for any (not predetermined) polynomial number of volves a direct analysis of the underlying probability spac
times. Such a property is indeed satisfied by the protocolsThis is in contrast to previous results that required subtle
of [21, 18] (alas these protocols are not constant-round). manipulations of conditional probabilities. We also prése

a new variant of the RK protocol [21] which is both simpler
1.2 Our Results and more amenable to analysis than the original version. In
the rest of this section, we briefly sketch the ideas we use to
obtain our main result.

Constructing zero-knowledge proofs fafP involves
resolving a tension between teeundnesandzero knowl-
edgeconditions: In (black-box) zero-knowledge proofs, the

We note that the lower-bound by Canetti et al. [5] applies
also in the case of arguments.

1.3 Techniques

In this work we close the gap between the known up-
per and lower bounds on the round-complexity of black-
box cZKC [18, 5]. Specifically, assuming the existence of
perfectly-hiding commitment schemes (which exist assum-
ing the existence of a collection of claw-free functions]j15
we show that every language MP can be proved irZ K Lf(n) = 6(h(n)) if both f(n) = O(h(n)) andf(n) = Q(h(n)).

simulator can be thought of as a party that interacts with opportunitiescounted with multiplicityin case the rewind-
the verifier, but unlike the prover, the simulator must be ing schedule permits multiple chances to exploit a single
able to convince the verifier of both true and false state- rewinding opportunity in the protocol. In fact, we show that
ments. To enable this, the simulator is given a “super the Kilian-Petrank oblivious rewinding strategy itself al
power,” namely the ability to “rewind” the verifier to an ways yields roughly:—O(log n) such chancesin total. This
earlier state, and thus base its messages on future verifieallows us to concludetha}(log n) rounds suffice. Further-
messages. Very roughly speaking, zero knowledge proofsmore, rather than relying on a subtle manipulation of condi-
for NP have been constructed by inserting “rewinding op- tional probabilities as done in previous work [21, 18], uil
portunities” into protocols, which allow the simulator to ing on a suggestion of [17] we employ a direct counting ar-
“win” if it can base one of its earlier messages to the veri- gument to prove our claim. We essentially show directly
fier on a future message received from the verifier. We stresghat there can only be very few random coins on which our
that in order to successfully “exploit” a “rewinding oppor- simulation fails, by arguing that for every choice of random
tunity,” the simulator must take care not to “rewind” too far coins on which our simulation fails, there must be super-
back, otherwise the information it learned from the verifier polynomially more other choices for the random coins on
will no longer be useful. It is precisely this problem which which it does not.

makes simulation so difficult in concurrent zero knowledge,

because rewinding one verifier may cause another verifier] 4 Conclusions and an open problem

to be rewound “too much,” requiring re-simulation, as first

pointed out by [6]. Our result (together with [5]) essentially completes the

classification of the round-complexity of black-be K
(Corollary 1). still, in light of Barak’s recent result [1],
constant-roundZC protocols (with non black-box simula-
tors) do not seem out of reach. A natural open question is
whether there exists a constant-round (non black-b8%}
protocol for all languages WP.

The Richardson-Kilian (RK) protocol and Kilian-
Petrank simulation. The basic idea of the Richardson-
Kilian ¢ZIC protocol [21] is to have a protocol witimany
rewinding opportunities, so that even if the simulator has
to miss one opportunity, it will still get many more. Kilian
and Petrank then showed that in fact, there exists a simula
tor for the RK protocol which has a very natural “oblivious”
rewinding strategy [18] — in other words, the simulatorsde 2 Definition of cZKC

cisions of when and how much to rewind do not depend on o) .
the behavior of the verifiers, but are predetermined. We use the standard definitions of interactive proofs (and

At this point, we note that a simple technical calculation ntéractive Turing machines) [14, 11] and arguments (a.k.a
shows that a single chance to exploit a rewinding oppor- computationally-sound proofs) [3]._ In deﬂm_ng concurrent
tunity results in only a constant probability that the sim- 2€ro knowledge, we follow the original definition of [6],
ulator will “win.” Thus, the simulator needs a superlog- USing arefinementdue to [S].
arithmic number of (roughly independent) chances to ex- L€t (P, V) be an interactive proof (resp. argument) for
ploit rewinding opportunities in order to reduce its fail- @language., and consider aoncurrent adversary (veri-
ure probability to a negligible fraction. Kilian and Petkan ~ fi€r) V" that, giveninput: € L, interacts with an unbounded
showed that in their oblivious rewinding strategy, through Number of independent copies 5f(all on common input
out the simulation, every time a session of the protocol). The concurrentadversary" is allowed to interact with
completes, the simulator will have chances to exploit at the various copies of concurrently, without any restric-
least(k/ logn) rewinding opportunities, wherg is the tions over the_sche_dullng_of the messages in the different
total number of rewinding opportunities in the protocok(th interactions withP (in particular,V* has control over the

number of rounds in the protocol would then®é)). This ~ Scheduling of the messages in these interactions).

implies thatO(log? n) rounds suffice for concurrent simu- Thetranscript of a concurrent interaction consists of the

lation of the RK protocol. common inputz, followed by the sequence of prover and

verifier messages exchanged during the interaction. We de-

The new ideas underlying this work. Unfortunately, the note byview?{ . (z) a random variable describing the content

Kilian-Petrank argument does not extend to the case whenof the random tape di"* and the transcript of the concur-

k = O(logn). In fact, in such a case there may exists only rent interaction betweeR andV'*.

few (i.e.,o(log n)) rewinding opportunities that can be ex- Following [5], we overcome subtle issues that arise in

ploited by the simulator. the context of black-boxZ IC by allowing the existence of a
We overcome this limitation by shifting our focus from different simulatorS, for everyV* that runs at mosj(|z|)

the number of “exposed” rewinding opportunities in the concurrent sessions. (This is in contrast to the customary

protocol, to the total number of chances to exploitrewigdin definition of “stand-alone” black-bo£ K in which it is re-

quired that there exists a “universal” simulator that works
for all potential verifiers/ *.)

Definition 1 (Black-Box cZK) Let (P, V) be an interac-
tive proof system for a language We say tha{P, V) is
black-box concurrent zero-knowledge if for every poly-
nomialq(-), there exists a probabilistic polynomial-time al-
gorithm S, so that for every concurrent adversary that
runs at mosy(|z|) concurrent sessions, () runs in time
polynomial ing(|«|) and|z|, and satisfies that the ensem-
bles {view{.(x)}zer and {S,(z)}scr are computation-
ally indistinguishable.

3 AnewcZK Proof System forN'P

In this section we present a high-level description of our
protocol, as well as a description of the black-box simulato
that establishes its zero-knowledge property.

Our protocol is inspired by the RK protocol [21] and
uses the well known 3-round protocol for Hamiltonicity
by Blum [2] as a building block. The crucial property of
Blum’s protocol that we need in order to construct a con-
current zero-knowledge simulator is that the simulatiek ta

becomes trivial as soon as the verifier's message is known in

advance. That is, if the prover knows the verifier's “secret”
prior to the beginning of the protocol then it can always

to all the values, {ail_;bi’j ¥ ._, that were not revealed in
the first stage). The protocol is depicted in Figure 1.

First stage:
V — P : Committoo, {Ug’j}ﬁj:h {U}’j}ﬁjzl.
o), ®o}; = oforeveryi,j.
Forj=1,... k

P —V:Sendb j,...,by; < {0,1}*.

]

. by
V — P :Decommittoo, s/, ... 0, 7.

g
Second stage:
P — V : Send first message of Hamiltonicity protocol.

17b7;7j ke

V — P : Decommit too and to{o; ; ii=1-

P — V : Answer according to the value of

Figure 1. Our ¢ZK protocol. The first stage is
independent of the common input and con-

sists of k iterations. The second stage con-
sists of a 3-round proof of Hamiltonicity.

Intuitively, since in an actual execution of the protocol,
the prover does not know the value @fthe protocol con-
stitutes a proof system for Hamiltonicity (with negligible

make the verifier accept (regardless of whether the graphsoundness error). However, knowing the valueroh ad-
is Hamiltonian). This is done by adjusting the prover’s vance allows the simulation of the protocol: Whenever the
messages according to the contents of the verifier's “secret simulator may cause the verifier to reveal bofh ando; ;

(which, as we said, is known in advance).
We stress that the choice of Blum’s protocol as a build-
ing block is arbitrary (and is made just for simplicity of pre

for somei, j (this is done by the means miwindihgthe ver-

o b1, bie.j
ifier after the valuesfllf ,...,0, 7 have been revealed),

it can simulate the rest of the7protocol (and specifically

sentation). In fact, the above property is satisfied by many Stage 2) by adjusting the first message of the Hamiltonicity

other known protocols. Any one of these protocols could
have been used as a building block for our construction.

3.1 The Protocol

We letk be any super-logarithmic functionin Our pro-
tocol consists of two stages. In tfiest stage (or pream-
ble), which is independent of the actual common input, the
verifier commits to a random-bit string o, and to two se-
quences{o? ;},_,, and{o} ;};_,, each consisting df*
randomn-bit strings (this first message employs a perfectly-
hiding commitment scheme and is called ithidal commit-

protocol according to the value of = o ; & o7 ; (which,
as we said, is obtained before entering the second stage).

3.2 The Simulator

Let (V0), (P1),(V1),...,(Pk),(Vk) denote thek + 1
first stage messages in our protocol andet), (v1), (p2)
denote the three (second stage) messages in the Hamiltonic-
ity proof system. Loosely speaking, the simulator is said to
rewind the the;j*® round if after receiving &V;j) message,
it “goes back” to some point preceding the corresponding
(P7) message and “re-executes” the relevant part of the in-

ment of the protocol). The sequences are chosen under thggraction until(V) is reached again.

constraint that for every, j the value ofo ; @ o} ; equals
o. This is followed byk iterations so that in thg" iteration
the prover sends a randaderbit string,b; = b1 j, ..., bk ;,
and the verifier decommits tt)lfj]’.j, e cr,i’jjtj.
In the second stage, the prover and verifier engage in
the 3-round protocol for Hamiltonicity, where the “secret”
sent by the verifier in the second round of the Hamiltonicity
protocol equals (at this point the verifier also decommits

Note that, if the simulator manages to rece{%g) as
answer to twadifferent(P;) messages (due to rewinding)

the simulator has obtained botf}; ando; ; for somei €

{1,...,k}. If this happens in even one of the round

the first stage, then it reveals the verifier's “secret” (whic

is equal toa?,j ® ol{j). Once the secret is revealed, the

simulator can cheat arbitrarily in the second stage of the

protocol.

To simplify the analysis, we let the simulator always pick containing the contents of all the messages explored so far
the (Pj)’'s uniformly at random. Since the length of the (to be used whenever the second stage is reached in some
(P7) messages is super-logarithmic, the probability &mt sessiony.
two (Pj) messages sent during the simulation are equal is The simulation is performed by invoking tis@vULATE
negligible. procedure with the appropriate parameters. Specifically,
whenever the schedule contains= poly(n) sessions, the
SIMULATE procedure is invoked with inpuin(k+2), ¢, ¢)
(wherem(k+2) is the total number of verifier messages in
a schedule ofn sessions). TheIMULATE procedure is de-
picted in Figure 2.

Motivating discussion. The binding property of the ini-
tial commitment guarantees us that, oa¢e ands; ; have
been revealed, the verifier cannot “change his mind” and
decommit tooc # agj @ ail,j on a later stage. However,

this remains truenly if we have not rewound past the ini- If the simulation reaches the second stage (the r8din
_t'al commlt_ment. A_S opserved by Dwork et al_. [6], rewind- proof part) in the protocol at any time, without the secret
ing a specific session in the concurrent setting may resulthaving been extracted, the simulator commits to a random

in rewinding past the initial commitment of othe.r sessions. string® But if subsequently the verifier sends the message
This means that the "work” done for these sessions may be 1)t reveal a secret consistent with its earlier messages,

lost (.smce cl))nf:e we rewind past the initial corpmn_ment o_f a the simulator “gets stuck.” i.e., it cannot continue theqsro
session alb; ;* values that we have gathered in this session a5 in the original protocol and keep it indistinguishabterir
become irrelevant). Consequently, the simulator may find an actual proof. Then it gives up the entire simulation and
himself doing the same amount of “work” again. outputs.L.

A slot in the simulation consists of two messages: a

sign a simulation strategy that will manage to overcome the prover message and the next v_erlfler message. The two mes-
sages of a slot may be from different sessions; but for each

above difficulty. In this work we follow the approach taken o .) o
by Kilian and Petrank [18] and let the simulator determine vgrlfler message, the next message in the simulation is the

the order and timing of its rewindingbliviouslyof the con- s!mu:a:ed p.rlinverg rde;t)Iy to- |ttsgntthe salmte SeASS'on).' The
current scheduling. simulator will rewind to pointsdetweenslots. A session

The rewining sategy of our imulstor i specie by S0 1 of hesimulor s entfedby e st e
the SIMULATE procedure. The goal of th&MULATE pro- 9 ’ y

cedure is to supply the simulator with’s “secret” for each t?ﬁelrglgale%%ri?,m:[hr:tesﬁiggevo) from the verifier, arrives
session before reaching the second stage in the protocol. Aé Wi yt t?] t &lot ' h in the si
discussed above, this is done by rewinding the interaction € stress that alot can occur anywnere in the sim-

with V* while trying to make the verifier answer two differ- ulat!on, |nc_IU(_1|ng the quk-ahead portions of the sim-
ent challenge&P;). ulation. Similarly, asessioncan represent a particular

The timing of the rewindings performed by thwm- Prover-Verifier interaction anywhere during the simulatio

ULATE procedure depends only dhe number of verifier I.t could, for example,. start i.n the “ma_in line” of the simula-

messageseceived so far (and on the size of the schedule). t!o_n (the part of the simulation Fhat will be _output_), butithe

For the sake of simplicity, we currently ignore second stagefm'Sh in some look-ahead portion of the simulation.

messages and refrain from specifying the way they are han-

dled. On a very high level, theiMULATE procedure splits ~ 3-3 Blocks

the first stage messages it is about to explore into two halves

and invokes itself recursively twice for each half (complet We define alock as the part of execution of the simu-

ing the two runs of the first half before proceeding to the lator within an invocation of theIMULATE procedure. The

two runs of the second half). smallest block is a single slot, corresponding to the base of
At the top level of the recursion, the messages that arerecursion. The other blocks are composed of four blocks of

about to be explored consist of the entire schedule, whereasghe next lower level.

at the bottom level the procedure explores only a single Figure 3 illustrates one block. The way in which the

message (at this level, the verifier message explored ishistory is passed to the lower level invocations tie them to-

stored in a special data-structure, dendfed The solve gether as shown. The invocation of the (lower level) block

procedure always outputs the sequence of “most recentlycalled 1’ in the top thread corresponds to the first (look-

explored” messages. ahead) call. Itis truncated immediately (i.e., its hist@y
The inputto thesIMULATE procedure consists of a triplet > _ _ o

(¢, hist, T). The parametet corresponds to the number of Th? messages st‘(l)r‘edﬁar"e used in ordgr to determine the verifier's

secret” according to “different” answers {&/5).

ver_ifier messages to be explpred, the Stﬂh’i\g i.S a tran- 3If the secret has been extracted, it is used to manufacturesaage
script of thecurrentthread of interaction, an@ is a table which helps the simulator complete the proof later.

The rewinding strategy. The big question is how to de-

Input: (¢, hist, T)
Bottom level (¢ = 1):

e StoreV™*’s answerv, in 7.

e Output(p,v), 7.
Recursive step { > 1):

e Set(p1,v1,...

Set(p1,V17 .

Set(Pe/a+1:Veyat1, -

Set(pe/241s Vesa+1s - - -
OUtpUt(p17 Vi,...,Pe, V[)a 7:1

e Uniformly choose a first stage prover messagand feed”* with (hist, p).

,Dey2,Vey2), T <~ SIMULATE(Z/2, hist,
,Pey2, Vey), T+ SIMULATE(L/2, hist, 77).
,Pe, Vi), T3 <—SIMULATE(¢/2,
, D¢, ve), 7a < SIMULATE(¢/2, (hist, p1, v1,. ..

7).

' Pes2,Vey2), I2).
7Pz/27Vz/2), T3).

(hi5t7p1,V17 .

Figure 2. The rewinding strategy of the simulator. Even thou

explicitly appear in the output, some of them do appear i

not continued further) as the simulator rewinds when the
call returns; the second call (block markBdstarts off with

the same history as the first one, as indicated by the first fork
in the thread; the resulting thread continues, asstive-
LATE procedure goes to the néxlfin the recursion. Again
the first call is truncated by rewinding, and the history from
the second call is passed to the outside of the block.

Of these four blocks, the first one (in Figure B) is
called thelook-ahead blockof the second onel}. Sim-
ilarly the third block Q') is the look-ahead block of the
fourth one). Every block except the one at the top-most
level eitheris a look-ahead block drasa look-ahead block.

A block maycontainanother block of a lower level, but no
two blocks can ever overlap otherwise.

T

1

Figure 3. The Threads of execution of the sim-
ulator. The shaded blocks hide the threads
in the recursive calls. The block returns the
messages from blocks 1 and 2.

Figure 4 illustrates the “threads” in the simulation. A
thread refers to a path from left to right in such a figure.
A thread from the initial point of simulation, up to a sbot
corresponds to the transcript of the simulated protocokwhe
the simulation reaches

4 High Level Analysis of the Simulator

In order to prove the correctness of the simulation, it will
be sufficient to show that for every adversary verifiét,

gh messages (pi1,V1,...,Ds, V¢) do NOt

n the table 7;.

Figure 4. A block in the execution of the
simulator. The shaded boxes correspond to
blocks two levels below the block shown. The
lines indicate the different “threads” of exe-
cution taken by the simulator.

the three conditions corresponding to the following subsec
tions are satisfied.

4.1 The simulator runs in polynomial-time

Each invocation of theIMULATE procedure with param-
eter? > 1 involves four recursive invocations of ttsemu-
LATE procedure with parametéy2. In addition, the work
invested at the bottom of the recursion (i.e., whea 1)
is upper bounded byoly(n). Thus, the recursive work
W (m-(k+1)), thatis invested by theIMULATE procedure
in order to handlen - (k + 1) (first stage) verifier messages
satisfiesW (m - (k + 1)) < (m - (k + 1))? - poly(n) =
poly(n).

4.2 The simulator’'s output is “correctly” dis- generate the prover messages), the entire execution of the
tributed simulator is determined.

To bound the probability that the adversary succeeds we
have to bound the number of random tapes on which the ad-
versary succeeds. We shall show that for every random tape
on which the adversary succeeds with respect to a particular
sessions, there are many other tapes with which that is not
the case (taking care not to double-count the tapes). In the
sequel we restrict ourselves to random tapes which cause
the simulator to never pick two identical challenges; this
e First stage messages output Byareidentically dis- does not affect the probabilities by more than a negligible

tributed to first stage messages sentBy This is fraction.

proved based on the definition of the simulator’s ac-

tions. (Note that this property is easier to prove for our Lemma 1 LetR be the set of all random tapes used by the
protocol than it is for the RK protocol.) simulator. There exists a mappirfig R — 2 such that for

everyR € R, if the adversary succeeds éhfor a session
e Second stage messages outputSbgrecomputation- s then

ally indistinguishablérom second stage messages sent

by P. This is proved based on the fact that the verifier 1. VR’ € R\{R}, f(R) N f(R') = ¢
cannot feasibly distinguish between the prover using a
real witness and the prover cheating by knowing the
secret string used by the verifier. This follows from the

security of the commitment scheme used by the prover 3 vp/ F(R)\{R}, the simulator secureson random
inside the ZK proof system employed in the second tapeR.

stage of the protocol.

Indistinguishability of the simulator’s output frofi*’s
view (of m = poly(n) concurrent interactions witt?) is
shown assuming that the simulator does not “get stuck” and
output L during its execution (see the next section). Since
the simulatorS will get stuck only with negligible proba-
bility, indistinguishability will immediately follow. Tie key
for proving the above lies in the following two properties:

2. [f(R)| > 2F=©() whereh is the maximum depth of
recursion of the simulator.

We shall sketch the proof of this lemma in the next sec-
tion, but before that note that it achieves our goal. Since
all the random tapes are equally probable, the next lemma
Sfollows immediately from Lemma 1.

A formal proof can be given using a hybrid simulator
which differs from the original simulator only in that it
knows the witness for € L, and uses that for the second
stage. Though the hybrid simulator does not use the entrie
in the Solution Ta.ble, it also fails if it reaches the last mes Lemma 2 The probabmty that the adversary succeeds for
sage in an unsolved session. In the sequel, we shall analysg given sessios is at mos—(+=0(").
this hybrid simulator.

Now we prove the assertion of this section:
4.3 The simulator (almost) never “gets stuck” The number of possible sessions is at most the num-

This is the most involved part of the proof. What is re- Per of slots, and thereforgoly(n). (When the simulator
quired is to show that whenever a session in the simulation!S Simulating a concurrent session involving at mostes-
reaches the second stage of the protocol, the simulator ha§29€s, the number of slots in the simulation is at nibgt .
alreadysolvedit — i.e., managed to obtain the value of the 1NUs by union bound, Lemma 2 implies that the probabil-
verifier's “secret” corresponding to that session (if thera 1y Of the simulator getting stuck (i.e., that of the adver-
valid secret for the session) with overwhelming probapilit ~ Sary succeeding with respect to some session) is at most

The adversarial verifier is said faicceedon a random ~ Poly(n)2~*~C). This is negligible inn as we take
tape of the simulator, if the simulator gets stuck in some ¥ = w(logn), andh = O(logn). The latter follows, be-
sessions. Recall that a session is specifed by the “start- causeh, the depth of the recursion, is logarithmic in the
slot” In contrast, the simulator is said securea session ~ number of slots.
if it does not get stuck in that session (but the simulator
may still get stuck in some other session). We would like © Proof Sketch of Lemma 1
to bqund the probability that the adversary succeeds in any Here we sketch the proof of Lemma 1. (A more complete
session.

We shall bound this probability for each setting of the
coin flips of the verifier. So now onwards we fix the coin
flips of the verifier and consider the probability with respec
to the coin-flips of the simulated prover only. So giventhe Let the adversary succeed on the random tape (déck)
random tapeof the simulator (i.e., the randmoness used to in sessions which starts at a slatt art (when the message

proof is included in the full version of this paper).

5.1 Overview

(V0) arrives) and ends at the skt op (at whose beginning because if the verifier answers a later challe(igg) cor-

the simulator gets stuck unable to segipd)). The mapf rectly (since we are assuming that no two challenges are the

is established by demonstrating a procedure which takes same), it can successfully extract the seeréir sessiors.

and outputs at leagt—©(") distinct tapes in which the sim- The above observation suggests that from a random tape

ulator secures. To show thatf(R) N (R') = ¢ we will in which the adversary succeeds for a sessipjust by

demonstrate an inverse procedure which takes any tape irswapping the randomness of the “crashing thread” with that

f(R) and gives baclR. of many other appropriate threads, we get random tapes in
The random-tape of the simulator can be considered awhich the session is secured. But the resulting mapping

concatenation of the random strings used at each slot (noris not invertible. For our counting argument to go through

malized to the same length). Imagine that each such randonsmoothly, we do a slightly more sophisticated mapping, as

string is acard drawn from a large universe, and the random explained next.

tape is adeckof such cards. Then, each tape output by the

We are now getting to the heart of the proof. Let us recall

procedure is obtained by shuffling the input deck. That is, the key definitions so far:

the order in which the different random strings are used is
changed, but the random strings themselves are not altered.

Spans. Suppose the verifier sends a correct mes§&ge

in sessiors in response to prover’s challenge in a message
(Pj). The prover’s challeng€P;) starts a slok and the
subsequent verifier's answer ends a gl¢the two slots may

be the same). The set of slots alongxhg thread, between
(and inclusive ofx andy is called aspan

Let us call the segment of the thread between, but not in-
cluding, the slotst art andst op thest art -st op seg-
ment. Since the simulator reach@®) at the slotst op,
within the st art-st op segment the prover (simulator)
must send thé challengegP1), ..., (Pk), and the verifier
must properly answer in messag@sl), ..., (Vk). Thus
thest ar t -st op segmentis partitioned intb spans.

A span is calledjoodif the challenge at the beginning of
the span is correctly answered in the verifier message at the
end of the span. With the random tafieall the k& spans in
thest ar t -st op segment are good, and there are no other
good spans.

Shuffling Threads. The random strings (cards) in all the
slots along a thread fixes the execution of that thtezal

if we move the randomness in a thread (or in a segment
thereof) to some other thread (or its segment), the exatutio
in the latter will be identical to that of the former beforeth
change, as long as the two threads or segments in question
fork off from the same point.

Suppose that there is a look-ahead thread that starts after
the slotst ar t , butis not as long as thet ar t -st op seg-
ment, and that the execution in teéar t -st op segment
were to be advanced to that thread. Then if the latter thread
is long enough, at least one of thgood spans originally in
thest art -st op segment, with messagéB;) and (V)
say, will appear in that thread. If that happens the simula-
tor would have secured the session (i.e., it will not getlstuc
in that session) by the time it rewinds out of that thread,

4Recall that the hybrid simulator that we are analysing dagswake
use of the tabl&". Also, the verifier is assumed to be deterministic.

e slot: A slotin the simulation consists of two messages:

a prover message and the next verifier message. The
two messages of a slot may be from different sessions;
but for each verifier message, the next message in the
simulation is the simulated prover’s reply to it (in the
same session). The simulator will rewind to poibés
tweenslots.

block: We define ablock as the part of execution of
the simulator within an invocation of theIMULATE
procedure. The smallest block is a single slot, corre-
sponding to the base of recursion. The other blocks are
composed of four blocks of the next lower level.

¢ look-ahead block: Every block (except a block of the

smallest size) consists of four (smaller) blocks. See
Figure 3 for reference. Of the four pictured blocks,
block (1) is called thelook-ahead block of block
(1). Similarly block ') is the look-ahead block of the
block (2). Every block except the one at the top-most
level eitheris a look-ahead block dnasa look-ahead
block. We stress that not every block in the look-ahead
portion of the simulation is called a look-ahead block.
Instead, “look-ahead block” is a local definition, that
just depends on where the block sits in relation to the
block that contains it.

span: Suppose the verifier sends a correct message
(V3) in sessions in response to prover’s challenge in

a messagéP;). The prover’s challengéP;) starts a
slotx and the subsequent verifier's answer ends a slot
y (the two slots may be the same). The set of slots
along thex-y thread, between (and inclusive afjand

y is called aspan That is, a span consists of all mes-
sages along a session between and inclusive of some
(Pj) and(V;).

e good span: A span is good if the verifier's message

(V4) inside the span is a well-formed response to the
prover's messagé€P;). Note that any session where
the simulator has failed to solve the session must have
all good spans, i.e. it must contairgood spans.

5.2 Shuffling by Swapping Blocks not get stuck on session In particular, these procedures
arenot part of the simulation. Therefore, the efficiency of

The aim of the shuffling pro_cedl.‘l‘re IS to eSt,?b“Sh that these procedures is irrelevant. (As it turns out, thougty th
there are some non-overlapping “swappable” segments

(each containing one good span) in theart -st op can be implemented efficiently given knowledge of the wit-

thread. and for each se ijpesses underlying the statements being proven, which is fine
, gment there are many segments with. . o

S . since we are analyzing a hybrid simulator that does know
which it can be swapped. Further each of these swappingg, .o witnesses.)

can be carried out independently one after the other, aihd sti '

the entire swapping remains invertible. We shall show that

there are atleagt~C(") distinct tapes that can be produced Basic-Shuffle. The entire shuffling of a thread is com-
by these swappings, all of which will allow the simulator to Posed of manybasic-shuffleseach of which works on a
secure session swappable block. The basic-shuffle is a hierarchical proce-

The shuffling procedure can be described in terms of dure involving the allied blocks of a swappable block. We
the block structure of the execution of the simulator as de- illustrate this through an example. A formal description is
scribed in Section 3.3. We make the following definitions. available in the full version of this paper.

A block is said to beswappableif it is the smallest block Figure 5 shows how the swappable block markéuthe
containing a good span, it does not properly contain anylower threadA PQ is shuffled up to the upper thread3C'.
other good span, and it does not contain the slotrt or ~ The block marked™ (in threadABC)) is called thetarget
st op. Note that the minimal block containing a good span, The allied blocks ofl are blocks marked, 2 and3, and the
as long as it does not contadnt art or st op, eitherisa Plocks containing* at the corresponding levels are marked
swappable block, or contains a swappable block. The partl™, 2" and3*. First, blockl is swapped with its look-ahead
of thest ar t -st op segment inside a swappable block is Plock 1’, as1* is a look-ahead block. But blocks and
called a swappable segment. A swappable segment will be2’ are not swapped, becauseis not a look-ahead block.
swapped with some other segments as described shortly. Finally blocks3 and3" are swapped with each other s

The swappable blocks are ordered according to the orderiS @ look-ahead block, completing the basic-shuffle.
of their associated spans. A block is calledadiied block For a swappable block, by choosing at each of thtg
of a swappable block if (a) it contains (or is)3, but does levels whether to swap the allied block with its look-ahead
not contain the previous swappable block, and (b) does notlock or not, the above strategy specifis targets with
contain thest ar t or st op slots. which B can be shuffled (one of them being itself). (In our

A swappable blockB is an allied block of itself. Ateach ~ €xample this number &’.)
higher level, there is one allied block &, namely the one
containing the allied block of the lower level, up to the leve Inverting a Basic-Shuffle. Suppose the-th swappable
at which the block containingg also contains its previous block (ordered according to the order of the spans associ-
swappable block ost art orst op. The number of allied ated with the swappable blocks) with the original random
blocks of B will be denoted by s. tapeR is B, and it was shuffled to a target bloék* to get

Note that since an allied block cannot containgher t the tapeR’. Inverting this basic-shuffle involves recovering
or st op slots, thest ar t -st op segment enters the block R from R, as well as identifying the target blodk*. The
and leaves it. Such a block cannot be a look-ahead block (agatter ensures that the tapes obtained by shuffiingith the
defined in Section 3.3), because a look-ahead block cannotlifferent targets of3 are indeed distinct.
have any thread continuing out of it. Thus every allied block We note that shuffling3 does not change anything out-
hasa look-ahead block. We are now ready to outline the side the outer-most allied block and its look-ahead block.
shuffling strategy. In particular, all the previous — 1 swappable blocks in the

We will soon show that there must be either many swap- simulation remain unchanged. Also, the shuffling makes
pable blocks, or many allied blocks for several swappable the execution of3* identical to that ofB before the shuf-
blocks, or some combination of these two. But first, we fle. Further, the execution of every block tB* with R’, is
will show that if there are many swappable blocks or allied identical to that of some block beforg, with the tapeR.
blocks, then this means that the simulator very rarely getsThus B* becomes the-th swappable block after the shuf-
stuck. fle. This makes it possible to identify the target block of the

We now proceed to the shuffling and unshuffling proce- shuffle by inspectingz’. This is crucially used for inverting
dures. Itis critical to keep in mind that these procedures ar the mapping.
part of acombinatorial argument to show that for every — _ _
random tape that leads to the simulator getting “stuck” on a .. Note thatifa simpler shuffling strategy of exchanging theizmness

. . . in the two threads to be shuffled is used, this may no longeruze tin
particular session, there are many many other choices of o jjustration, if we just swap the randomness in the tweakisA BC
random tapes that would have led to a simulation that doesand APQ, the execution in the segmeBtX for instance, will be unpre-

— 3 (3% does not change the execution of any of the previous swap-
\-t pable blocks (as all the segments involved in a swapping oc-
cur afterthe previous swappable segments). Then the next
swappable block is swapped and so on. This ensures that
the unswapping can be done, in the reverse order, first swap-
ping back the earliest swappable segment, then the next and
S0 on.

2 5.3 Counting Swaps
By the above, the random tapR can be invertibly

mapped tdIz2!? = 2255 tapes, where the summation
— 3 is over all swappable segmens So to prove condition
\\-: (2) of Lemma 1 we need to count the total number of allied
blocks of all swappable blocks for the random tape

If Bis ablock which does not contagt art or st op,
then we have the following: (1) For every good spaif B

B 2 is the smallest block containing then B is either a swap-
pable block or contains a swappable block. 8% an allied
block of the first swappable block that it contains, if it con-

K 2 tains at least one swappable block. (3) Therefétaes an
1 allied block (of the first swappable block that it contairfs) i
Q it contains at least one good span.

Suppose we map each of thgood spansin thet ar t -
st op segment to the smallest block containing it. Then, a
block B can have at most one span mapped to it; this is be-
cause a span mappedBomust include slots in both halves
of the B, and thek spans are all disjoint. Thus there are
at leastk blocks which contain at least one good span. Of
Having identifiedB*, we are ready to start our unshuf- these, at most blocks contain the slagt art , and simi-
fling. We setB* as thecurrent block. Next we check if it~ larly for st op. Thus by Observation 3 above, at least2h
is a look-ahead block or not. If it is, then it means it reached blocks are allied blocks, there by proving condition (2) of
there due to a swap. So it is swapped to become a non-lookLemma 1.
ahead block, and the current-block is also changed to the
resulting block. Then we check if the block containing the 5.4 Securing the session
current-block is an allied block (i.e., we check if it comisi]
ther — 1-th swappable block or thet ar t orst op slots). Out of all the new rapdqm_tape; obtained b_y .the strategy
Ifitis, we make it the current-block and repeat by checking @P0Ve, there is one which is identical to the original tépe
if it is a look-ahead block, and if necessary swapping. We !N @ny other tapéi’ € f(R), there is one good span outside
continue this way until the current block becomes the max- thest ar t -st op segment, in a look-ahead block, namely

imal allied block. It is not hard to see that this operation the target of the left-most swappable block swapped. As
undoes the basic-shuffle which takBgo B*. described earlier, if the call teIMULATE returns from that

look-ahead segmentto a point after hear t slot, the sim-

Shuffling the entire thread. To shuffle the entire thread, Ulator will be able to find the secret of the verifier (condi-
the above basic-shuffle procedure is carried out on each ofional on all the challenges of the simulator being disjinct
the swappable blocks. This is done from right to left, i.e. the next time it goes through the same round in that session.
the last (in simulation order) swappable block is shuffled But we know that the call tsIMULATE will return because
first, then the previous one, and so on. The first basic-shuffleth® block swapped did not contain the sstop, and that

it will return to a point after thest ar t slot because it did
dictable (and in particular may introduce a good spaRixi and introduce not contain the slost art. Thus on all random strings
an associated swappable block). This is because, in thmalrigindom obtained above except for the original adversarially given

tape there was no thread with the randomness same as in éael thi X one, the simulator indeed secures the session which began
after the swap. But when the swap is carried out systemigtiaalillus-

trated above, every thread befot3C' was already present in the original ~ at St ar t. (The Si.mUIation may still get stuck, but .Only.
setting, and none of them had a good span in them. for a different session. The union bound argument given in

Figure 5. A basic-shuffle can move the swap-
pable block 1totheblock 1*, one ofits 8 target
blocks.

10

Section 4.3 shows that this can’t happen too often, and the[13] O. Goldreich, S. Micali and A. Wigderson. Proofs thaeNd
proof goes through.) This completes the proof of Lemma 1. Nothing But Their Validity or All Languages in NP Have Zero-
Knowledge Proof System3ACM, Vol. 38, No. 1, pp. 691-729,

6 Acknowledgements 1991.

. . . [14] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge
We gratefully thank Joe Kilian for sharing his thoughts Complexity of Interactive Proof SystemSIAM J. Comput.

Wit.h us and generously giving us his permi;sion to use {:md Vol. 18, No. 1, pp. 186-208, 1989.

build up on his suggestion [17] for an analysis which avoids o . N .

the dangers involved in earlier similar analyses involving [15] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Sig-

subtle arguments based on conditional probability. nature Scheme Secure Against Adaptive Chosen Message At-
We are grateful to Oded Goldreich for his support, for ~ @cks-SIAM J. Comput.Vol. 17, No. 2, pp. 281308, 1988.

enlightening conversations and for giving many useful re- (16} 3. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Con-
marks on previous manuscripts. We are also grateful to struction of Pseudorandom Generator from any One-Way
Moni Naor for discussions leading to the ne/C pro- Function.SIAM Jour. on Computingvol. 28 (4), pages 1364—
tocol. Thanks also to Uri Feige, Ronen Shaltiel and Erez 1396, 1999.

Petrank for helpful discussions. . L
[17] J. Kilian. Personal Communication

[18] J. Kilian and E. Petrank. Concurrent and Resettabl®-Zer
Knowledge in Poly-logarithmic Rounds. B8rd STOC pages
560-569, 2001.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Bar-

rier. In42nd FOCSpages 106-115, 2001. [19] J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for

[2] M. Blum. How to prove a Theorem So No One Else Can zero-Knowledge on the Intemet. B9th FOCS pages 484~

Claim It. Proc. of the International Congress of Mathemati-
cians,Berekeley, California, USA, pages 1444-1451, 1986.

[3] G.Brassard, D. Chaum and C. Crépeau. Minimum Disclsur
Proofs of KnowledgeJCSS Vol. 37, No. 2, pages 156-189,
1988.

[4] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micadis&-
table Zero-Knowledge. 182nd STOCpages 235-244 ,2000.

[5] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box

492, 1998.

[20] M. Naor. Bit Commitment using Pseudorandomndssir. of

Cryptology Vol. 4, pages 151-158, 1991.

[21] R.Richardson and J. Kilian. On the Concurrent Comjpasit

of Zero-Knowledge Proofs. lEuroCrypt99 Springer LNCS
1592, pages 415-431, 1999.

[22] A. Rosen. A note on the round-complexity of Concurrent

Zero-Knowledge. IrCrypto2000 Springer LNCS 1880, pages

Concurrent Zero-Knowledge Requiré?s(logn) Rounds. In 451-468, 2000.

33rd STOCpages 570-579 2001.

[6] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-
Knowledge. In30th STOCpages 409-418, 1998.

[7] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Re-
ducing the Need for Timing Constraints.@rypto98 Springer
LNCS 1462 , pages 442-457, 1998.

[8] U. Feige. Ph.D. thesis, Alternative Models for Zero Kriew
edge Interactive Proofs. Weizmann Institute of Sciencep19

[9] U. Feige and A. Shamir. Witness Indistinguishabilitydatit-
ness Hiding Protocols. 182nd STOCpages 416-426, 1990.

[10] O. Goldreich. Concurrent Zero-Knowledge with Timing —
Revisited. To appear, iB4th STOC2002.

[11] O. Goldreich.Foundation of Cryptography — Basic Tools
Cambridge University Press, 2001.

[12] O. Goldreich and H. Krawczyk. On the Composition of Zero
Knowledge Proof SystemSIAM J. Computing\Vol. 25, No. 1,
pages 169-192, 1996.

11

