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Over the past few years, we have received many re-
quests for clarifications regarding this paper. In response
to these requests, we have prepared this new (Feb 2008)
annotated version of the FOCS version of our paper. The
text is the same as in the FOCS version of this paper, but
we have added various notes (in blue color, like this text)
that might be useful for understanding the construction and
proof. Please let us know if you have any further comments.

While we believe that our construction and proof are
quite simple and intuitive, we recognize that we need to in-
troduce a fair amount of notation and several definitions in
order to describe our proof formally. One of the main ob-
jectives of this annotated version is to help the reader keep
in mind the various definitions and how they are used in the
proof.

Abstract

We show that every language inNP has a (black-box)
concurrent zero-knowledge proof system usingÕ(log n)
rounds of interaction. The number of rounds in our protocol
is optimal, in the sense that any language outsideBPP re-
quires at least̃Ω(log n) rounds of interaction in order to be
proved inblack-boxconcurrent zero-knowledge. The zero-
knowledge property of our main protocol is proved under
the assumption that there exists a collection of claw-free
functions. Assuming only the existence of one-way func-
tions, we show the existence ofÕ(log n)-round concurrent
zero-knowledge arguments for all languages inNP .

1 Introduction

Zero-knowledge proof systems, introduced by Gold-
wasser, Micali and Rackoff [14] are efficient interactive
proofs that have the remarkable property of yielding noth-
ing beyond the validity of the assertion being proved. The
generality of zero-knowledge proofs has been demonstrated
by Goldreich, Micali and Wigderson [13], who showed that
every NP-statement can be proved in zero-knowledge pro-
vided that one-way functions exist [16, 20]. Since then,
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zero-knowledge proofs have turned out to be an extremely
useful tool in the design of various cryptographic protocols.

The original setting in which zero-knowledge proofs
were investigated consisted of a single prover and verifier
which execute only one instance of the protocol at a time.
A more realistic setting, especially in the time of the Inter-
net, is one which allows the concurrent execution of zero-
knowledge protocols [8, 6]. In the concurrent setting, many
protocols (sessions) are executed at the same time, involv-
ing many verifiers which may be talking with the same (or
many) provers simultaneously (the so-called parallel com-
position considered in [12, 9, 10] is a special case). This set-
ting presents the new risk of a coordinated attack in which
an adversary controls many verifiers, interleaving the exe-
cutions of the protocols and choosing verifiers’ messages
based on other partial executions of the protocol. Since
it seems unrealistic (and certainly undesirable) for honest
provers to coordinate their actions so that zero-knowledge
is preserved, we must assume that in each prover-verifier
pair the prover acts independently.

Loosely speaking, a zero-knowledge proof is said to
be concurrent zero-knowledge(cZK) if it remains zero-
knowledge even when executed in the concurrent setting.
Recall that in order to demonstrate that a certain proto-
col is zero-knowledge it is required to demonstrate that the
view of every probabilistic polynomial-time adversary in-
teracting with the prover can be simulated by a probabilis-
tic polynomial-time machine (a.k.a. thesimulator). In the
concurrent setting, the verifiers’ view may include multiple
sessions running at the same time. Furthermore, the veri-
fiers may have control over the scheduling of the messages
in these sessions (i.e., the order in which the interleaved ex-
ecution of these sessions should be conducted). As a con-
sequence, the simulator’s task in the concurrent setting be-
comes considerably more complicated. In particular, stan-
dard techniques, based on “rewinding the adversary”, run
into trouble.

1.1 Previous Work

An informal argument concerning the difficulty of con-
structing round-efficientcZK was given by Dwork, Naor,
and Sahai in their paper introducingcZK [6]. The first



rigorous lower bound was given by Kilian, Petrank and
Rackoff [19] who showed, building on the techniques
of [12], that for every language outsideBPP there is no 4-
round protocol whose concurrent execution is simulatable
in polynomial-time by ablack-box simulator. (A black-box
simulator is a simulator that has only black-box access to
the adversarial verifier.) This lower bound was later im-
proved by Rosen to seven rounds [22], and was further im-
proved toΩ(log n/ log log n) rounds by Canetti, Kilian, Pe-
trank and Rosen [5].

Even ignoring issues of round efficiency, it was not a-
priori clear whether there existscZK protocols for lan-
guages outside ofBPP. Richardson and Kilian were the
first to exhibit a family ofcZK protocols (parameterized
by the number of rounds) for all languages inNP [21].
The original analysis of the RK protocol showed how to
simulate in polynomial-timenO(1) concurrent sessions only
when the number of rounds in the protocol is at leastnǫ (for
some arbitraryǫ > 0). This analysis has been later im-
proved by Kilian and Petrank [18], who show that the RK
protocol remains concurrent zero-knowledge even if it has
O(α(n) · log2 n) rounds, whereα(·) is any non-constant
function (e.g.,α(n) = log log n).

In a recent breakthrough result, Barak [1] constructs a
constant-round protocol for all languages inNP whose
zero-knowledge property is proved using anon black-box
simulator. Such a method of simulation enables him to
prove that for every (predetermined) polynomialp(·), there
exists a constant-round protocol that preserves its zero-
knowledge property even when it is executedp(n) times
concurrently (wheren denotes the size of the common in-
put). This has been previously shown to be unachievable
via black-box simulation [5] (unlessNP ⊆ BPP).

A major drawback of Barak’s protocol is that the (poly-
nomial) number of concurrent sessions relative to which the
protocol should be secure must be fixedbeforethe protocol
is specified. Moreover, the length of the messages in the
protocol grows linearly with the number of concurrent ses-
sions. Thus, from both a theoretical and a practical point
of view, Barak’s protocol is still not satisfactory. What we
would like to have is asingle protocol that preserves its
zero-knowledge property even when it is executed concur-
rently for any (not predetermined) polynomial number of
times. Such a property is indeed satisfied by the protocols
of [21, 18] (alas these protocols are not constant-round).

1.2 Our Results

In this work we close the gap between the known up-
per and lower bounds on the round-complexity of black-
box cZK [18, 5]. Specifically, assuming the existence of
perfectly-hiding commitment schemes (which exist assum-
ing the existence of a collection of claw-free functions [15]),
we show that every language inNP can be proved incZK

using onlyÕ(log n) rounds of interaction. Our main result
is stated in the following theorem:

Theorem 1 (Main Theorem) Assuming the existence
of perfectly-hiding commitment schemes, there exists an
Õ(log n)-round black-box concurrent zero-knowledge
proof system for every languageL ∈ NP (that is, for
every inputx, the number of messages exchanged is at most
Õ(log(|x|))).

We stress that our protocol retains its zero-knowledge prop-
erty even under “full fledged” concurrent composition. That
is, once the protocol is fixed it will remain zero-knowledge
no matter how many times it is executed concurrently (as
long as the number of concurrent sessions is polynomial in
the size of the input).

Notice that the above theorem completes the classifica-
tion of the round-complexity of black-boxcZK. Namely,
by combining Theorem 1 with the lower bound of Canetti
et al. [5], we have:

Corollary 1 The round-complexity of black-box concurrent
zero-knowledge is̃Θ(log n) rounds.1

By relaxing the soundness requirement of the protocol to
hold only against computationally bounded provers (that
is, by considering so-called zero-knowledge arguments [14,
3]), we are able to achieve a similar result assuming only
the existence of one-way functions, namely:

Theorem 2 Assuming the existence of one-way functions,
there exists añO(log n)-round black-box concurrent zero-
knowledgeargumentsystem for every languageL ∈ NP .

We note that the lower-bound by Canetti et al. [5] applies
also in the case of arguments.

1.3 Techniques

The proof of Theorem 1 builds on the protocol by
Richardson and Kilian [21] and on the simulator by Kilian
and Petrank [18]. However, our analysis of the simulator’s
execution is more sophisticated and thus yields a stronger
result. We introduce a novel counting argument that in-
volves a direct analysis of the underlying probability space.
This is in contrast to previous results that required subtle
manipulations of conditional probabilities. We also present
a new variant of the RK protocol [21] which is both simpler
and more amenable to analysis than the original version. In
the rest of this section, we briefly sketch the ideas we use to
obtain our main result.

Constructing zero-knowledge proofs forNP involves
resolving a tension between thesoundnessandzero knowl-
edgeconditions: In (black-box) zero-knowledge proofs, the

1f(n) = Θ̃(h(n)) if both f(n) = Õ(h(n)) andf(n) = Ω̃(h(n)).
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simulator can be thought of as a party that interacts with
the verifier, but unlike the prover, the simulator must be
able to convince the verifier of both true and false state-
ments. To enable this, the simulator is given a “super
power,” namely the ability to “rewind” the verifier to an
earlier state, and thus base its messages on future verifier
messages. Very roughly speaking, zero knowledge proofs
for NP have been constructed by inserting “rewinding op-
portunities” into protocols, which allow the simulator to
“win” if it can base one of its earlier messages to the veri-
fier on a future message received from the verifier. We stress
that in order to successfully “exploit” a “rewinding oppor-
tunity,” the simulator must take care not to “rewind” too far
back, otherwise the information it learned from the verifier
will no longer be useful. It is precisely this problem which
makes simulation so difficult in concurrent zero knowledge,
because rewinding one verifier may cause another verifier
to be rewound “too much,” requiring re-simulation, as first
pointed out by [6].

The Richardson-Kilian (RK) protocol and Kilian-
Petrank simulation. The basic idea of the Richardson-
Kilian cZK protocol [21] is to have a protocol withmany
rewinding opportunities, so that even if the simulator has
to miss one opportunity, it will still get many more. Kilian
and Petrank then showed that in fact, there exists a simula-
tor for the RK protocol which has a very natural “oblivious”
rewinding strategy [18] – in other words, the simulator’s de-
cisions of when and how much to rewind do not depend on
the behavior of the verifiers, but are predetermined.

At this point, we note that a simple technical calculation
shows that a single chance to exploit a rewinding oppor-
tunity results in only a constant probability that the sim-
ulator will “win.” Thus, the simulator needs a superlog-
arithmic number of (roughly independent) chances to ex-
ploit rewinding opportunities in order to reduce its fail-
ure probability to a negligible fraction. Kilian and Petrank
showed that in their oblivious rewinding strategy, through-
out the simulation, every time a session of the protocol
completes, the simulator will have chances to exploit at
leastΩ(k/ logn) rewinding opportunities, wherek is the
total number of rewinding opportunities in the protocol (the
number of rounds in the protocol would then beO(k)). This
implies thatÕ(log2 n) rounds suffice for concurrent simu-
lation of the RK protocol.

The new ideas underlying this work. Unfortunately, the
Kilian-Petrank argument does not extend to the case when
k = Õ(log n). In fact, in such a case there may exists only
few (i.e.,o(log n)) rewinding opportunities that can be ex-
ploited by the simulator.

We overcome this limitation by shifting our focus from
the number of “exposed” rewinding opportunities in the
protocol, to the total number of chances to exploit rewinding

opportunitiescounted with multiplicity, in case the rewind-
ing schedule permits multiple chances to exploit a single
rewinding opportunity in the protocol. In fact, we show that
the Kilian-Petrank oblivious rewinding strategy itself al-
ways yields roughlyk−O(log n) such chances in total. This
allows us to conclude that̃O(log n) rounds suffice. Further-
more, rather than relying on a subtle manipulation of condi-
tional probabilities as done in previous work [21, 18], build-
ing on a suggestion of [17] we employ a direct counting ar-
gument to prove our claim. We essentially show directly
that there can only be very few random coins on which our
simulation fails, by arguing that for every choice of random
coins on which our simulation fails, there must be super-
polynomially more other choices for the random coins on
which it does not.

1.4 Conclusions and an open problem

Our result (together with [5]) essentially completes the
classification of the round-complexity of black-boxcZK
(Corollary 1). Still, in light of Barak’s recent result [1],
constant-roundcZK protocols (with non black-box simula-
tors) do not seem out of reach. A natural open question is
whether there exists a constant-round (non black-box)cZK
protocol for all languages inNP .

2 Definition of cZK

We use the standard definitions of interactive proofs (and
interactive Turing machines) [14, 11] and arguments (a.k.a
computationally-sound proofs) [3]. In defining concurrent
zero knowledge, we follow the original definition of [6],
using a refinement due to [5].

Let 〈P, V 〉 be an interactive proof (resp. argument) for
a languageL, and consider aconcurrent adversary (veri-
fier)V ∗ that, given inputx∈L, interacts with an unbounded
number of independent copies ofP (all on common input
x). The concurrent adversaryV ∗ is allowed to interact with
the various copies ofP concurrently, without any restric-
tions over the scheduling of the messages in the different
interactions withP (in particular,V ∗ has control over the
scheduling of the messages in these interactions).

Thetranscript of a concurrent interaction consists of the
common inputx, followed by the sequence of prover and
verifier messages exchanged during the interaction. We de-
note byviewP

V ∗(x) a random variable describing the content
of the random tape ofV ∗ and the transcript of the concur-
rent interaction betweenP andV ∗.

Following [5], we overcome subtle issues that arise in
the context of black-boxcZK by allowing the existence of a
different simulatorSq for everyV ∗ that runs at mostq(|x|)
concurrent sessions. (This is in contrast to the customary
definition of “stand-alone” black-boxZK in which it is re-
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quired that there exists a “universal” simulator that works
for all potential verifiersV ∗.)

Definition 1 (Black-Box cZK) Let 〈P, V 〉 be an interac-
tive proof system for a languageL. We say that〈P, V 〉 is
black-box concurrent zero-knowledge if for every poly-
nomialq(·), there exists a probabilistic polynomial-time al-
gorithmSq, so that for every concurrent adversaryV ∗ that
runs at mostq(|x|) concurrent sessions,Sq(x) runs in time
polynomial inq(|x|) and |x|, and satisfies that the ensem-
bles {viewP

V ∗(x)}x∈L and {Sq(x)}x∈L are computation-
ally indistinguishable.

3 A new cZK Proof System forNP

In this section we present a high-level description of our
protocol, as well as a description of the black-box simulator
that establishes its zero-knowledge property.

Our protocol is inspired by the RK protocol [21] and
uses the well known 3-round protocol for Hamiltonicity
by Blum [2] as a building block. The crucial property of
Blum’s protocol that we need in order to construct a con-
current zero-knowledge simulator is that the simulation task
becomes trivial as soon as the verifier’s message is known in
advance. That is, if the prover knows the verifier’s “secret”
prior to the beginning of the protocol then it can always
make the verifier accept (regardless of whether the graph
is Hamiltonian). This is done by adjusting the prover’s
messages according to the contents of the verifier’s “secret”
(which, as we said, is known in advance).

We stress that the choice of Blum’s protocol as a build-
ing block is arbitrary (and is made just for simplicity of pre-
sentation). In fact, the above property is satisfied by many
other known protocols. Any one of these protocols could
have been used as a building block for our construction.

3.1 The Protocol

We letk be any super-logarithmic function inn. Our pro-
tocol consists of two stages. In thefirst stage (or pream-
ble), which is independent of the actual common input, the
verifier commits to a randomn-bit stringσ, and to two se-
quences,{σ0

i,j}
k
i,j=1, and{σ1

i,j}
k
i,j=1, each consisting ofk2

randomn-bit strings (this first message employs a perfectly-
hiding commitment scheme and is called theinitial commit-
ment of the protocol). The sequences are chosen under the
constraint that for everyi, j the value ofσ0

i,j ⊕ σ1
i,j equals

σ. This is followed byk iterations so that in thejth iteration
the prover sends a randomk-bit string,bj = b1,j, . . . , bk,j ,

and the verifier decommits toσb1,j

1,j , . . . , σ
bk,j

k,j .
In thesecond stage, the prover and verifier engage in

the 3-round protocol for Hamiltonicity, where the “secret”
sent by the verifier in the second round of the Hamiltonicity
protocol equalsσ (at this point the verifier also decommits

to all the valuesσ, {σ
1−bi,j

i,j }k
i,j=1 that were not revealed in

the first stage). The protocol is depicted in Figure 1.

First stage:

V → P : Commit toσ, {σ0
i,j}

k
i,j=1, {σ

1
i,j}

k
i,j=1.

σ0
i,j ⊕ σ1

i,j = σ for everyi, j.

For j = 1, . . . , k:

P → V : Sendb1,j , . . . , bk,j
r
← {0, 1}k.

V → P : Decommit toσ
b1,j

1,j , . . . , σ
bk,j

k,j .

Second stage:

P → V : Send first message of Hamiltonicity protocol.

V → P : Decommit toσ and to{σ
1−bi,j

i,j }ki,j=1.

P → V : Answer according to the value ofσ.

Figure 1. Our cZK protocol. The first stage is
independent of the common input and con-
sists of k iterations. The second stage con-
sists of a 3-round proof of Hamiltonicity.

Intuitively, since in an actual execution of the protocol,
the prover does not know the value ofσ, the protocol con-
stitutes a proof system for Hamiltonicity (with negligible
soundness error). However, knowing the value ofσ in ad-
vance allows the simulation of the protocol: Whenever the
simulator may cause the verifier to reveal bothσ0

i,j andσ1
i,j

for somei, j (this is done by the means ofrewindingthe ver-
ifier after the valuesσb1,j

1,j , . . . , σ
bk,j

k,j have been revealed),
it can simulate the rest of the protocol (and specifically
Stage 2) by adjusting the first message of the Hamiltonicity
protocol according to the value ofσ = σ0

i,j ⊕ σ1
i,j (which,

as we said, is obtained before entering the second stage).

3.2 The Simulator

Let (V0), (P1), (V1), . . . , (Pk), (Vk) denote the2k +1
first stage messages in our protocol and let(p1), (v1), (p2)
denote the three (second stage) messages in the Hamiltonic-
ity proof system. Loosely speaking, the simulator is said to
rewind the thejth round if after receiving a(Vj ) message,
it “goes back” to some point preceding the corresponding
(Pj ) message and “re-executes” the relevant part of the in-
teraction until(Vj ) is reached again.

Note that, if the simulator manages to receive(Vj ) as
answer to twodifferent(Pj ) messages (due to rewinding)
the simulator has obtained bothσ0

i,j andσ1
i,j for somei ∈

{1, . . . , k}. If this happens in even one of the roundsj in
the first stage, then it reveals the verifier’s “secret” (which
is equal toσ0

i,j ⊕ σ1
i,j ). Once the secret is revealed, the

simulator can cheat arbitrarily in the second stage of the
protocol.
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To simplify the analysis, we let the simulator always pick
the (Pj )’s uniformly at random. Since the length of the
(Pj ) messages is super-logarithmic, the probability thatany
two (Pj ) messages sent during the simulation are equal is
negligible.

Motivating discussion. The binding property of the ini-
tial commitment guarantees us that, onceσ0

i,j andσ1
i,j have

been revealed, the verifier cannot “change his mind” and
decommit toσ 6= σ0

i,j ⊕ σ1
i,j on a later stage. However,

this remains trueonly if we have not rewound past the ini-
tial commitment. As observed by Dwork et al. [6], rewind-
ing a specific session in the concurrent setting may result
in rewinding past the initial commitment of other sessions.
This means that the “work” done for these sessions may be
lost (since once we rewind past the initial commitment of a
session allσbi,j

i,j values that we have gathered in this session
become irrelevant). Consequently, the simulator may find
himself doing the same amount of “work” again.

The rewinding strategy. The big question is how to de-
sign a simulation strategy that will manage to overcome the
above difficulty. In this work we follow the approach taken
by Kilian and Petrank [18] and let the simulator determine
the order and timing of its rewindingsobliviouslyof the con-
current scheduling.

The rewinding strategy of our simulator is specified by
the SIMULATE procedure. The goal of theSIMULATE pro-
cedure is to supply the simulator withV ∗’s “secret” for each
session before reaching the second stage in the protocol. As
discussed above, this is done by rewinding the interaction
with V ∗ while trying to make the verifier answer two differ-
ent challenges(Pj ).

The timing of the rewindings performed by theSIM-
ULATE procedure depends only onthe number of verifier
messagesreceived so far (and on the size of the schedule).
For the sake of simplicity, we currently ignore second stage
messages and refrain from specifying the way they are han-
dled. On a very high level, theSIMULATE procedure splits
the first stage messages it is about to explore into two halves
and invokes itself recursively twice for each half (complet-
ing the two runs of the first half before proceeding to the
two runs of the second half).

At the top level of the recursion, the messages that are
about to be explored consist of the entire schedule, whereas
at the bottom level the procedure explores only a single
message (at this level, the verifier message explored is
stored in a special data-structure, denotedT ). The solve
procedure always outputs the sequence of “most recently
explored” messages.

The input to theSIMULATE procedure consists of a triplet
(ℓ, hist, T ). The parameterℓ corresponds to the number of
verifier messages to be explored, the stringhist is a tran-
script of thecurrent thread of interaction, andT is a table

containing the contents of all the messages explored so far
(to be used whenever the second stage is reached in some
session).2

The simulation is performed by invoking theSIMULATE

procedure with the appropriate parameters. Specifically,
whenever the schedule containsm = poly(n) sessions, the
SIMULATE procedure is invoked with input(m(k+2), φ, φ)
(wherem(k+2) is the total number of verifier messages in
a schedule ofm sessions). TheSIMULATE procedure is de-
picted in Figure 2.

If the simulation reaches the second stage (the mainZK
proof part) in the protocol at any time, without the secret
having been extracted, the simulator commits to a random
string.3 But if subsequently the verifier sends the message
(v1) to reveal a secret consistent with its earlier messages,
the simulator “gets stuck,” i.e., it cannot continue the proof
as in the original protocol and keep it indistinguishable from
an actual proof. Then it gives up the entire simulation and
outputs⊥.

A slot in the simulation consists of two messages: a
prover message and the next verifier message. The two mes-
sages of a slot may be from different sessions; but for each
verifier message, the next message in the simulation is the
simulated prover’s reply to it (in the same session). The
simulator will rewind to pointsbetweenslots. A session
during the run of the simulator is identified by the slot in the
simulation where the first message of the session, namely
the initial commit message(V0) from the verifier, arrives
(thereby ending that slot).

We stress that aslot can occur anywhere in the sim-
ulation, including the “look-ahead” portions of the sim-
ulation. Similarly, asessioncan represent a particular
Prover-Verifier interaction anywhere during the simulation.
It could, for example, start in the “main line” of the simula-
tion (the part of the simulation that will be output), but then
finish in some look-ahead portion of the simulation.

3.3 Blocks

We define ablock as the part of execution of the simu-
lator within an invocation of theSIMULATE procedure. The
smallest block is a single slot, corresponding to the base of
recursion. The other blocks are composed of four blocks of
the next lower level.

Figure 3 illustrates one block. The way in which the
history is passed to the lower level invocations tie them to-
gether as shown. The invocation of the (lower level) block
called 1′ in the top thread corresponds to the first (look-
ahead) call. It is truncated immediately (i.e., its historyis

2The messages stored inT are used in order to determine the verifier’s
“secret” according to “different” answers to(Vj ).

3If the secret has been extracted, it is used to manufacture a message
which helps the simulator complete the proof later.
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Input: (ℓ,hist, T )

Bottom level (ℓ = 1):

• Uniformly choose a first stage prover messagep, and feedV ∗ with (hist, p).

• StoreV ∗’s answerv, in T .

• Output(p,v), T .

Recursive step (ℓ > 1):

• Set(p̃1, ṽ1, . . . , p̃ℓ/2, ṽℓ/2), T1 ←SIMULATE(ℓ/2, hist, T ).

• Set(p1, v1, . . . , pℓ/2, vℓ/2), T2 ← SIMULATE(ℓ/2, hist, T1).

• Set(p̃ℓ/2+1, ṽℓ/2+1, . . . , p̃ℓ, ṽℓ), T3 ←SIMULATE(ℓ/2, (hist, p1, v1, . . . , pℓ/2, vℓ/2), T2).

• Set(pℓ/2+1, vℓ/2+1, . . . , pℓ, vℓ), T4 ← SIMULATE(ℓ/2, (hist, p1, v1, . . . , pℓ/2, vℓ/2), T3).

• Output(p1, v1, . . . , pℓ, vℓ), T4.

Figure 2. The rewinding strategy of the simulator. Even thou gh messages (p̃1, ṽ1, . . . , p̃ℓ, ṽℓ) do not
explicitly appear in the output, some of them do appear in the table T4.

not continued further) as the simulator rewinds when the
call returns; the second call (block marked1) starts off with
the same history as the first one, as indicated by the first fork
in the thread; the resulting thread continues, as theSIMU-
LATE procedure goes to the nexthalf in the recursion. Again
the first call is truncated by rewinding, and the history from
the second call is passed to the outside of the block.

Of these four blocks, the first one (in Figure 3,1′) is
called thelook-ahead blockof the second one (1). Sim-
ilarly the third block (2′) is the look-ahead block of the
fourth one (2). Every block except the one at the top-most
level eitheris a look-ahead block orhasa look-ahead block.
A block maycontainanother block of a lower level, but no
two blocks can ever overlap otherwise.

1 2’

2

1’

Figure 3. The Threads of execution of the sim-
ulator. The shaded blocks hide the threads
in the recursive calls. The block returns the
messages from blocks 1 and 2.

Figure 4 illustrates the “threads” in the simulation. A
thread refers to a path from left to right in such a figure.
A thread from the initial point of simulation, up to a slotx
corresponds to the transcript of the simulated protocol when
the simulation reachesx.

4 High Level Analysis of the Simulator
In order to prove the correctness of the simulation, it will

be sufficient to show that for every adversary verifierV ∗,

Figure 4. A block in the execution of the
simulator. The shaded boxes correspond to
blocks two levels below the block shown. The
lines indicate the different “threads” of exe-
cution taken by the simulator.

the three conditions corresponding to the following subsec-
tions are satisfied.

4.1 The simulator runs in polynomial-time

Each invocation of theSIMULATE procedure with param-
eterℓ > 1 involves four recursive invocations of theSIMU-
LATE procedure with parameterℓ/2. In addition, the work
invested at the bottom of the recursion (i.e., whenℓ = 1)
is upper bounded bypoly(n). Thus, the recursive work
W (m ·(k+1)), that is invested by theSIMULATE procedure
in order to handlem · (k + 1) (first stage) verifier messages
satisfiesW (m · (k + 1)) ≤ (m · (k + 1))2 · poly(n) =
poly(n).
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4.2 The simulator’s output is “correctly” dis-
tributed

Indistinguishability of the simulator’s output fromV ∗’s
view (of m = poly(n) concurrent interactions withP ) is
shown assuming that the simulator does not “get stuck” and
output⊥ during its execution (see the next section). Since
the simulatorS will get stuck only with negligible proba-
bility, indistinguishability will immediately follow. The key
for proving the above lies in the following two properties:

• First stage messages output byS are identically dis-
tributed to first stage messages sent byP . This is
proved based on the definition of the simulator’s ac-
tions. (Note that this property is easier to prove for our
protocol than it is for the RK protocol.)

• Second stage messages output byS arecomputation-
ally indistinguishablefrom second stage messages sent
by P . This is proved based on the fact that the verifier
cannot feasibly distinguish between the prover using a
real witness and the prover cheating by knowing the
secret string used by the verifier. This follows from the
security of the commitment scheme used by the prover
inside the ZK proof system employed in the second
stage of the protocol.

A formal proof can be given using a hybrid simulator
which differs from the original simulator only in that it
knows the witness forx ∈ L, and uses that for the second
stage. Though the hybrid simulator does not use the entries
in the Solution Table, it also fails if it reaches the last mes-
sage in an unsolved session. In the sequel, we shall analyse
this hybrid simulator.

4.3 The simulator (almost) never “gets stuck”
This is the most involved part of the proof. What is re-

quired is to show that whenever a session in the simulation
reaches the second stage of the protocol, the simulator has
alreadysolvedit – i.e., managed to obtain the value of the
verifier’s “secret” corresponding to that session (if thereis a
valid secret for the session) with overwhelming probability.

The adversarial verifier is said tosucceedon a random
tape of the simulator, if the simulator gets stuck in some
sessions. Recall that a session is specifed by the “start-
slot.” In contrast, the simulator is said tosecurea session
if it does not get stuck in that session (but the simulator
may still get stuck in some other session). We would like
to bound the probability that the adversary succeeds in any
session.

We shall bound this probability for each setting of the
coin flips of the verifier. So now onwards we fix the coin
flips of the verifier and consider the probability with respect
to the coin-flips of the simulated prover only. So given the
random tapeof the simulator (i.e., the randmoness used to

generate the prover messages), the entire execution of the
simulator is determined.

To bound the probability that the adversary succeeds we
have to bound the number of random tapes on which the ad-
versary succeeds. We shall show that for every random tape
on which the adversary succeeds with respect to a particular
sessions, there are many other tapes with which that is not
the case (taking care not to double-count the tapes). In the
sequel we restrict ourselves to random tapes which cause
the simulator to never pick two identical challenges; this
does not affect the probabilities by more than a negligible
fraction.

Lemma 1 LetR be the set of all random tapes used by the
simulator. There exists a mappingf : R → 2R such that for
everyR ∈ R, if the adversary succeeds onR for a session
s, then

1. ∀R′ ∈ R\{R}, f(R) ∩ f(R′) = φ

2. |f(R)| ≥ 2k−O(h), whereh is the maximum depth of
recursion of the simulator.

3. ∀R′ ∈ f(R)\{R}, the simulator securess on random
tapeR′.

We shall sketch the proof of this lemma in the next sec-
tion, but before that note that it achieves our goal. Since
all the random tapes are equally probable, the next lemma
follows immediately from Lemma 1.

Lemma 2 The probability that the adversary succeeds for
a given sessions is at most2−(k−O(h)).

Now we prove the assertion of this section:
The number of possible sessions is at most the num-

ber of slots, and thereforepoly(n). (When the simulator
is simulating a concurrent session involving at mostℓ mes-
sages, the number of slots in the simulation is at mostℓ2.)
Thus by union bound, Lemma 2 implies that the probabil-
ity of the simulator getting stuck (i.e., that of the adver-
sary succeeding with respect to some session) is at most
poly(n)2−(k−O(h)). This is negligible inn as we take
k = ω(log n), andh = O(log n). The latter follows, be-
causeh, the depth of the recursion, is logarithmic in the
number of slots.

5 Proof Sketch of Lemma 1

Here we sketch the proof of Lemma 1. (A more complete
proof is included in the full version of this paper).

5.1 Overview

Let the adversary succeed on the random tape (deck)R,
in sessions which starts at a slotstart (when the message
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(V0) arrives) and ends at the slotstop (at whose beginning
the simulator gets stuck unable to send(p2)). The mapf
is established by demonstrating a procedure which takesR
and outputs at least2k−O(h) distinct tapes in which the sim-
ulator securess. To show thatf(R) ∩ (R′) = φ we will
demonstrate an inverse procedure which takes any tape in
f(R) and gives backR.

The random-tape of the simulator can be considered a
concatenation of the random strings used at each slot (nor-
malized to the same length). Imagine that each such random
string is acarddrawn from a large universe, and the random
tape is adeckof such cards. Then, each tape output by the
procedure is obtained by shuffling the input deck. That is,
the order in which the different random strings are used is
changed, but the random strings themselves are not altered.

Spans. Suppose the verifier sends a correct message(Vj )
in sessions in response to prover’s challenge in a message
(Pj ). The prover’s challenge(Pj ) starts a slotx and the
subsequent verifier’s answer ends a sloty (the two slots may
be the same). The set of slots along thex-y thread, between
(and inclusive of)x andy is called aspan.

Let us call the segment of the thread between, but not in-
cluding, the slotsstart andstop thestart-stop seg-
ment. Since the simulator reaches(p2) at the slotstop,
within the start-stop segment the prover (simulator)
must send thek challenges(P1), . . . , (Pk), and the verifier
must properly answer in messages(V1), . . . , (Vk). Thus
thestart-stop segment is partitioned intok spans.

A span is calledgoodif the challenge at the beginning of
the span is correctly answered in the verifier message at the
end of the span. With the random tapeR all thek spans in
thestart-stop segment are good, and there are no other
good spans.

Shuffling Threads. The random strings (cards) in all the
slots along a thread fixes the execution of that thread4 So
if we move the randomness in a thread (or in a segment
thereof) to some other thread (or its segment), the execution
in the latter will be identical to that of the former before the
change, as long as the two threads or segments in question
fork off from the same point.

Suppose that there is a look-ahead thread that starts after
the slotstart, but is not as long as thestart-stop seg-
ment, and that the execution in thestart-stop segment
were to be advanced to that thread. Then if the latter thread
is long enough, at least one of thek good spans originally in
thestart-stop segment, with messages(Pj ) and(Vj )
say, will appear in that thread. If that happens the simula-
tor would have secured the session (i.e., it will not get stuck
in that session) by the time it rewinds out of that thread,

4Recall that the hybrid simulator that we are analysing does not make
use of the tableT . Also, the verifier is assumed to be deterministic.

because if the verifier answers a later challenge(Pj ) cor-
rectly (since we are assuming that no two challenges are the
same), it can successfully extract the secretσ for sessions.

The above observation suggests that from a random tape
in which the adversary succeeds for a sessions, just by
swapping the randomness of the “crashing thread” with that
of many other appropriate threads, we get random tapes in
which the sessions is secured. But the resulting mapping
is not invertible. For our counting argument to go through
smoothly, we do a slightly more sophisticated mapping, as
explained next.

We are now getting to the heart of the proof. Let us recall
the key definitions so far:

• slot: A slot in the simulation consists of two messages:
a prover message and the next verifier message. The
two messages of a slot may be from different sessions;
but for each verifier message, the next message in the
simulation is the simulated prover’s reply to it (in the
same session). The simulator will rewind to pointsbe-
tweenslots.

• block: We define ablock as the part of execution of
the simulator within an invocation of theSIMULATE

procedure. The smallest block is a single slot, corre-
sponding to the base of recursion. The other blocks are
composed of four blocks of the next lower level.

• look-ahead block:Every block (except a block of the
smallest size) consists of four (smaller) blocks. See
Figure 3 for reference. Of the four pictured blocks,
block (1′) is called thelook-ahead block of block
(1). Similarly block (2′) is the look-ahead block of the
block (2). Every block except the one at the top-most
level eitheris a look-ahead block orhasa look-ahead
block. We stress that not every block in the look-ahead
portion of the simulation is called a look-ahead block.
Instead, “look-ahead block” is a local definition, that
just depends on where the block sits in relation to the
block that contains it.

• span: Suppose the verifier sends a correct message
(Vj ) in sessions in response to prover’s challenge in
a message(Pj ). The prover’s challenge(Pj ) starts a
slotx and the subsequent verifier’s answer ends a slot
y (the two slots may be the same). The set of slots
along thex-y thread, between (and inclusive of)x and
y is called aspan. That is, a span consists of all mes-
sages along a session between and inclusive of some
(Pj ) and(Vj ).

• good span: A span is good if the verifier’s message
(Vj ) inside the span is a well-formed response to the
prover’s message(Pj ). Note that any session where
the simulator has failed to solve the session must have
all good spans, i.e. it must containk good spans.
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5.2 Shuffling by Swapping Blocks

The aim of the shuffling procedure is to establish that
there are some non-overlapping “swappable” segments
(each containing one good span) in thestart-stop
thread, and for each segment there are many segments with
which it can be swapped. Further each of these swappings
can be carried out independently one after the other, and still
the entire swapping remains invertible. We shall show that
there are at least2k−O(h) distinct tapes that can be produced
by these swappings, all of which will allow the simulator to
secure sessions.

The shuffling procedure can be described in terms of
the block structure of the execution of the simulator as de-
scribed in Section 3.3. We make the following definitions.

A block is said to beswappableif it is the smallest block
containing a good span, it does not properly contain any
other good span, and it does not contain the slotsstart or
stop. Note that the minimal block containing a good span,
as long as it does not containstart or stop, either is a
swappable block, or contains a swappable block. The part
of thestart-stop segment inside a swappable block is
called a swappable segment. A swappable segment will be
swapped with some other segments as described shortly.

The swappable blocks are ordered according to the order
of their associated spans. A block is called anallied block
of a swappable blockB if (a) it contains (or is)B, but does
not contain the previous swappable block, and (b) does not
contain thestart or stop slots.

A swappable blockB is an allied block of itself. At each
higher level, there is one allied block ofB, namely the one
containing the allied block of the lower level, up to the level
at which the block containingB also contains its previous
swappable block orstart orstop. The number of allied
blocks ofB will be denoted bytB.

Note that since an allied block cannot contain thestart
or stop slots, thestart-stop segment enters the block
and leaves it. Such a block cannot be a look-ahead block (as
defined in Section 3.3), because a look-ahead block cannot
have any thread continuing out of it. Thus every allied block
hasa look-ahead block. We are now ready to outline the
shuffling strategy.

We will soon show that there must be either many swap-
pable blocks, or many allied blocks for several swappable
blocks, or some combination of these two. But first, we
will show that if there are many swappable blocks or allied
blocks, then this means that the simulator very rarely gets
stuck.

We now proceed to the shuffling and unshuffling proce-
dures. It is critical to keep in mind that these procedures are
part of acombinatorial argument to show that for every
random tape that leads to the simulator getting “stuck” on a
particular sessions, there are many many other choices of
random tapes that would have led to a simulation that does

not get stuck on sessions. In particular, these procedures
arenot part of the simulation. Therefore, the efficiency of
these procedures is irrelevant. (As it turns out, though, they
can be implemented efficiently given knowledge of the wit-
nesses underlying the statements being proven, which is fine
since we are analyzing a hybrid simulator that does know
these witnesses.)

Basic-Shuffle. The entire shuffling of a thread is com-
posed of manybasic-shuffles, each of which works on a
swappable block. The basic-shuffle is a hierarchical proce-
dure involving the allied blocks of a swappable block. We
illustrate this through an example. A formal description is
available in the full version of this paper.

Figure 5 shows how the swappable block marked1 in the
lower threadAPQ is shuffled up to the upper threadABC.
The block marked1∗ (in threadABC) is called thetarget.
The allied blocks of1 are blocks marked1, 2 and3, and the
blocks containing1∗ at the corresponding levels are marked
1∗, 2∗ and3∗. First, block1 is swapped with its look-ahead
block 1′, as1∗ is a look-ahead block. But blocks2 and
2′ are not swapped, because2∗ is not a look-ahead block.
Finally blocks3 and3′ are swapped with each other as3∗

is a look-ahead block, completing the basic-shuffle.
For a swappable blockB, by choosing at each of thetB

levels whether to swap the allied block with its look-ahead
block or not, the above strategy specifies2tB targets with
whichB can be shuffled (one of them being itself). (In our
example this number is23.)

Inverting a Basic-Shuffle. Suppose ther-th swappable
block (ordered according to the order of the spans associ-
ated with the swappable blocks) with the original random
tapeR is B, and it was shuffled to a target blockB∗ to get
the tapeR′. Inverting this basic-shuffle involves recovering
R from R′, as well as identifying the target blockB∗. The
latter ensures that the tapes obtained by shufflingB with the
different targets ofB are indeed distinct.

We note that shufflingB does not change anything out-
side the outer-most allied block and its look-ahead block.
In particular, all the previousr − 1 swappable blocks in the
simulation remain unchanged. Also, the shuffling makes
the execution ofB∗ identical to that ofB before the shuf-
fle. Further, the execution of every block tillB∗ with R′, is
identical to that of some block beforeB, with the tapeR.
ThusB∗ becomes ther-th swappable block after the shuf-
fle. This makes it possible to identify the target block of the
shuffle by inspectingR′. This is crucially used for inverting
the mapping.5

5Note that if a simpler shuffling strategy of exchanging the randomness
in the two threads to be shuffled is used, this may no longer be true. In
our illustration, if we just swap the randomness in the two threadsABC

andAPQ, the execution in the segmentBX for instance, will be unpre-
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Figure 5. A basic-shuffle can move the swap-
pable block 1 to the block 1∗, one of its 8 target
blocks.

Having identifiedB∗, we are ready to start our unshuf-
fling. We setB∗ as thecurrent block . Next we check if it
is a look-ahead block or not. If it is, then it means it reached
there due to a swap. So it is swapped to become a non-look-
ahead block, and the current-block is also changed to the
resulting block. Then we check if the block containing the
current-block is an allied block (i.e., we check if it contains
ther− 1-th swappable block or thestart orstop slots).
If it is, we make it the current-block and repeat by checking
if it is a look-ahead block, and if necessary swapping. We
continue this way until the current block becomes the max-
imal allied block. It is not hard to see that this operation
undoes the basic-shuffle which takesB to B∗.

Shuffling the entire thread. To shuffle the entire thread,
the above basic-shuffle procedure is carried out on each of
the swappable blocks. This is done from right to left, i.e.,
the last (in simulation order) swappable block is shuffled
first, then the previous one, and so on. The first basic-shuffle

dictable (and in particular may introduce a good span inBX and introduce
an associated swappable block). This is because, in the original random
tape there was no thread with the randomness same as in the threadABX

after the swap. But when the swap is carried out systematically as illus-
trated above, every thread beforeABC was already present in the original
setting, and none of them had a good span in them.

does not change the execution of any of the previous swap-
pable blocks (as all the segments involved in a swapping oc-
cur after the previous swappable segments). Then the next
swappable block is swapped and so on. This ensures that
the unswapping can be done, in the reverse order, first swap-
ping back the earliest swappable segment, then the next and
so on.

5.3 Counting Swaps

By the above, the random tapeR can be invertibly
mapped toΠB2tB = 2

P

B
tB tapes, where the summation

is over all swappable segmentsB. So to prove condition
(2) of Lemma 1 we need to count the total number of allied
blocks of all swappable blocks for the random tapeR.

If B is a block which does not containstart or stop,
then we have the following: (1) For every good spanq, if B
is the smallest block containingq, thenB is either a swap-
pable block or contains a swappable block. (2)B is an allied
block of the first swappable block that it contains, if it con-
tains at least one swappable block. (3) Therefore,B is an
allied block (of the first swappable block that it contains) if
it contains at least one good span.

Suppose we map each of thek good spans in thestart-
stop segment to the smallest block containing it. Then, a
blockB can have at most one span mapped to it; this is be-
cause a span mapped toB must include slots in both halves
of the B, and thek spans are all disjoint. Thus there are
at leastk blocks which contain at least one good span. Of
these, at mosth blocks contain the slotstart, and simi-
larly for stop. Thus by Observation 3 above, at leastk−2h
blocks are allied blocks, there by proving condition (2) of
Lemma 1.

5.4 Securing the session

Out of all the new random tapes obtained by the strategy
above, there is one which is identical to the original tapeR.
In any other tapeR′ ∈ f(R), there is one good span outside
thestart-stop segment, in a look-ahead block, namely
the target of the left-most swappable block swapped. As
described earlier, if the call toSIMULATE returns from that
look-ahead segment to a point after thestart slot, the sim-
ulator will be able to find the secret of the verifier (condi-
tional on all the challenges of the simulator being distinct)
the next time it goes through the same round in that session.
But we know that the call toSIMULATE will return because
the block swapped did not contain the slotstop, and that
it will return to a point after thestart slot because it did
not contain the slotstart. Thus on all random strings
obtained above except for the original adversarially given
one, the simulator indeed secures the session which began
at start. (The simulation may still get stuck, but only
for a different session. The union bound argument given in
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Section 4.3 shows that this can’t happen too often, and the
proof goes through.) This completes the proof of Lemma 1.
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