
The Bottleneck Complexity of Secure Multiparty
Computation

Elette Boyle1, Abhishek Jain2, Manoj Prabhakaran3, and Ching-Hua Yu4

1 IDC Herzliya, elette.boyle@idc.ac.il
2 Johns Hopkins University, abhishek@cs.jhu.edu
3 Indian Institute of Technology Bombay, mp@cse.iitb.ac.in
4 University of Illinois at Urbana-Champaign, cyu17@illinois.edu

Abstract
In this work, we initiate the study of bottleneck complexity as a new communication efficiency measure
for secure multiparty computation (MPC). Roughly, the bottleneck complexity of an MPC protocol is
defined as the maximum communication complexity required by any party within the protocol execution.

We observe that even without security, bottleneck communication complexity is an interesting meas-
ure of communication complexity for (distributed) functions and propose it as a fundamental area to
explore. While achieving O(n) bottleneck complexity (where n is the number of parties) is straightfor-
ward, we show that: (1) achieving sublinear bottleneck complexity is not always possible, even when no
security is required. (2) On the other hand, several useful classes of functions do have o(n) bottleneck
complexity, when no security is required.

Our main positive result is a compiler that transforms any (possibly insecure) efficient protocol with
fixed communication-pattern for computing any functionality into a secure MPC protocol while pre-
serving the bottleneck complexity of the underlying protocol (up to security parameter overhead). Given
our compiler, an efficient protocol for any function f with sublinear bottleneck complexity can be trans-
formed into an MPC protocol for f with the same bottleneck complexity.

Along the way, we build cryptographic primitives – incremental fully-homomorphic encryption, suc-
cinct non-interactive arguments of knowledge with ID-based simulation-extractability property and veri-
fiable protocol execution – that may be of independent interest.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.

1 Introduction

Secure multi-party computation (MPC) [42, 24] is a fundamental notion in cryptography, enabling a
collection of mutually distrusting parties to jointly evaluate a function on their private inputs while
revealing nothing beyond the function output. In the past decades, a great deal of research has been
dedicated to the design and optimization of efficient MPC protocols.

In this work, we study one fundamental metric of MPC efficiency: the required communication
between parties. In particular, we focus on the communication complexity of MPC in large-scale
settings, where the number of participants is significant.

In nearly all existing works in MPC literature, the communication complexity goal has been to
minimize the total communication of the protocol across all n parties. However, for many important
applications, such as peer-to-peer computations between lightweight devices,1 total costs (such as
total communication) are only secondarily indicative of the feasibility of the computation, as opposed
to the primary issue of per-party cost. Indeed, while a total communication bound L implies average
per-party communication of the protocol is L/n, the computation may demand a subset of the parties

1 For example, optimizing navigation routes based on traffic information contributed by the cell phones of drivers on
the road, without revealing the locations of individual users.

EA
T

C
S

© Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Don Sannella; Article No. ; pp. :1–:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 The Bottleneck Complexity of Secure Multiparty Computation

to each communicate as much as Θ(L). When all parties contribute input to the computation, then
L ≥ n, meaning these parties must bear communication proportional to the total number of parties.
In large-scale distributed settings, or when the protocol participants are lightweight devices, such a
requirement could be prohibitive.

New efficiency measure: (MPC) Bottleneck Complexity. To address these concerns, we initiate
the study of bottleneck complexity of MPC. The bottleneck complexity of a protocol Π is defined as
the maximum communication required by any party within the protocol execution. One may further
specialize this to incoming versus outgoing communication. The MPC bottleneck complexity of a
(distributed) function is the minimum possible bottleneck complexity of a secure MPC protocol for
the function. In this work, our goal is to explore this notion as a complexity measure for distributed
computations, and to develop secure protocols with low bottleneck complexity.

Bottleneck complexity addresses certain (practically important) aspects ignored by standard
communication complexity. For instance, if two messages are transmitted in two different parts of a
network, say A→ B and C → D, they would be delivered faster than two messages sent to/from
the same party, say A→ B and C → B. While both have same total communication, the latter has
higher bottleneck communication.

Bottleneck Complexity without Security. Before studying bottleneck communication complexity
for secure protocols, we first consider this measure for arbitrary protocols without any security
considerations. Indeed, this already forms an interesting measure of complexity for (distributed)
functions, and we propose it as a fundamental area to explore. As in the case of total communication
complexity (which coincides with bottleneck complexity for the case of 2 parties), there is a trivial
upper bound ofO(n) bottleneck complexity for any n-party functionality (with boolean inputs), where
all parties simply send their input to a central party who computes the functionality. On the other hand,
in many functions, bottleneck complexity brings out structures that total communication complexity
overlooks. For instance, in computing say the XOR or AND of n bits, total communication complexity
is Θ(n), but the bottleneck complexity is O(1). These functions naturally allow for incremental
computation along a chain, in which each party receives and sends a single bit. Indeed, there is a large
class of useful functions which have protocols with low bottleneck complexity, as discussed below.

However, a priori it is not clear whether all functions can be computed in a similar manner. This
brings us to the first question considered in this work:

Can all functions be computed (without security)
with sublinear bottleneck complexity?

For concreteness, we may consider n-party functions, with n inputs (one for each party) each k bits
long, and a single-bit output. Because of the trivial O(nk) upper bound on total communication
complexity for any such function (as discussed above), each party on average needs only to commu-
nicate O(k) bits. But in this protocol, the communication complexity of the central party—and thus
bottleneck complexity of the protocol—is (n− 1)k bits. Surprisingly, we show that this is the best
one can ask for, for general functions. That is, there exist n-party functionalities with k-bit inputs for
which the bottleneck complexity is Ω(nk).

I Theorem 1. (Informal.) There exist n-party functions with k-bit input for each party that have
bottleneck complexity close to that in the trivial upperbound, namely (n− 1)k.

Our proof is based on a counting argument, and quantifies over possibly inefficient functions too. In-
terestingly, giving an explicit efficient function f with such a lower bound will require a breakthrough
in complexity theory, as it would imply an Ω(n2) lower bound on the circuit size of computing f .
(We discuss this connection below.)

Functions with Low Bottleneck Complexity. Despite the above lower bound, there is a large class
of interesting functions which do have sublinear bottleneck complexity. One simple but widely

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:3

applicable example is addition in a finite group: the sum of n group elements distributed among n
parties can be aggregated bottom-up (and then disseminated top-down) using a constant-degree tree,
with every party communicating O(d) group elements, where d is its degree in the tree.2

A wider class of functions are obtained from the literature on streaming algorithms [22, 31].
Indeed, any streaming algorithm with a small memory and a small number of passes corresponds
to a low bottleneck complexity function. (Here, we refer to the actual function that the streaming
algorithm computes, which may in fact be an approximation to some other desired function.) This is
because we can design a protocol which passes around the state of the streaming algorithm from one
party to the next, in the order in which their inputs are to be presented to the algorithm.

On the other hand, low bottleneck complexity protocols appear to be much more general than
streaming algorithms. Indeed, observe that the low bottleneck complexity protocol described above
has a very special communication structure of a chain (or multi-pass cycle). We leave it as an open
problem to separate these two notions – i.e., find functions which have low bottleneck complexity
protocols, but do not have low-memory streaming algorithms.

Finally, we note that, any n-input function with a constant fan-in circuit of subquadratic size
(i.e., o(n2) gates) has a sublinear bottleneck complexity protocol. To see this, first we note that
such a circuit can be made to have constant fan-out as well, by increasing the circuit size by a
constant factor.3 Then, a sublinear bottleneck complexity protocol can be obtained from the circuit by
partitioning all the o(n2) gates roughly equally among the n parties, and letting the parties evaluate
the gates assigned to them, communicating with each other when wires cross party boundaries. The
communication incurred by each party is bounded by the number of wires incident on all the gates it
is assigned, which is o(n).

MPC Bottleneck complexity. We next turn our attention to achieving low bottleneck complexity
for secure computation of functionalities. We focus on the general setting where up to n− 1 out of
n parties can be corrupted. As a baseline, we observe that the MPC protocol of Dodis et al. [19]
based on “additive-spooky encryption” can be easily adapted to obtain generic secure computation
with O(n) bottleneck complexity (where O(n) hides factors of the security parameter). Therefore,
as in the insecure setting, we focus on constructing MPC protocols with sublinear o(n) bottleneck
complexity.

Specifically, we ask the question:

If a function f can be computed with bottleneck complexity L,
can it be computed securely with the same bottleneck complexity,

up to a multiplicative overhead of the security parameter?

We note that the goal of sublinear bottleneck complexity is strictly stronger than the recently
studied problem of MPC with sublinear communication locality [8]. The locality of a protocol is
the maximum number of other parties that any party must communicate with during the course of
the protocol. It is easy to see that sublinear bottleneck complexity directly implies sublinear locality
(since sending/receiving o(n) bits means that a party can only communicate with o(n) neighbors);
however, as locality does not place any requirements on the number of bits communicated by a party,
the converse is not true. Indeed, without security requirements, every function has an O(1)-local

2 If the group is not abelian, the tree used should be such that its in-order traversal should result in the parties to be
ordered in the same way their inputs are ordered in the sum being computed.

3 Given a gate with fan-out d > 2, consider the depth-1 tree T rooted that gate with d leaves being the gates to which
its outputs are connected. T can be replaced by an equivalent binary tree T ′ with the same root and leaves, and d− 2
new internal nodes. The new internal nodes of T ′ can be “charged” to the leaves of T . On doing this for all gates in
the circuit, each gate gets charged at most as many times as its fan-in. Since each gate in the original circuit has
constant fan-in, this transformation increases the circuit size by at most a constant factor.

ICALP 2018

XX:4 The Bottleneck Complexity of Secure Multiparty Computation

protocol, which is not the case for bottleneck complexity.
We show a general compiler which transforms any (possibly insecure) efficient multi-party

protocol Π for computing a function f into a protocol Π′ for securely computing f , preserving the
per-party communication and computation requirements up to O(λc) factors in the security parameter
λ for small constant c. The original protocol Π can have an arbitrary communication pattern; however,
we require that this pattern must be fixed a priori (independent of inputs) and known to all parties.
Our compiler additionally preserves the topology of communication graph of Π (and in particular,
preserves locality).

I Theorem 2. (Informal.) There is a transformation which maps any (possibly insecure) efficient
protocol with fixed-communication-pattern for an n-party distributed function f into a secure MPC
protocol for f with asymptotically (as a function of n) the same communication and computational
requirements per party, and using the same communication graph as the original protocol.

The main tools underlying the result include a new notion of incremental fully homomorphic
encryption, which we show can be instantiated from the Learning With Errors (LWE) assumption
via [23], as well as zero-knowledge succinct non-interactive arguments of knowledge (ZK-SNARK)
[2] with a “ID-based” simulation-extractability property [39, 40]. We rely on a setup that includes a
common random string and a (bare) public-key infrastructure, where all the n parties have deposited
keys for themselves, and which all the parties can access for free. The setup can be reused for any
number of executions.

Our Contributions. To summarize, our main contributions in this work are as follows:

We introduce a new measure of per-party communication complexity for (distibuted) functions,
called bottleneck complexity.
We demonstrate the existence of n-party functions with k bits of input for each party, that have
bottleneck complexity Θ(nk). Showing an explicit function with Ω(n) bottleneck complexity will
require showing an explicit function with Ω(n2) circuit size complexity. On the other hand, we
observe that many useful classes of functions do have o(n) bottleneck complexity.
We show a general transformation from arbitrary efficient protocols to secure MPC protocols (in a
model with public setup) that asymptotically (as a function of n) preserves the communication and
computational requirements per party, and preserves the same communication graph.
As part of our transformation, we introduce cryptographic primitives—Incremental FHE, Verifi-
able Protocol Execution—and give a construction of ZK-SNARKs with an ID-based simulation-
extractability property. These may be of independent interest.

We expand on the transformation in the following section.

1.1 Our Techniques

We describe the main ideas underlying our positive result: the bottleneck-complexity-preserving
transformation from arbitrary protocols to secure ones.

At a high-level, we follow an intuitive outline for our compiler: (1) We first compile an insecure
protocol into a protocol that is secure against semi-honest (or honest-but-curious) adversaries using
fully homomorphic encryption (FHE). (2) We then use zero-knowledge succinct arguments of
knowledge (ZK-SNARKs) to compile it into a protocol that is (standalone) secure against malicious
adversaries. However, we run into several technical challenges along the way, requiring us to develop
stronger guarantees for FHE and SNARKs, as well as some other new ideas. We elaborate on these
challenges and our solutions below.

Semi-honest Security. A natural starting idea to obtain semi-honest security is to execute an
“encrypted” version of the underlying (insecure) protocol by using FHE. Once the parties have the

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:5

encrypted output, they execute the FHE decryption process to learn the output. The immediate
problem with implementing this idea in the multiparty setting is which key must we use for encryption
and decryption. If a single party knows the (entire) decryption key, then we cannot guarantee security.

To address this problem, two approaches have been developed in the literature: threshold FHE [1],
where the parties jointly generate a public key for an FHE scheme such that each party only knows a
share of the decryption key, and multi-key FHE [29], where each party has its own public and secret
key pair and FHE evaluation can be performed over ciphertexts computed w.r.t. different public keys.

While these approaches have been shown to suffice for constructing round-efficient MPC protocols,
they are not directly applicable to our setting. This is for two reasons:

Threshold FHE and multi-key FHE systems are defined in the broadcast model of communication
where each party gets to see the messages sent by all the other parties. In contrast, our setting is
inherently point-to-point, where a party only communicates with its neighbors in the communica-
tion graph of the underlying insecure protocol. Indeed, in order to maintain sublinear bottleneck
complexity, we cannot afford each party to communicate with all the other parties.
Further, in all known solutions for threshold FHE [1] and multi-key FHE [29, 13, 34, 10, 36], the
size of one or more protocol messages of each party grows at least linearly with the number of
parties. This directly violates our sublinear bottleneck complexity requirement.

To address these issues, we define and implement a new notion of incremental FHE (IFHE).
Roughly, an IFHE scheme is defined similarly to threshold FHE, with the following key strengthened
requirements: a “joint” public key can be computed by incrementally combining shares provided
by different parties in an arbitrary order. Similarly, a ciphertext w.r.t. the joint public key can be
decrypted by incrementally combining partial decryption shares provided by parties in an arbitrary
order. Crucially, the intermediate keys and partial decryption values must be succinct.

We construct an IFHE scheme with appropriate security guarantees based on the Gentry-Sahai-
Waters FHE scheme [23]. Using IFHE, we are able to directly compile an insecure protocol into a
semi-honest secure protocol. In fact, this protocol can withstand a slightly stronger adversary – called
a semi-malicious adversary [1] – which is allowed to maliciously choose its random tape. This will be
crucially exploited in the next step, because without it, one will need to enforce honest random-tapes
for all the parties (using n-way coin-tossing-in-the-well) which would incur Ω(n) communication
already.

From Semi-Malicious to Malicious Security. A natural approach to achieve security against mali-
cious adversaries is to use the GMW paradigm [24]. Roughly, in the GMW compiler, each party first
commits to its input and random tape. Later, whenever a party sends a message of a semi-malicious
protocol,4 it also proves in ZK to all the other parties that it is behaving correctly w.r.t. the committed
input and random tape.

The GMW commit-and-prove methodology is problematic in our setting since we cannot allow
a party to talk to all other parties (directly or indirectly through the other nodes). Yet, in order to
achieve security, each honest party must verify not just that its neighbors behave correctly, but that all
corrupt parties (many of whom may not directly interact with any honest party) behaved honestly. A
priori, these may seem to be contradictory goals.

We address all of these challenges by presenting a new generic compiler for Verifiable Protocol
Execution (VPE), modeled as a functionality Fvpe. Our protocol Πvpe for implementing Fvpe asymp-
totically preserves the per-party communication and computational complexity (up to a multiplicative
factor polynomial in the security parameter) of the underlying semi-malicious protocol. We construct

4 The standard GMW compiler is defined for semi-honest protocols and also involves a coin-tossing step. Here, we
consider a natural variant that works for semi-malicious protocols.

ICALP 2018

XX:6 The Bottleneck Complexity of Secure Multiparty Computation

Πvpe from two main ingredients: (1) a new commitment protocol that allows the parties to compute
a succinct “aggregate” commitment over the inputs and randomness of all of the parties. (2) ZK-
SNARKs with a strong extraction property as well as simulation-soundness to ensure that adversary
cannot prove false statements even upon receiving simulated proofs. We refer the reader to technical
sections for details on our commitment protocol. Here, we discuss our use of ZK-SNARKs.

ID-Based Simulation-Extractable ZK-SNARKs. We rely on ZK-SNARKs to let parties provide
not just proofs of correctly computing their own messages, but also of having verified previous proofs
recursively. This use of SNARKs for recursive verification resembles prior work on proof-carrying
data [12, 3]. The key difference is that proof-carrying data only addresses correctness of computation,
whereas in our setting, we are also concerned with privacy. In particular, in order to argue security, we
also require these proofs to be simulation-sound with extractability (or simply simulation-extractable),
which presents a significant additional challenge.

The core challenge in constructing simulation-extractable ZK-SNARKs (SE-ZK-SNARKs) arises
from the inherent limitation that extraction from the adversary must be non-black-box (since the size
of the extracted witness is larger than the proof itself), but the adversary receives simulated proofs
which he cannot directly produce on his own. Indeed, for this reason SE-ZK-SNARKs are impossible
to achieve with strong universal composability (UC) security [27]. To reduce the security of an
SE-ZK-SNARK construction to an underlying knowledge assumption (such as standard SNARKs),
one must thus either (a) start with an assumption that guarantees non-black-box extraction even in the
presence of an oracle (which can be problematic [20]), or (b) somehow in the reduction be able to
provide the code to answer the adversary’s simulated proof queries, without voiding the reduction by
including the simulation trapdoor itself.

Two recent works have presented constructions of SE-ZK-SNARKs, each adopting a different
approach. Groth and Maller [25] embody approach (a), constructing full SE-ZK-SNARKs from a new
specific pairing-based knowledge assumption which assumes extraction in the presence of black-box
access to an oracle with the trapdoor. Alternatively, Garman et al. [21] take approach (b), basing
their construction on standard SNARKs; however, their construction is only applicable to a restricted
security model where the statements on which the adversarial prover requests simulated proofs are
fixed in advance (in which case these proofs can be hardcoded in the reduction). The case where the
adversary’s queries are chosen adaptively as a function of previously simulated proofs (which we
need for our transformation) is not currently addressed in this setting.

We provide a new solution for handling adaptive queries, without relying upon oracle-based
assumptions as in [25]. We consider an ID-based notion of SE-ZK-SNARK, where each proof is
generated with respect to an identity (chosen from a set of identities that are fixed in advance). In
our definition, the adversary must fix a set ID∗ of “honest” identities in advance and can then receive
simulated proofs on adaptively chosen statements w.r.t. identities from this set. It must then come up
with an accepting proof for a new statement w.r.t. an identity id /∈ ID∗.

We show how to transform any SNARK argument system into an ID-based SE-ZK-SNARK by
relying on only standard cryptographic assumptions. Very roughly, in our construction, it is possible
to “puncture” the trapdoor trap for the CRS w.r.t. an identity set ID∗. A punctured trapdoor trapID∗

can only be used to simulate the proofs w.r.t. identities id ∈ ID∗, but cannot be used to simulate proofs
w.r.t. identities id /∈ ID∗. Using such a punctured trapdoor, we are able to successfully implement
approach (b) in the adaptive setting. We implement this idea by using identity-based signatures, which
can be readily constructed using certificate chains from a standard signature scheme.

Ultimately, we obtain recursively verifiable ID-based SE-SNARKs generically from signatures
and (standard) SNARKs with an “additive extraction overhead.” While the latter is a relatively strong
requirement, such primitives have been considered in prior work [14, 3] and appears to be as justified
as the standard SNARK assumption.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:7

1.2 Related Work

Communication complexity models. The vast majority of study in communication complexity
(c.f. [28]) focuses on the setting of only two parties, in which case the total and bottleneck complexities
of protocols align (asymptotically). In the multi-party setting, several models are considered regarding
how the input to f begins initially distributed among the players. The most common such models are
the “number-on-forehead” model, in which parties begin holding all inputs except their own, and the
model considered in this work (as is standard in MPC), frequently known as the “number in hand”
model, where each party begins with his own input. In all cases, the “communication complexity”
within the given model refers to the total communication of all parties.

Communication complexity of MPC. Communication complexity of secure multiparty computation
(MPC) has been extensively studied over the years. Communication complexity preserving compilers
from insecure to secure protocols were introduced in the 2-party setting by [35]. The setting of MPC
with many parties was first predominantly considered in the line of work on scalable MPC [15, 16].
Here the focus was on optimizing the complexity as a function of the circuit size |C|, and the resulting
n-party protocols have per-party communication Õ(|C|/n)+poly(n). Some of these works explicitly
achieve load-balancing (e.g., [18, 7]), a goal similar in spirit to bottleneck complexity, where the
complexity of the protocol is evenly distributed across the parties. To the best of our knowledge,
however, the poly(n) term in the per-party communication complexity is Ω(n) in all works aside
from [43], which achieves Õ(|C|/n) amortized per-party communication but Õ(|C|/n+n) bottleneck
complexity (due to its dependence on [11]).

Communication Locality. A related notion to bottleneck complexity is communication locality [8].
The locality of a party is the number of total other parties it must communicate with throughout the
protocol, and the locality of the protocol is the worst case locality of any party. In [8], Boyle et al.
studied locality in secure MPC and showed (based on various computational assumptions) that any
efficiently computable function has a polylog(n)-locality secure MPC protocol.

Lower bounds on MPC communication complexity. As discussed, lower bounds on standard
multi-party communication complexity cannot directly imply meaningful lower bounds on bottleneck
complexity, as no such bound can exceed Ω(n) (attainable by all parties sending their input to a single
party), but this implies only a bound of Ω(1) bottleneck complexity. For secure computation, in [17],
Damgård et al. showed that securely evaluating a circuit of m multiplication gates requires Ω(n2m)
total communication in the information-theoretic security setting. This implies a super-linear lower
bound for bottleneck complexity in their setting. We note, however, that their lower bound does not
apply to us, as we consider computational security, and further, their lower bound does not apply to
the setting where the number of parties is larger than the security parameter.

2 Preliminaries and Definitions

By x ∈R Znq we denote that x is uniformly sampled from Znq , and by x ← D we denote that x

is sampled from a distribution D. By
c
u we denote computational indistinguishability. We denote

an N -party additive secret sharing of x ∈ Zq by [x]Nq . That is, each Pi owns xi ∈ Zq such that
x =

∑
i∈[N] xi. When it is clear, we write [x] for brevity.

Communication Model. We consider a synchronous network among n parties, P1, · · · , Pn, that
allows secure communication between (some) pairs of parties; the channels are authenticated and
leak nothing except the number of bits in each message.

An n-party protocol π in this model is a “next-message function,” that takes as input the round
number t, two identities i, j ∈ [n] and the view of Pi, and outputs the message from Pi to Pj in round
t. The view of a party consists of its input, random-tape, and all the messages received in prior rounds

ICALP 2018

XX:8 The Bottleneck Complexity of Secure Multiparty Computation

of the protocol. If the next-message function is invoked with the keyword out instead of a receiver,
π generates the output for the “sender” (for simplicity, we shall restrict ourselves to protocols that
produce output only on termination).

We shall require that in a protocol, the message on any edge (i, j) at any round t is encoded using
a prefix-free code that is agreed up on between the sender and the receiver. Adopting this model
precludes communication by not sending any bits.5

Security for MPC. We use a standard simulation-based security definition for MPC protocols in the
standalone security model. We consider two notions of corruptions: (1) active adversaries, who may
arbitrarily deviate from the protocol strategy, and (2) semi-malicious adversaries, who follow the
protocol instructions but may choose their random tapes arbitrarily. Both of these adversaries can
abort the execution whenever they choose. We refer the reader to Appendix A for further details.

2.1 Bottleneck Complexity

We introduce a new per-party communication metric for distributed computations.

I Definition 3 (Bottleneck Complexity of Protocol). The individual communication complexity
of a party Pi in an n-party protocol π, denoted as CCi(π), is the expected number of bits sent or
received by Pi in an execution of π, with worst-case inputs.

The bottleneck complexity (BC) of an n-party protocol π is the worst-case communication
complexity of any party. That is, BC(π) = maxi∈[n] CCi(π).

I Definition 4 (Bottleneck Complexity of Function). The bottleneck complexity of an n-input
function f is the minimum value of BC(π) when quantified over all n-party distributed protocols π
which correctly evaluate f .

Analogously, we define the MPC bottleneck complexity of f as the minimum BC(π) quantified
over all n-party protocols π which securely evaluate f .

Admissible Protocols. We will show techniques that transform general (insecure) protocols to secure
ones. Here we define the required minimal assumption of the original protocols, which we refer to
as admissibility. Roughly, a protocol is admissible if its next-message function is polynomial-time
computable and it has a fixed communication pattern.

Below Z+ denotes the set of non-negative integers.

I Definition 5 (Admissible Protocol). Let f be a polynomial function, k be a security parameter,
and let π = {π1, ..., πn} be a possibly randomized n-party protocol, where πi is a next message
function of Pi. Let x = {x1, ..., xn} and r = {r1, ..., rn} be the input set and the random string
set respectively. Denote

{
mt
i,j(x, r)

}t∈[T]
i,j∈[n] as the set of the messages generated by π(x, r), and let

|mt
i,j(x, r)| ∈ [0, f(k)] be the length of message from Pi to Pj at time t.6 We say π is admissible if

it satisfies the following two conditions:

- Polynomial-Time Computable: For each i, next-message function πi is expressed by a circuit
of fixed polynomial-size in |xi|+ |ri|, with a universally bounded depth.

5 While one may argue that it is reasonable to allow zero-cost communication in this manner, it can be abused to
communicate large amounts of information at the cost of a single bit, by using a large number of rounds. Further,
such signalling cannot be used if multiple such protocols are executed concurrently. Also, practically, the prefix-free
communication is more amenable to implementing a synchronous model over an asynchronous network, as delays
will not be mistaken for shorter (or empty) messages.

6 Precisely, for each i ∈ [n], t ∈ [T], {mi,j(x, r)}tj∈[n] ← πi

(
xi, ri, {mj,i(x, r)}t∈[t−1]

j∈[n]

)

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:9

- Fixed Communication Pattern: A protocol π is said to have a fixed communication pattern if,
irrespective of the input and random-tapes of the parties, the total number of rounds tmax is fixed
and there is a function len : [tmax]× [n]× [n]→ Z+ that maps (t, i, j) to the length of message
(possibly 0) from Pi to Pj at round t as determined by π for any view of Pi.

Note that above we allow randomized protocols, as some interesting low bottleneck complexity
protocols (e.g., those derived from streaming algorithms) tend to be randomized.

3 Lowerbound on Bottleneck Complexity of Distributed Functions

In this section we show that for most functions f on n inputs (each input could be as short as 1 bit,
and the output a single bit delivered to a single party), for any distributed computation protocol π
that implements f , the (incoming) bottleneck complexity BC(π) is at least n − O(logn) bits. In
fact, this holds true even without any security requirement. This is tight in the sense that, even with
a security requirement, there is a protocol in which only one party has individual communication
complexity Ω(n), and all others have communication proportional to their inputs and outputs (with a
multiplicative overhead independent of the number of parties).

This is somewhat surprising since many interesting functions do have protocols with constant
communication complexity. As mentioned before, any (possibly randomized) function which has
a streaming algorithm or a sub-quadratic sized circuit (with small fan-in gates) gives rise to low
botteleneck complexity protocols.

To show our lower-bound, we need to therefore rely on functions with roughly a quadratic lower-
bound on circuit size. Given the current lack of explicit examples of such functions, we present
an existential result, and leave it as a conjecture that there are n-bit input boolean functions with
polynomial sized circuits with bottleneck communication complexity of Ω̃(n). For simplicity, we
discuss the case of perfectly correct protocols, but as we shall point out, a small constant probability
of error does not change the result significantly. This result says that there is a function (in fact, most
functions) such that the best bottleneck complexity is almost achieved by the trivial protocol, in which
one party receives the inputs of all the other n− 1 parties and carries out the computation locally.

I Theorem 6. ∃f : {0, 1}k×n → {0, 1} such that any n-party, each with k bits input, distributed
computation protocol that computes f correctly will have at least one party receiving at least
(n− 1)k −O(lognk) bits in the worst-case.

We provide the proof in Appendix B.

4 Incremental FHE

We define and implement a new notion of incremental FHE (IFHE), which is used within our main
positive result. We start by providing syntax and security definitions for IFHE in Section 4.1. Next,
we recall some preliminaries and the Gentry-Sahai-Waters (GSW) FHE scheme [23] in Appendix
A.4. We describe our construction of IFHE in Section 4.2.

4.1 Definitions

(Leveled) Fully Homomorphic Encryption. A fully homomorphic encryption (FHE) scheme con-
sists of algorithms (KEYGEN, ENCRYPT, EVAL,DECRYPT), where (KEYGEN, ENCRYPT,DECRYPT)
constitute a semantically secure public-key encryption scheme, and EVAL refers to the homomorphic
evaluation algorithm on ciphertexts. An `-leveled FHE scheme supports homomorphic evaluation of
circuits of depth at most `.

ICALP 2018

XX:10 The Bottleneck Complexity of Secure Multiparty Computation

Incremental FHE. An IFHE scheme is defined similarly to threshold FHE [1], with the following
key modifications: a “joint” public key can be computed by incrementally combining shares provided
by different parties in an arbitrary order. Similarly, a ciphertext w.r.t. the joint public key can be
decrypted by incrementally combining partial decryption shares provided by parties in an arbitrary
order. Crucially, the intermediate keys and partial decryption values must be succinct.

For technical reasons, it is convenient to describe the joint decryption procedure via three sub-
algorithms: A procedure PREDEC which pre-processes a homomorphically evaluated ciphertext to be
safe for joint decryption; PARTDEC run by each individual party on a ciphertext (with his share of the
secret key) to generate his contribution toward the decryption; and COMBINEDEC which combines
the outputs of PARTDEC from each party for a given ciphertext to reconstruct the final decrypted
output. In addition to standard semantic security, we also require the output of PARTDEC to hide
information about the secret key share that was used; this is captured by the Simulatability of Partial
Decryption property below.

We proceed to give a formal definition.

I Definition 7 (Incremental FHE). An incremental fully homomorphic encryption (IFHE) scheme
is an FHE scheme with an additional algorithm IFHE.COMBINEKEYS and with DECRYPT replaced
by three algorithms IFHE.PREDEC, IFHE.PARTDEC and IFHE.COMBINEDEC. By PKS we denote
a combined public key of a subset S ⊆ [n] of parties. Particularly, PK{i} = PKi is generated by Pi
using the algorithm KEYGEN, and PK = PK[n] is the final public key. Similarly, by vS we denote a
combined decryption, and by vi when S = {i}. For the completeness of notations, let PKS and vS be
empty strings when S = ∅. We describe the syntax of the four algorithms as follows:

IFHE.COMBINEKEYS(PKS , PKT): On input 2 combined public keys PKS , PKT , where S∩T = ∅,
output a combined public key PKS∪T .
IFHE.PREDEC(PK,C): On input a final public key PK and a ciphertext C, sample a public random
R, and output a re-randomized ciphertext C′ of the same plaintext.
IFHE.PARTDEC(PK, SKi,C): On input a final public key PK, ith secret key SKi, ciphertext C,
output a partial decryption vi.
IFHE.COMBINEDEC(vS , vT): On input 2 partial decryptions vS , vT , where S∩T = ∅, if |S∪T | <
n, output a partial decryption vS∪T ; otherwise, output a plaintext y as the final decryption.

Also, we require the following additional properties:

Efficiency: There are polynomials poly1(·), poly2(·) such that for any security parameter λ and
any S ⊆ [n], S 6= ∅, |PKS | = poly1(λ) and |vS | = poly2(λ).

Correctness: Given a set of plaintexts and a circuit to evaluate, the correctness of IFHE says that
the FHE evaluation of the circuit over the ciphertexts can always be decrypted to the correct value,
where the ciphertexts are encryption of plaintexts using a single combined public key.
Furthermore, by “Incremental” FHE, we mean that the final combined public key as well as the
final combined decryption can be formed in an arbitrary incremental manner. We defer the formal
definition of correctness to Appendix C.

Semantic security under Combined Keys (against Semi-Malicious Adversary): Given the
parameters prepared in the initial setup, the (corrupted) parties {Pj}j 6=i, instead of using random
strings to compute {PKi, SKi}j 6=i, can use an arbitrary string to generate {PKi, SKi}j 6=i. Then
as long as an honest party generates (PKi, SKi) independently, the encryption using the final
combined public key (PK[n], SK[n]) is semantically secure.
Formally, consider the following experiment:

1. (params)← SETUP(1λ, 1d)

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:11

2. ∀j 6= i, Adv computes (PKj , SKj) according to KEYGEN(params) but replaces the randomly
sampled string by a chosen one. Then Adv computes a combined key PK[n]\{i} according to
COMBINEKEYS, picks x ∈ {0, 1} and sends (PK[n]\{i}, x) to the challenger.

3. The challenger computes (PKi, SKi) ← KEYGEN(params), PK ← COMBINEKEYS(PKi,

PK[n]\{i}), and chooses a random bit β $← {0, 1}.
If β = 0, it computes C = ENCRYPT(PK, 0).
Else, it computes C = ENCRYPT(PK, x).

And it sends C to Adv.
4. Finally Adv outputs a bit β′.

We say that the IFHE scheme has semantic security under combined keys if the advantage
Pr[β′ = β]− 1/2 is negligible in the security parameter λ.

Simulatability of Partial Decryption: Let x ∈ {0, 1} be an input plaintext and C′ be an IFHE
encryption of x. There exists a PPT simulator SIM which, given the combined public key PK,
ciphertext C′, a plaintext output y, an index i ∈ [n] and all but the i-th key {skj}j∈[n]\{i},
produces a simulated partial decryption v′i computationally close to the honestly generated value
vi: {

PK,C′, v′i
}

c
≈
{

PK,C′, vi
}
,

where vi ← IFHE.PARTDEC(PK, SKi,C′) and v′i ← SIM(PK, {SKj}j∈[n]\{i}, y,C′).

4.2 Construction of IFHE

We present an IFHE scheme building on the FHE scheme of Gentry et al. [23]. The SETUP, KEYGEN,
ENCRYPT, and EVAL parts are the same as those of [23], while COMBINEKEYS, PREDEC, PARTDEC

and COMBINEDEC parts are new. The algorithms are described as follows:

An IFHE scheme.

Setup: (params)← IFHE.SETUP(1λ, 1d). Same as GSW, where params = (q, n,m, χ,Bχ,B).

Key Generation: (PKi, SKi) ← IFHE.KEYGEN(params). Same as GSW, where PKi = (B,bi) and
SKi = ti ≡ (−si, 1).

Combining Keys: PKS∪T ← IFHE.COMBINEKEYS(PKS , PKT)
On input PKS = (B,bS) and PKS = (B,bT), output PKS∪T = (B,bS + bT). Particularly PK[n] is
abbreviated as PK or a matrix A.

Encryption: Ci ← IFHE.ENCRYPT(PK, xi). Same as GSW.

Evaluation: C← IFHE.EVAL(C1, ...,Cτ ; f). Same as GSW.

Preparing Decryption: C′ ← IFHE.PREDEC(PKi,C)
On input PK = A and C ∈ Zn×mq , sample a public random matrix R in {0, 1}m×m and output C′ =
C + AR.

Partial Decryption: vi ← IFHE.PARTDEC(PKi, SKi,C′)
On input PK = A, SKi ≡ ti ≡ (−si, 1), and C′ ∈ Zn×mq , sample e′i ← χm, set t′i = ti if i = 1 and
t′i = (−si, 0) if i > 1, and output vi = (t′iC′ − e′i)G−1(wT), where w = (0, ..., 0, dq/2e) ∈ Znq .

Combining Decryption: IFHE.COMBINEDEC(vS , vT)
On input two partial decryptions vS , vT with S ∩ T = ∅, compute a partial decryption vS∪T = vS + vT .

For |S ∪ T | < n, output vS∪T ; for |S ∪ T | = n, output a plaintext y =
⌊

v
q/2

⌉
.

In Appendix C.1, we show this scheme fullfils the required properties described in Section 4.1.

ICALP 2018

XX:12 The Bottleneck Complexity of Secure Multiparty Computation

Syntax Extension. For ease of use, we extend the syntax of IFHE.JoinKeys for combining several
public keys and the syntax of IFHE.COMBINEDEC for combining several partial decryptions at one
time.

Combining Keys: PKS1∪,...,∪S` ← IFHE.COMBINEKEYS(PKS1 , . . . , PKS`)
On input PKS1 , . . . , PKS` , where S1, . . . , S` ⊆ [n] are disjoint, compute PKS1∪S2 , PK(S1∪S2)∪S3 ,

. . . , PK(S1∪,...,∪S`−1)∪S` incrementally and finally output PKS1∪,...,∪S` .

(Alternatively, in our scheme PKS1∪,...,∪S` = (B,
∑`
i=1 bSi).)

Combining Decryption: vS1∪,...,∪S` ← IFHE.COMBINEDEC(vS1 , . . . , vS`)
On input partial decryptions vS1 , . . . , vS` , where S1, . . . , S` ⊆ [n] are disjoint„ compute a partial
decryption vS1∪S2 , v(S1∪S2)∪S3 , . . . , v(S1∪,...∪S`−1)∪S` , and finally if S1 ∪ . . . ∪ S` ⊂ [n] output
vS1∪...∪S` ; otherwise, a plaintext.
(Alternatively in our scheme vS1∪,...∪S` =

∑`
i=1 vSi , and for S1 ∪ . . . ∪ S` ⊂ [n], output

vS1∪...∪S` ; otherwise, y =
⌊
v
q/2

⌉
.)

5 Summary of Further Results

Due to space limitations we defer the remaining technical sections to the appendix.
We begin in Appendix D by demonstrating how to convert an arbitrary admissible multi-party

distributed protocol Π (as per Definition 5) for computing a function f to a protocol Πsm for
computing f secure against semi-malicious adversaries, while preserving per-party computation and
communication. Note that as per Definition 5 the communication pattern of the starting protocol Π
can be arbitrary, but we require that it be fixed (i.e., not data dependent).

I Theorem 8. Let IFHE be an incremental FHE scheme, and Π be an n-party protocol for
evaluating a function f with fixed communication pattern. Then there exists a protocol Πsm that
securely evaluates f against up to (n − 1) semi-malicious corruptions, preserving the per-party
computation and communication requirements of Π up to poly(λ) multiplicative factors (independent
of the number of parties n). Moreover, the communication pattern of Πsm is identical to that of Π
plus two additional traversals of a communication spanning tree of Π.

At a very high level, the parties will run a one-pass protocol to (incrementally) construct a joint
key for the incremental FHE scheme, then execute the original protocol Π underneath FHE encryption,
and finally run one more pass to (incrementally) decrypt. See details and proof in Appendix D.

Next, we give a general compiler to transform the above protocol into a maliciously-secure MPC
protocol, while preserving the bottleneck complexity. Our compiler relies upon multiple cryptographic
ingredients, most notably, ID-based simulation-extractable succinct non-interactive arguments of
knowledge (ZK-SNARKs) – a notion that we define and construct in this work (see Appendix E.1).

I Theorem 9. Let Πsm be an MPC protocol that securely evaluates a functionality f against semi-
malicious corruptions, as in Theorem 21. Then, assuming the existence of an ID-based simulation-
extractable succinct non-interactive arguments of knowledge, non-interactive commitment schemes
and a family of collision-resistant hash functions, there exists a compiler that transforms Πsm into
another MPC protocol Π in the (bare) public-key and common reference string model such that Π
computes the same functionality f and preserves the per-party computation and communication of
Πsm up to poly(λ) multiplicative factors (independent of the number of parties n).

The construction of this compiler is given in Appendix E. We prove the security of the compiler
in Appendix ??.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:13

References

1 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In EUROCRYPT, pages 483–501, 2012.

2 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision res-
istance to succinct non-interactive arguments of knowledge, and back again. In Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 326–349,
2012.

3 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In Symposium on Theory of Computing Confer-
ence, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120, 2013.

4 Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 505–514, 2014.

5 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In Public Key Cryptography, pages 31–46, 2003.

6 Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

7 Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party com-
putation for (parallel) RAM programs. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
742–762, 2015.

8 Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation: how to run sublinear algorithms in a distributed setting. In Proceeding TCC’13
Proceedings of the 10th theory of cryptography conference on Theory of Cryptography, pages 356–
376, 2013.

9 Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxiliary
input. In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory
and Application of Cryptology and Information Security, Part II, pages 236–261, 2015.

10 Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with short cipher-
texts. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 190–213, 2016.

11 Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast byzantine agreement. In ACM
Symposium on Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24,
2013, pages 57–64, 2013.

12 Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature
cards. In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, Janu-
ary 5-7, 2010. Proceedings, pages 310–331, 2010.

13 Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning
with errors. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 630–656, 2015.

14 Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low com-
munication. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 54–74, 2012.

15 Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, pages 501–520, 2006.

16 Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam D. Smith. Scal-
able multiparty computation with nearly optimal work and resilience. In Advances in Cryptology

ICALP 2018

XX:14 The Bottleneck Complexity of Secure Multiparty Computation

- CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 17-21, 2008. Proceedings, pages 241–261, 2008.

17 Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On the com-
munication required for unconditionally secure multiplication. In Crypto’16, pages 459–488, 2016.

18 Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken queries: Ef-
ficient asynchronous secure multiparty computation. In Distributed Computing and Networking -
15th International Conference, ICDCN 2014, Coimbatore, India, January 4-7, 2014. Proceedings,
pages 242–256, 2014.

19 Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its
applications. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, pages 93–122,
2016.

20 Dario Fiore and Anca Nitulescu. On the (in)security of snarks in the presence of oracles. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October 31
- November 3, 2016, Proceedings, Part I, pages 108–138, 2016.

21 Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for decentralized anonym-
ous payments. In Financial Cryptography and Data Security - 20th International Conference, FC
2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers, pages 81–98,
2016.

22 Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors. Data Stream Manage-
ment - Processing High-Speed Data Streams. Data-Centric Systems and Applications. Springer,
2016. URL: http://dx.doi.org/10.1007/978-3-540-28608-0, doi:10.1007/
978-3-540-28608-0.

23 Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto’13, pages 75–92, 2013.

24 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In STOC, 1987.
25 Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-

extractable snarks. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Crypto-
logy Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 581–
612, 2017.

26 Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box con-
structions of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

27 Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Charalampos Papam-
anthou, Rafael Pass, Abhi Shelat, and Elaine Shi. How to use snarks in universally composable
protocols. IACR Cryptology ePrint Archive, 2015:1093, 2015. URL: http://eprint.iacr.
org/2015/1093.

28 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.
29 Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation

on the cloud via multikey fully homomorphic encryption. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
1219–1234, 2012.

30 Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In EUROCRYPT, pages 465–485, 2006.

31 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43:9–20, 2014.
32 Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: extended

abstract. In ACM Conference on Computer and Communications Security, pages 245–254, 2001.
33 Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In

Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
pages 700–718, 2012.

http://dx.doi.org/10.1007/978-3-540-28608-0
http://dx.doi.org/10.1007/978-3-540-28608-0
http://dx.doi.org/10.1007/978-3-540-28608-0
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:15

34 Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, pages 735–763, 2016.

35 Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function evaluation.
In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC), pages 590–599,
2001.

36 Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. In Theory of Cryptography
- 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II, pages 217–238, 2016.

37 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 84–93, 2005.

38 John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceed-
ings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 387–394, 1990.

39 Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999,
New York, NY, USA, pages 543–553, 1999.

40 Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai.
Robust non-interactive zero knowledge. In Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-
ceedings, pages 566–598, 2001.

41 Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages
114–127, 2005.

42 Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 160–164, 1982.

43 Mahdi Zamani, Mahnush Movahedi, and Jared Saia. Millions of millionaires: Multiparty computa-
tion in large networks. IACR Cryptology ePrint Archive, 2014:149, 2014.

A Additional Background

A.1 Security of MPC

Stand-Alone Security.We use a standard simulation-based security definition for MPC protocols.
However, our protocols are not UC-secure (due to their reliance on SNARKs). An appropriate
model of simulation-based security in this case is the so-called standalone security model. This
is essentially the model of [24], but we present it as a restriction to the UC security definition.
Specifically, we define a standalone environment to be one which initiates a single session (of Π of
F), and does not communicate with the adversary until all the honest parties terminate. That is, a
standalone environment can only interact with the adversary prior to the start of the protocol, and
after it terminates.

We say that a protocol Π is a standalone-secure protocol for a functionality F if it UC-securely
realizes F (with selective abort) when restricted to standalone environments. Here, in the ideal model,
the adversary is allowed to cause individual honest parties to abort, after obtaining the outputs for
the corrupt parties. We point out that the definition of UC-security allows a non-black-box simulator
that depends on the adversary. (Unlike in UC-security, existence of a simulator in the standalone
setting does not imply the existence of a black-box simulator. In UC-security, one may replace the
adversary with a dummy adversary which interacts with the actual adversary which is kept inside the

ICALP 2018

XX:16 The Bottleneck Complexity of Secure Multiparty Computation

environment; in the standalone setting the dummy adversary cannot interact with the environment
during the protocol execution.)

Semi-Malicious Security for MPC. Intuitively, a semi-malicious adversary is one who follows the
protocol specification (similar to a semi-honest adversary), but who may choose its input and “random”
coins for the protocol following any arbitrary PPT strategy. These values may depend (efficiently) on
any public setup information such as a CRS or PKI, but must be chosen before the protocol execution
begins. Once it has chosen these values, it must follow the protocol as specified, given the chosen
input, and using the chosen coins in place of the random coins. We allow the adversary to also abort
communication with individual parties at any point in the protocol (which, in our protocols, will
invariably result in the honest party aborting).

We remark that a collection of similar but non-identical notions of semi-malicious adversaries
have been considered in prior works (e.g., [26, 1]), but with varied requirements on when the adversary
must commit to his choice of input/random. We observe that the notion we consider is relatively
weak, where all such information is chosen before protocol execution.

More formally, a semi-malicious adversary Adv is modeled as an interactive Turing machine
(ITM) which, in addition to the standard tapes, has a special auxiliary tape. At the start of the protocol,
A selects for each corrupted party Pi an input xi and randomness ri (which may depend on the
original inputs of corrupted parties and public setup information), and writes xi, ri to its special input
auxiliary tape. Adv then honestly follows the protocol specification for the corrupt parties given this
input and random tape. At each round, it can also choose any honest party to abort the execution.

We say that a protocol Π evaluating a function f is semi-malicious secure if it is a standalone
secure protocol, but restricted to PPT semi-malicious adversaries.

A.2 Multisignatures

In a multisignature scheme, a single short object—the multisignature—can take the place of n
signatures by n signers, all on the same message.7 The first formal treatment of multisignatures was
given by Micali, Ohta, and Reyzin [32]. We consider a variant of the Micali-Ohta-Reyzin model
due to Boldyreva [5], as presented in [30]. In this model, the adversary is given a single challenge
verification key VK, and a signing oracle for that key. His goal is to output a forged multisignature σ∗

on a message m∗ under keys VK1, ..., VK`, where at least one of these keys is a challenge verification
key (wlog, VK1). For the forgery to be nontrivial, the adversary must not have queried the signing
oracle at m∗.

For simplicity, we present a slightly weaker version of the security definition achieved by [30],
which suffices for our application.8

I Definition 10. A multisignature scheme is a tuple of algorithms

KeyGen(1k): Key generation algorithm. Outputs a secret signing key SK together with correspond-
ing public verification key VK.

Sign(SK,m): Standard signing algorithm, with respect to message m and single signing key SK.
Combine({VKi, σi}`

i=1,m): Takes as input a collection of signatures (or multisignatures) and
outputs a combined multisignature, with respect to the union of verification keys.

MultiVer({VKi}`
i=1,m, σ): Verifies multisignature σ with respect to the collection of verification

keys {VKi}`i=1. Outputs 0 or 1.

7 Note that multisignatures are a special case of aggregate signatures [6], which in contrast allow combining signatures
from n different parties on n different messages.

8 The security game in [30] also allows the adversary the power to choose verification keys on behalf of corrupted
parties, as long as he also provides certification that the keys were properly generated.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:17

that satisfies the following properties:

Correctness: For any messagem, any collection of honestly generated signatures {σi ← SignSKi
(m)}i∈I

on m (for I ⊂ [n]), the combined multisignature formed by σ̄ ← Combine({VKi, σi}i∈I ,m)
will properly verify with overwhelming probability: Pr[1 ← MultiVer({VKi}i∈I ,m, σ̄)] ≥
1− negl(k).

Unforgeability: For any PPT adversary A, the probability that the challenger outputs 1 when
interacting with A in the following game is negligible in the security parameter k:

Setup. The challenger samples n pulic key-secret key pairs, (VKi, SKi)← KeyGen(1k) for each
i ∈ [n], and gives A all verification keys {VKi}i∈[n]. A selects a proper subset M ⊂ [n]
(corresponding to parties to corrupt) and receives the corresponding set of secret signing keys
{SKi}i∈M .

Signing queries. A may make polynomially many adaptive signature queries, of the form
(m, VKi). For each such query, the challenger responds with a signature σ ← SignSKi

(m) on
message m with respect to the corresponding signing key SKi.

Output. A outputs a triple (σ̄∗,m∗, {VKi}i∈S), where σ̄∗ is an alleged forgery multisignature
on message m∗ with respect to a subset of verification keys S ⊂ [n]. The challenger outputs 1
if at least one of the provided verification keys VKi corresponds to a challenge (honest party)
key, the message m∗ was not queried to the signature oracle with this verification key VKi, and
the provided forgery σ∗ is a valid multisignature: i.e., 1← MultiVer({VKi}i∈S ,m∗, σ∗).

The following theorem follows from a combination of the (standard) signature scheme of Waters
[41] together with a transformation from this scheme to a multisignature scheme due to Lu et. al. [30].

I Theorem 11 ([30]). There exists a secure multisignature scheme with signature size poly(k)
(independent of message length and number of potential signers), based on the Bilinear Computational
Diffie-Hellman assumption.

For convenience of notation, we shall use a multisignature scheme also as a normal signature
scheme. In that case, we shall write MS.Verify(VKi,m, σ) instead of MS.MultiVer({VKi},m, σ) to
indicate that the set of keys involved is singleton.
I Remark. We note that in our constructions, we can instantiate a multisignature scheme with a
simulation-extractable zero-knowledge SNARK with additive overhead (defined below) and standard
signatures.

A.3 Succinct Non-Interactive Arguments of Knowledge

We consider succinct non-interactive arguments of knowledge (SNARKs) with adaptive soundness.
Our treatment follows that of Bitansky et al. [2]. We focus attention to publicly verifiable succinct
arguments. Due to recent results demonstrating implausibility of SNARKs with respect to arbitrary
worst-case auxiliary input (e.g., [4, 9]), we consider a definition parameterized with respect to a
particular auxiliary input distribution Z .

I Definition 12 (Z-auxiliary input SNARK). A triple of algorithms (crsGen,Prove,Verify) is a
publicly verifiable, adaptively sound succinct non-interactive argument of knowledge (SNARK) for
the relationR with respect to auxiliary input distribution Z if the following conditions are satisfied
for security parameter λ:

Completeness: For any (x,w) ∈ R,

Pr[crs← crsGen(1λ);π ← Prove(x,w, crs) : Verify(x, π, crs) = 1] = 1.

In addition, Prove(x,w, crs) runs in time poly(λ, |x|, t).

ICALP 2018

XX:18 The Bottleneck Complexity of Secure Multiparty Computation

Succinctness: The length of the proof π output by Prove(x,w, crs), as well as the running time of
Verify(x, π, crs), is bounded by p(λ, |X|), where p is a universal polynomial that does not depend
onR. In addition, crsGen(1λ) runs in time poly(λ): in particular, crs is of length poly(λ).
Adaptive Argument of Knowledge: For any non-uniform polynomial-size prover P ∗ there exists
a polynomial-size extractor EP∗ , such that for all sufficiently large λ ∈ N and auxiliary input
z ← Z , it holds that

Pr[z ← Z; crs← crsGen(1λ); (x, π)← P ∗(z, crs); (x, π, w)← EP∗(z, crs) :
Verify(x, π, crs) = 1 ∧ w /∈ R(x)] ≤ negl(λ).

Extraction with Additive Overhead. We also consider SNARKs where the extractor incurs only an
additive overhead in the running time of the adversarial prover. A Z-auxiliary-input SNARK is said
to satisfy the additive overhead extraction property if there exists a polynomial p such that for all
polynomial time P ∗, there exists an EP∗ as in Definition 12, such that for all z in the support of Z
and all crs in the support of crsGen,

RT(EP∗(z, crs)) ≤ p(λ) + RT(P ∗(z, crs)),

where RT(A) denotes the running time of an algorithm A.

A.4 GSW FHE Scheme

We follow the notation of [34] throughout this section. We start by recalling some preliminary
definitions and then present the FHE scheme of Gentry, Sahai and Waters [23]. We use their FHE
scheme as a key building block in our IFHE scheme.

LWE assumption. We first recall the learning with errors assumption [37].

I Definition 13 (LWE Hardness Assumption). Let λ be a security parameter, χ = χ(λ) be a
distribution of small values over Z, n = n(λ) and q = q(λ) be polynomials of λ, andm = O(n log q).

Let s $← Zn−1
q , B $← Z(n−1)×m

q , e ← χ, and b = sB + e. Then (B,b)
c
u (B′,b′), where

(B′,b′) $← Zn×mq .

Public Short Preimage Matrix. We state a useful fact from [33] that is used in the GSW FHE
scheme.

I Lemma 14 ([33]). For any m ≥ n(blog qc + 1), there is a gadget matrix G ∈ Zn×mq and
an efficient deterministic function G−1(·) such that for any m′, any M ∈ Zn×m′q , G−1(M) ∈
{0, 1}m×m′ , and GG−1(M) = M.

In the GSW scheme, the function G−1(·) is called BitDecomp and multiplication by G is the
BitDecomp−1 operation. For our purposes, we do not need their implementation details.

GSW Construction. We now proceed to describe the GSW FHE scheme.

Setup: (params)← GSW.Setup(1λ, 1d)
Choose a lattice with dimension parameters n = n(λ, d), Bχ-bounded error distribution χ =
χ(λ, d) and a modulus q such that LWEn−1,q,χ,Bχ holds. Choosem = O(n log q). Finally, choose
a random matrix B ∈ Zn−1×m

q . Output params = (q, n,m, χ,Bχ,B).
Key Generation: (PK, SK)← GSW.Keygen(params)
We separately describe two sub-algorithms to compute secret-key and public-key respectively:

GSW.SKGen(params): Sample s $← Zn−1
q . Set t = (−s, 1) ∈ Znq and output SK = t.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:19

GSW.PKGen(params, SK): Parse SK = (−s, 1) ∈ Znq . Sample e← χm. Set b = sB+e ∈ Zmq

and A =
[
B
b

]
∈ Zn×mq . Output PK = A.

Encryption: C ← GSW.Encrypt(PK, x)
On input a message x ∈ {0, 1}, choose a short random matrix R $← {0, 1}m×m and compute
C = AR + xG ∈ Zn×mq . Output C as the ciphertext.

Decryption: x′ ← GSW.Decrypt(SK,C)
On input a ciphertext C ∈ Zn×m and secret key SK = t, compute v = tCG−1(wT), where
w = [0, . . . , dq/2e] ∈ Zn. Output x′ =

∣∣∣⌊ v
q/2

⌉∣∣∣.
On input two ciphertexts C1, C2 ∈ Zn×mq , we define homomorphic addition and multiplication:

GSW.Add(C1,C2): Output C1 + C2 ∈ Zn×mq .

Output the matrix product C1G−1(C2) ∈ Zn×mq .

This allows computation of a NAND gate homomorphically by outputting G−C1G−1(C2).

The following theorem is proved in [23].

I Theorem 15. The scheme described above is a secure (leveled) FHE scheme under the LWEn−1,q,χ,Bχ
assumption.

Note that tA = e ≈ 0 since e is a small error. For correctness, v = t(AR + xG)G−1(wT) ≈
xtwT = xdq/2e since R and G−1wT are composed of 0, 1 values. Hence by checking whether
v is closer to 0 or dq/2e, we can recover x ∈ {0, 1}. Let C1 and C2 be encryptions of x1 and x2
respectively. Then, C+ = C1 + C2 is such that tC+ ≈ (x1 + x2)tG and C× = C1G−1(C2) is
such that tC× ≈ (x1x2)tG.

For security, since A is uniformly random over Zn×mq , by leftover hash lemma, for a suitable
m = O(n log q), AR is statistically uniform, so as C = AR + xG.

Key Homomorphic Properties of GSW Scheme. We now show that the GSW scheme satisfies a
useful key-homomorphic property, which makes it particularly amenable to convert into a threshold
scheme. In particular, we keep the matrix B fixed, then the sum of two key pairs (computed using B)
gives a new valid key pair.

I Claim 1. Let t1 = (−s1, 1) and t2 = (−s2, 1) be two secret keys. Let B ∈ Zn−1×m
q be a random

matrix and let e1 and e2 be two error vectors. Further, let A1 =
[

B
b1

]
= GSW.PKGen(t1; B; e1) and

A2 =
[

B
b2

]
= GSW.PKGen(t2; B; e2). Then, A =

[
B

b1 + b2

]
= GSW.PKGen(t1 + t2; B; e1 +

e2).

Proof. We have: A1 = GSW.PKGen(t1; B; e1) =
[

B
s1B + e1

]
and A2 = GSW.PKGen(t2; B; e2) =[

B
s2B + e2

]
. Then,

A =
[

B
b1 + b2

]
=
[

B
(s1 + s2) ·B + (e1 + e2)

]
= GSW.PKGen(t1 + t2,B, e1 + e2)

J

ICALP 2018

XX:20 The Bottleneck Complexity of Secure Multiparty Computation

B Proof of Theorem 6

Proof. We establish our lower bound using a counting argument. Consider any (possibly randomized)
protocol for computing f . Since we assume perfect correctness, we can fix the random-tapes to yield
the smallest bottle-neck communication complexity, and derive a deterministic protocol.

Consider the “input transcript” of a party to include all the messages it received from all the
parties, through out the protocol. Given our requirement that the messages in each link is encoded
using prefix-free codes, such an input transcript can be parsed into the sequence of messages mt

i,j

received by Pj (for all t, j). The same holds for the output transcript for each party.
Now, the behavior of each party Pi is fully specified as a function of its input and its input

transcript. That is, the protocol π is completely specified by the set of functions {πi}i∈[n] each of
which maps an input xi and an input transcript to an output transcripts (not all such functions may
correspond to valid protocols, as they may violate causality and let outgoing messages depend on
future incoming messages; but all protocols yield such a set of functions).

Suppose the incoming communication foe each party for the protocol is d bits. Then the outgoing
communication for each party is at most nd bits. Thus, each πi can be written as a function from
{0, 1}d+k to {0, 1}nd. There are 22d+k×nd such functions. Since a protocol is a combination of n
such functions, we have:

Number of protocols with bottle-neck at most d ≤ 22d+k×nd×n.

On the other hand, the total number of boolean functions from nk is 22nk . Hence,

22d+k×nd×n ≥ 22nk =⇒ d+ k + log(n2d) ≥ nk
=⇒ d+ k + log(n3k) ≥ nk assuming d ≤ nk
=⇒ d ≥ (n− 1)k − 3 log(nk)

Thus, if d ≤ nk, then d ≥ (n− 1)k − 3 log(nk). That is, d ≥ (n− 1)k −O(lognk). J

I Remark. If we allow a small constant probability of error, by an averaging argument we can fix
the randomness of the parties so that the resulting deterministic protocol will evaluate the function
correctly in most of the domain. That is, it evaluates a function whose truth table has a small hamming
distance from the original function. The calculation above can be repeated with each protocol
accounting for at most 2c2nk functions for a constant c < 1, leading to d ≥ (n− 1)k −O(log(nk −
log(1

1−c))).

C Formal Definition of Correctness for IFHE Scheme

Correctness: Given a set of plaintexts and a circuit to evaluate, the correctness of IFHE says that the
FHE evaluation of the circuit over the ciphertexts can always be decrypted to the correct value, where
the ciphertexts are encryption of plaintexts using a single combined public key.

Furthermore, by “Incremental” FHE, we mean that the final combined public key as well as
the final combined decryption can be form in an arbitrary incremental manner. That is, a PKi can
first combine with any other PKj to form a combined key PK{i,j}, and PK{i,j} can then combine
with any other PKk to form PK{i,j,k} or with PK{k,`} to form PK{i,j,k,`}. The final PK[n] should
work for all possible combining orders as long as it collects PK1, ..., PKn, and it is similar for the
combining decryption. We will use a binary tree to describe the combining order and particularly
use tree0 to describe the combing public key and tree0 the combing decryption. For b = 0 and
1, treeb contains N b nodes {Sbi }i∈[Nb], including a root Sb1. Because the number of leaves equals

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:21

n, we have N b = O(n). For brevity, we will name a node by its index, and denote the parent of
the i-th node by parent(i). Also, w.l.o.g., assume each node i has two children, and particularly
parent(2) = parent(3) = 1.

I Definition 16 (Correctness). For any sequence of plaintexts x1, . . . , xn and circuit f of depth
bounded by d, and for all b = 0, 1, and for any Sb1, ...S

b
Nb ∈ 2[n] such that Sb1 = [n], for all

j ∈ leavesb, |Sbj | = 1, and for all i, j, k with i 6= j and k = parent(i) = parent(j), Sbi ∩ Sbj = ∅ and
Sbi ∪ Sbj = Sbk, let EXP.IFHE be the following experiment of an IFHE scheme:

1. params← IFHE.SETUP(1λ, 1d).
2. ∀i ∈ [n], (PKi, SKi)← IFHE.KEYGEN(params).
3. ∀i, j, k ∈ N0 with i 6= j and k = parent(i) = parent(j),

PKS0
i
← IFHE.COMBINEKEYS(PKS0

2i
, PKS0

2i+1
).

4. ∀i ∈ [n],Ci ← IFHE.ENCRYPT(PK, xi).
5. C← IFHE.EVAL(C1, . . . ,Cn, f).
6. C ′ ← IFHE.PREDEC(PK,C).
7. ∀i ∈ [n], vi ← IFHE.PARTDEC(PK,C′, SKi).
8. ∀i, j, k ∈ N1 with i 6= j and parent(i) = parent(j) = k 6= 1,

vS1
k
← IFHE.COMBINEDEC(vS1

i
, vS1

j
).

9. Output y ← IFHE.COMBINEDEC(vS1
2
, vS1

3
).

Then the correctness for the scheme holds if and only if

Pr[EXP.IFHE({xi}i∈[n]]; f ; {Sbi }i∈[Nb], b ∈ {0, 1}) = f(x1, ..., xn)] = 1.

C.1 Proof of Security

I Lemma 17 (Efficiency). For the IFHE scheme, there are polynomial functions poly1(·), poly2(·)
such that for any security parameter λ and any S ⊆ [n], S 6= ∅, |PKS | = poly1(λ) and |vS | =
poly2(λ).

Proof sketch: This is ascribed to the key homomorphism property as in GSW. Specifically, according
to the scheme, for all S, T ⊂ [n], PKS∪T = (B,bS + bT), where bS + bT is just addition over
Zq , so |PKS∪T | = |PKS | = |PKT |. Similarly, vS∪T = vS + vT is also addition over Zq so |vS∪T | =
|vS | = |vT |. Thus, for all S ⊆ [n], S 6= ∅, |PKS | = |PK1| = poly1(λ) and |vS | = |v1| = poly2(λ)
for some polynomial poly1 and poly2. �

I Lemma 18 (Correctness). The IFHE scheme satisfies the correctness. (See Appendix C for a
formal definition of correctness)

Proof sketch: Recall that A = PK[n], ti = SKi = (−si, 1) and bi = siB + ei. Let t =
(−
∑n
i=1 si, 1). First, for combining keys, because PKS∪T = (B,bS + bT) for all disjoint S and T ,

we have A = (B,
∑n
i=1 b{i}). Thus, tA =

∑n
i=1 ei ≈ 0.

Second, suppose for now f(x) = x so the FHE evaluation is trivial.
Then in the decryption preparation, we re-randomize the ciphertext with a public random R and

so C′ = C + AR = AR′ + xG for some small matrix R′.
Finally for combining decryption, since vS∪T = vS + vT , vi = (t′iC + e′i)G−1(wT) and∑n
i=1 t′i = (−

∑n
1 si, 1) = t, we have:

v[n] + t′0CG−1(wT) =
(

(
n∑
i=1

t′i)AR′ + x(
n∑
i=1

t′i)G + (
n∑
i=1

e′i)
)

G−1(wT) ≈ xtwT = xdq/2e.

ICALP 2018

XX:22 The Bottleneck Complexity of Secure Multiparty Computation

Hence by checking whether this value is close to 0 or dq/2e, we can recover x ∈ {0, 1} with
probability 1.

For general circuit f , since the encryption is the same of GSW, by a similar demonstration of the
homomorphism for GSW, the homomorphism property also holds for the IFHE scheme. Therefore
putting them together, we have:

Pr[EXP.IFHE({xi}i∈[τ]; f ; {Sbi }i∈[2n−1],b∈{0,1}) = f(x1, ..., xτ)] = 1.

�

I Lemma 19 (Semantic Security under Combined Keys). The IFHE scheme is secure under
combined keys.

Proof sketch: From KEYGEN, the joint distribution PKi = (B,bi) is computationally indistin-
guishable from a uniformly random matrix by the LWE hardness assumption and so is PK =
A = (B,bi + b′) for any b′ =

∑
j 6=i bj which is generated independently of bi. Consequently

C ← GSW.Encrypt(PK, x) = AR + xG, where R $← {0, 1}m×m. By the leftover hash lemma,
AR is computationally indistinguishable from a uniformly random matrix, and so is C (Otherwise
there is a polynomial-time approach to distinguish (B,bi) from random.) �

I Lemma 20 (Simulatability of Partial Decryption). For the IFHE scheme, given the output y,
the ciphertext C′, all but the i-th key {SKj}j∈[n]\{i}, the partial decryption yi is simulatable.

Proof sketch: According to the scheme, after PREDEC, C′ = C + AR = AR′ + yG for some
small matrix R′. Recall PK = A = (B,b), where b =

∑n
i=1 siB + ei, and SKi = ti = (−si, 1).

Let t′0 = (0n−1, 1), and recall t′1 = t1 and t′i = (−si, 0) for i > 1.
First, for i > 1, vi = (t′iC′ − e′i)G−1(wT) = −(siBR′ + e′i)G−1(wT), and for i = 1,

consider v1 − t′0C′G−1(wT) = ((t′1 − t′0)C′ − e′1)G−1(wT) = −(s1BR′ + e′1)G−1(wT).

Note that the distribution (BR′, vi)
c∼= (B′,b′G−1(wT))

c∼= (BR′, v1 − t′0C′G−1(wT)), where

(B′,b′) $← Zn×mq by the LWE assumption.
Let t−1 = (−

∑
j 6=1 sj , 0) and t−i = (−

∑
j 6=i sj , 1) for i 6= 1. Sample ẽ ← χm. Then we

construct v′i = y · q2 − (t−iC′ + ẽ)G−1(wT) for all i.
Note that for i 6= 1, v′i = y · q2 − (siBR′ + ẽ + yt−iG)G−1(wT), and for i = 1, v′i −

t′0C′G−1(wT) = y · q2 − (siBR′ + ẽ + yt′0G)G−1(wT). Since yt−iGG−1(wT) = yt′0wT =
y · q2 , we have v′i = −(siBR′ + ẽ)G−1(wT) for i 6= 1 and v′1 − t′0C′G−1(wT) = −(s1BR′ +
ẽ)G−1(wT). By LWE assumption, the distribution

(BR′, v′i)
c∼= (B′′,b′′G−1(wT))

c∼= (BR′, v′1 − t′0C′G−1(wT)),

where (B′′,b′′) $← Zn×mq .

Thus, for all i, vi
c∼= v′i, and

⌊
(vi+(

∑
j 6=i

t′j)C′G−1(wT)
q/2

⌉
= y =

⌊
(v′i+(

∑
j 6=i

t′j)C′G−1(wT)
q/2

⌉
,

together implying {A,C′,R, vi}
c∼= {A,C′,R, v′i}.

�

D Semi-Malicious Protocol

In this section, we demonstrate how to convert an arbitrary admissible multi-party distributed protocol
Π (as per Definition 5) for computing a function f to a protocol Πsm for computing f secure
against semi-malicious adversaries, while preserving the per-party computation and communication

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:23

requirements of Π up to poly(λ) multiplicative factors, independent of the number of parties n. In
fact, aside from two additional phases where information is communicated along a spanning tree of
the communication network induced by Π, our protocol mimics the precise communication patterns
of Π.

The communication pattern of the starting protocol Π can be arbitrary, but we require that it be
fixed and known a priori (i.e., not data dependent). The same assumption is made for (a bound on)
the message length on each active communication channel in each round. We assume without loss of
generality that the output of Π is precisely the evaluation of f on parties’ inputs and no additional
information.

For simplicity of exposition, we present the transformation for deterministic protocols Π; however,
as discussed below, our solution can be extended to handle randomized protocols via a simple coin
tossing procedure, leveraging the fact that while the semi-malicious adversary can arbitrarily choose
his “randomness,” he must commit to these values before the protocol begins.

Let Π be a protocol defined by deterministic next-message function with the following syntax:
(µi,1, . . . , µi,n) = NextMsg(i, t, xi,Transc(i, r−1)), where: i is the relevant party id, t is the present
round number, xi is party i’s secret input (including secret randomness), Transc(i, t − 1) denotes
the entire transcript held by party i after the previous round t − 1, and (µi,1, . . . , µi,n) denote the
respective messages to be sent by party i to respective parties 1, . . . , n in this round (where µi,j = ∅
if no message is to be sent from i to j).

Assume a given spanning tree tree over the underlying network graph induced by Π. Let
depth(tree) = d. Denote P1 as the party at the root (level 0), chldrn(j) be the children set of a party
Pj , and parent(j) be the parent of Pj in tree. For i ∈ [n], let desc(i) denote the set of all descendants
of i in the tree.

The protocol Πsm takes place in three phases, as described below.

Semi-Malicious Pattern-Preserving Protocol Πsm
Let the underlying protocol Π be defined by next-message function NextMsg.

Setup

1. params← IFHE.SETUP(1λ, 1d)
2. All parties receive params as a common random string.

Phase 1: Key setup

1. For ` = d, . . . , 0: For every i ∈ [n] for which Pi is at level ` of tree,
a. Aggregate public keys:

i. Denote the received public keys (if any) as {PKdesc(j)}j∈chldrn(i).
ii. Generate a IFHE key pair: (PKi, SKi)← IFHE.KEYGEN(params).

iii. Combine keys: PKdesc(i) ← IFHE.COMBINEKEYS(PKi, {PKdesc(j)}j∈chldrn(i)).
b. Aggregate randomness values (used to rerandomize output ciphertext):

i. Denote the received random strings (if any) as {randj}j∈chldrn(i).
ii. Sample a random string: randi ← {0, 1}λ.

iii. Combine random values: randdesc(i) =
⊕

j∈chldrn(i) randj .
c. If ` = 0 (i.e., root node), let PK := PKdesc(i) and r := randdesc(i).
d. Else, if ` 6= 0, send PKdesc(i) to parent node parent(i).

2. For ` = 0, . . . , d− 1: For every i ∈ [n] for which Pi is at level ` of tree,
a. Let PK be the key received from parent parent(i). Send PK to all children, {Pj |j ∈ chldrn(i)}.

Phase 2: Computation Each party Pi performs the following.

1. Initialize T̂ransc(i, 0)← ∅.
2. Encrypt input under joint key: x̂i ← IFHE.ENCRYPT(PK, xi).
3. For each round t = 1, . . . , rounds of the original protocol, do:

ICALP 2018

XX:24 The Bottleneck Complexity of Secure Multiparty Computation

a. Update transcript: Let T̂ransc(i, t)← T̂ransc(i, t− 1) ∪ {(j, t, µ̂j,i)}j∈[n], where µ̂j,i denotes the
(encrypted) message sent from Pj to Pi in the previous round (empty if no such message exists).

b. Homomorphically evaluate the next-message function:
(µ̂i,1, . . . , µ̂i,n)← IFHE.EVAL(x̂i, T̂ransc(i, t); NextMsg(i, t, ·, ·, ·)).

c. For each j ∈ [n] that Pi sends a message to in this round t

4. Let ŷ denote the final evaluated ciphertext held by the root party, corresponding to an encryption of the
desired evaluation output.
Root party rerandomizes using rand: i.e., ŷ ← IFHE.PREDEC(PK,C; rand).

Phase 3: Decryption

1. For ` = 0, . . . , d− 1: For every i ∈ [n] for which Pi is at level ` of tree,

a. Let ŷ be the ciphertext received from parent parent(i). Forward ŷ to all children, {Pj |j ∈
chldrn(i)}.

2. For ` = d, . . . , 0: For every i ∈ [n] for which Pi is at level ` of tree,

a. Denote the received partially decrypted ciphertexts as {ŷdesc(j)}j∈chldrn(i).
b. Compute own contribution of decryption: ŷi ← IFHE.PARTDEC(PK, SKi, ŷ).
c. Combine decryptions: ŷdesc(i) ← IFHE.COMBINEDEC(ŷi, {ŷdesc(j)}j∈chldrn(i)).
d. If ` 6= 0 (i.e., not root node), send PKdesc(i) to parent node parent(i).

3. Root party P1: Output y := ŷdesc(0).

I Theorem 21. Let IFHE be an incremental FHE scheme, and Π be an n-party protocol for
evaluating a function f with fixed communication pattern. Then the protocol Πsm securely evaluates
f against semi-malicious corruptions, preserving the per-party computation and communication
requirements of Π up to poly(λ) multiplicative factors (independent of the number of parties n).
Moreover, the communication pattern of Πsm is identical to that of Π plus two additional traversals
of a communication spanning tree of Π.

I Remark (Handling randomized protocols Π). Our transformation can be modified to support
randomized protocols Π while increasing per-party communication (additively) by only poly(λ),
by adding the following “coin tossing” procedure. At the conclusion of the key setup phase, each
party Pi samples and encrypts a random λ-bit string si under the joint IFHE key. These values
are incrementally aggregated up to the root of the communication spanning tree to a ciphertext ŝ
of s :=

⊕
i∈[n] si, which is then communicated back along the tree to all leaves. In each future

round, parties homomorphically evaluate the NextMsg function of Π, using (encrypted) randomness
generated by homomorphically evaluating a pseudo-random function on the (encrypted) seed ŝ.

We now proceed to prove the Theorem 21. The proof takes two main hybrid steps: First, simulating
the output computation by relying on the simulatability of partial secryption property of the IFHE.
Once this takes place, no knowledge of the honest parties’ secret key shares is required. In the next
step, we can thus replace the honest parties’ inputs with encryptions of 0 by relying on the semantic
security of the IFHE under combined keys.

D.1 Proof of Security of Semi-Malicious MPC Protocol

In this section, we prove Theorem 21.
The communication pattern of Πsm follows by inspection: Phases 1 and 3 each induce a single

traversal of the communication spanning tree; Phase 2 directly matches the communication pattern of
Π. The per-party computation and communication in Phases 1 and 3 are each poly(λ). The costs in
Phase 2 correspond directly to those of Π, except that all computation is performed via homomorphic
evaluation, and all communication is sent in encrypted form. Thus both metrics have multiplicative
overhead poly(λ).

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:25

We proceed to prove semi-malicious security of Πsm. Let Adv be an arbitrary non-uniform
polynomial-time semi-malicious adversary corrupting a set of parties M ⊆ {P1, . . . , Pn}. We
demonstrate the existence of an ideal-world simulator Sim corrupting the same set of parties M , such
that for any input vector ~x, for any auxiliary input z ∈ {0, 1}∗, it holds that:{

IDEALfSim,M (1λ, ~x, z)
}
λ∈N

≈c
{

REALΠ
Adv,M (1λ, ~x, z)

}
λ∈N .

Consider the following simulator Sim(1λ, {xi}Pi∈M , y, z), where y =f(x1, . . . , xn) is the output
received from the ideal functionality.

1. Setup: Sim generates honestly executes IFHE setup.
2. Phase 1 (Key Setup): Sim honestly emulates the actions of honest parties.
3. Phase 2 (Computation): Sim honestly emulates the actions of honest parties, with the following

exception: In Step 2, for each honest party Pi /∈M , instead of encrypting the (unknown) input
and randomness of Pi, Sim instead generates encryptions x̂i, r̂andi ← IFHE.ENCRYPT(PK, 0) of
zero.

4. Phase 3 (Decryption): Sim honestly emulates the actions of honest parties, except that the partial
decryption values ŷi of honest parties are instead generated in the following manner. For all but
one honest party Pi∗ , evaluate the partial decryption ŷi of Pi honestly. For Pi∗ , do the following.
Let ŷ denote the final evaluated ciphertext (known to Sim since it is sent to all parties). For
each corrupt party Pj , determine his secret key SKj by reading off the appropriate region of Pj’s
committed random tape. Then, Sim simulates the partial decryption ŷi∗ of Pi∗ (see Definition 7),
given the values of (y, ŷ, {SKj}j∈[n]\{i∗}).

We prove indistinguishability of the simulated experiment via the following sequence of hybrids.
For each hybrid ` ∈ {0, 1, 2}, denote by Hyb`Adv,M (1λ, ~x, z) the distribution on the inputs and outputs
of all parties within the Hybrid ` experiment.

Hybrid 0: Real World.
Hybrid 1: (Simulatability of partial decryption.) Same as Hybrid 0, except that the partial decryption

values ŷi of honest parties in Phase 3 are instead generated as done by Sim.

I Claim 2. For every non-uniform polynomial-time Adv, input vector ~x, and auxiliary input z,

Hyb0
Adv,M (1λ, ~x, z)

c∼= Hyb1
Adv,M (1λ, ~x, z).

Proof. The values ŷi for honest parties i 6= i∗ are identically distributed. Note that the evaluated
ciphertext ŷ is rerandomized by the value rand =

⊕
j∈[n] randj . Since Adv is semi-malicious,

the choice of randj for corrupt parties Pj were made independently of the honestly sampled
randi∗ , meaning that rand is uniformly distributed. The claim thus follows directly from IFHE
simulatability of partial decryption. J

Hybrid 2: (Semantic security under combined keys.) Simulated experiment. Namely, same as
Hybrid 1, except that the encryptions generated in Step 2 on behalf of honest parties are replaced
by encryptions of zero.

I Claim 3. For every non-uniform polynomial-time Adv, input vector ~x, and auxiliary input z,

Hyb1
Adv,M (1λ, ~x, z)

c∼= Hyb2
Adv,M (1λ, ~x, z).

Proof. Note that already in Hybrid 1 all information about the contribution SKi∗ of party Pi∗ to
the joint secret key SK is removed. The claim thus follows directly by IFHE semantic security
under combined keys. J

ICALP 2018

XX:26 The Bottleneck Complexity of Secure Multiparty Computation

E From Semi-Malicious to Malicious Security

In this section we describe how to compile a semi-malicious secure protocol into an actively secure
protocol, with the same communication graph. Our compiler relies on common reference string
(CRS) and a (bare) public-key setup.

Building Blocks. We use the following cryptographic primitives in our compiler:

A simulation-extractable succinct non-interactive zero-knowledge argument (SE-ZK-SNARK)
for a polynomial-time computable relation. Unlike recent works such as [25, 21], our notion of
SE-ZK-SNARK is identity-based, where each proof is generated w.r.t. an identity.
A multisignature scheme (MS.KeyGen,MS.Sign,MS.Combine,MS.MultiVer) for implementing
the (bare) public-key setup in our construction. In our setting, we can instantiate a multisignature
scheme with a SE-ZK-SNARK with additive overhead together with standard signatures.
A non-interactive perfectly binding commitment scheme COM.
A family of collision-resistant hash functions HASHFAMILY.

We refer the reader to Appendix A for the definitions of SNARKs and multisignatures. Below, we
present our definition and construction of ID-based SE-ZK-SNARK.

E.1 ID-Based SE-ZK-SNARK

For reasons as discussed in Section 1.1, we consider an ID-based notion of SE-ZK-SNARK, where
each proof is generated with respect to an identity (chosen from a set of identities that are fixed in
advance). Proofs for multiple statements can be computed w.r.t. the same identity. Crucially, in
our definition of simulation-extractability, the adversary must fix a set ID∗ of “honest” identities
in advance and can then receive simulated proofs on adaptively chosen statements w.r.t. identities
from this set. It must then come up with an accepting proof for a new statement x w.r.t. an identity
id /∈ ID∗. We require the existence of a non-black-box extractor who can extract a valid witness for x
from such an adversary.

We show how to transform any SNARK argument system into an ID-based SE-ZK-SNARK by
relying on only standard cryptographic assumptions. Very roughly, in our construction, it is possible
to “puncture” the trapdoor trap for the CRS w.r.t. an identity set ID∗. A punctured trapdoor trapID∗

can only be used to simulate the proofs w.r.t. identities id ∈ ID∗, but cannot be used to simulate
proofs w.r.t. identities id /∈ ID∗. Using such a punctured trapdoor, we are able to construct an
extractor while still simulating proofs to the adversary. Specifically, in order to extract from an
adversarial prover P ∗, we consider an augmented code M that consists of the simulator algorithm
S with a punctured trapdoor trapID∗ hardwired in its description, together with the code of prover
P ∗. Any proof requested by the prover P ∗ w.r.t. an identity id ∈ ID∗ can be computed by S using
the punctured trapdoor. However, since the cheating prover must produce a proof w.r.t. an identity
id /∈ ID∗, we can still successfully extract from M by using the SNARK extractor.

Definition. We now present our definition of ID-based SE-ZK-SNARK. Our definition is paramet-
rized w.r.t. an identity set ID. For our application of SE-ZK-SNARK to actively secure MPC, it
suffices to work with polynomial-sized identity sets. Below, the prover and verifier algorithms Prove
and Verify are extended to receive an identity as an additional input.

I Definition 22 (ID-Based SE-ZK-SNARK). A SNARK system (crsGen,Prove,Verify) for a
relationR with respect to auxiliary input distribution Z is said to be a SE-ZK-SNARK with respect
to identity set ID if there exists a PPT simulator S = (S1,S2,S3) such that the following holds:

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:27

Computational Zero-Knowledge: For every (x,w) ∈ R and every id ∈ ID,

(crs, id, x, π) c
≈ (crs′, id, x, π′),

where crs← crsGen(1λ), π ← Prove(crs, x, w, id), (crs′, trap)← S1(1λ), trapid ← S2(trap, id)
and π′ ← S3(crs′, id, trapid, x).
Simulation-Sound Extractability: There is a negligible function negl such that, for any non-
uniform PPT prover P , there exists a polynomial-size extractor EP , such that Pr[out = 0] ≤
negl(λ), where the random variable out is the output of the following experiment:

1. (crs, trap)← S1(1λ)
2. z ← Z
3. ID∗ ← P (z, crs) s.t. ID∗ ⊂ ID and |ID∗| = poly(λ).
4. trapid∗ ← S2(trap, id∗), for every id∗ ∈ ID∗.
5. (id, x, π)← P (z, crs, ~trapID∗), where ~trapID∗ = {trapid∗}id∗∈ID∗ .
6. (id, x, π, w)← EP (z, crs).
7. Output 0 iff:

id /∈ ID∗ ∧ Verify(x, π, crs, id) = 1 ∧ (x,w) /∈ R.

I Remark. In our definition of simulation-extractability, we provide the cheating prover P with a
special trapdoor ~trapID∗ that is “punctured” at the identity set ID∗. Using this special trapdoor, the
cheating prover can compute simulated proofs for arbitrary statements w.r.t. any identity id ∈ ID∗

on its own. The correctness of a punctured trapdoor is captured in our definition of computational
zero-knowledge.

One could alternatively consider a weaker definition of simulation-extractability where instead of
giving a punctured trapdoor to the cheating prover, we only provide him oracle access to the simulator
algorithm that uses the trapdoor to simulate proofs w.r.t. identities id ∈ ID∗ on statements chosen
adaptively by the cheating prover. Clearly, Definition 22 implies this weaker definition. We choose to
work with Definition 22 as it enables easier proof of security for our actively secure MPC protocol
discussed later in this section.

Construction. We construct an ID-based SE-ZK-SNARK system (crsGen,Prove,Verify) for any
NP language L and identity set ID. We will use the following two ingredients: (1) a witness-
indistinguishable SNARK system (crsGen′,Prove′,Verify′) for an NP language L′ (described be-
low), and (2) an identity-based signature scheme (Setup,Keygen,Sign,Verify) which can be readily
constructed using certificate chains from a standard digital signature scheme, which can in turn be
based on one-way functions [38].

crsGen(1λ): On input a security parameter, compute crs′ ← crsGen′(1λ) and (msk,mvk) ←
Setup(1λ). Output crs = (crs′,mvk).
Prove(crs, id, x, w): On input a crs crs = (crs′,mvk), identity id, statement x and witness w,
compute a proof π′ ← Prove′(crs, x′, w) for the statement x′ = (x, id,mvk) s.t. x′ ∈ L′ iff:

x ∈ L, or
∃σ s.t. Verify(mvk, id, x, σ) = 1.

Here, the prover uses the witness w to prove the first part of the statement x′. Output π = π′.
Verify(crs, id, x, π): On input a crs crs = (crs′,mvk), identity id, statement x and proof π, compute
and output Verify′(crs′, x′, π) where x′ = (x, id,mvk).

I Theorem 23 (ID-Based SE-ZK-SNARK). Assuming the existence of one-way functions and a
witness-indistinguishable SNARK system for NP, the proposed construction is an ID-Based SE-ZK-
SNARK for any NP relation.

ICALP 2018

XX:28 The Bottleneck Complexity of Secure Multiparty Computation

We start by describing the simulator S = (S1,S2,S3):

S1(1λ): On input a security parameter, compute:

crs′ ← crsGen′(1λ)
(msk,mvk)← Setup(1λ)

Output (crs = crs′,mvk) and trap = msk.
S2(trap, id): On input a master trapdoor trap = msk and identity id, compute and output a
“punctured” trapdoor trapid = skid ← Keygen(msk, id).
S3(crs, id, trapid, x): On input a crs crs = (crs′,mvk), identity id, trapdoor trapid = SKid and
statement x, compute:

A signature σ ← Sign(SKid, x) on message x using the signing key SKid for identity id.
A proof π′ ← Prove′(crs′, x′, σ) for the statement x′ (defined as above) using σ as a witness
for the second part of x′.

Output π′.

Now, note that the crs computed by S1 is identically distributed to the crs computed by the honest
algorithm crsGen. Further, for any identity id and statement x ∈ L, the only difference between
a proof computed via Prove and S2 is that the former computes a proof for statement x′ (defined
as above) using a witness for the first part of x′, while S3 uses a witness for the second part of x′.
However, from the witness indistinguishability property of (crsGen′,Prove′,Verify′), it follows that
these proofs are computationally indistinguishable.

We next argue the simulation-sound extractability of our construction. For any cheating prover
P , our extractor EP is the same as defined for the proof system (crsGen′,Prove′,Verify′). From the
correctness of EP , we know that if P outputs an accepting proof π for any statement x w.r.t. identity
id, then except with negligible probability, EP outputs a witness w∗ s.t. either (x,w∗) = (x,w) ∈ R
or w∗ = σ s.t. Verify(mvk, id, x, σ). From the security of identity-based signatures, however, the
latter case can only happen with negligible probability.

I Remark. In our transformation in the next subsection, we will in fact require the proof system for
a set of NP relations {R1, · · · , RN}, that can be efficiently evaluated given the index of the relation.
These relations can be combined into a single “super-relation”R which consists of ((i, x), w) such
that (x,w) ∈ Ri, and use a SE-ZK-SNARK system for this relationR. For the sake of readability, the
proof and verification for a statement of the form (i, x) with respect to an identity id will be indicated
as Proveid

Ri(x,w; crs) and Verifyid
Ri(x, π, crs).

E.2 Verifiable Protocol Execution

To abstract out the compiler, we present a “Verifiable Protocol Execution” functionalityFvpe (paramet-
rized by a protocol ρwhich is to be verifiably executed) and present a protocol Πvpe (also parametrized
by ρ) that standalone securely realizes Fvpe against active corruption. Then, in Appendix E.4 we show
that a semi-malicious protocol can be readily turned into a protocol secure against active corruption,
using Πvpe.

First, for any semi-malicious protocol ρ, we define the functionality Fvpe〈ρ〉 which accepts the
inputs for ρ from all the parties; also it accepts the randomness for the corrupt parties from the
adversary, and uniformly samples the randomness for the honest parties. Then it executes the protocol
ρ honestly using these inputs and randomness. At each round, if no party issues “abort” it sends the
messages generated by the execution to the parties to which the messages are addressed. Formally we
define Fvpe〈ρ〉 as follows:

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:29

IDefinition 24 (Functionality Fvpe). The functionalityFvpe〈ρ〉, parametrized by a semi-malicious
protocol ρ, is defined as follows:

1. For each i ∈ [n], if Pi is honest, receive input xi from Pi and sample a (sufficiently long) bit
string si uniformly at random; else receive (xi, si) from the adversary. Let x̂i = (xi, si).

2. Internally run ρ among virtual parties P̃1, . . . , P̃n, with inputs x̂1, . . . , x̂n respectively. At each
round τ of this execution carry out the following:

a. If Pj is corrupt, and in ρ, P̃i sends a message to P̃j , then forward the message to Pj .
b. If the adversary sends (ABORT, i), send ABORT to Pi, and also terminate P̃i in the internal

execution of ρ.
c. If P̃i produces an output yi, send yi to Pi.

E.3 Protocol Πvpe

For any protocol ρ, the protocol Πvpe〈ρ〉 implements Fvpe〈ρ〉 (stand-alone) securely against active
corruption. As described below, Πvpe〈ρ〉 has a setup phase (to create a common reference string), and
consists of two phases: an input commitment phase and an execution phase. ρ itself may include a
setup phase ρ.SETUP to create a common reference string. ρ is required to have an a priori determined
communication pattern, indicating which parties send messages to which parties in each round (and
how many rounds T there are in total). Let in(i, τ) denote the set of all j such that at round τ ,
ρ requires Pj to send a message to Pi. We write ρ(t; (i, j); {mτ

k,i}τ<t,k∈in(i,τ), x̂i) to denote the
message (possibly empty) that Pi should send to Pj at round t, computed from its own input and
randomness x̂i and the messages mτ

k,i it received in all previous rounds τ < t. Also, we write
ρ(out; i; {mτ

k,i}τ≤T,k∈in(i,τ)) to indicate the output to be produced by Pi at the end of the protocol.

Setup. The setup contains four parts: the setup of the PKI environment, A hash function HASH

sampled from a hash family HASHFAMILY(1λ), the common random strings that will be used in the
SE-ZK-SNARK system, and the setup of ρ (if any). Formally, (params)← Πvpe〈ρ〉.SETUP(1λ, 1d),
where params are

{VKi, SKi}i∈[n] ← MS.KeyGen(1λ),

HASH ← HASHFAMILY(1λ),

crs← SNARK.crsGen(1λ),

paramsρ ← ρ.SETUP(1λ, 1d)

Commitment Phase. The goal of this phase is to construct a short, globally known commitment to
the inputs and random-tapes in ρ, for all the parties. This phase uses a (fixed, arbitrary) subgraph T
of the communication graph of ρ, which forms a rooted spanning tree.9 This phase consists of two
passes up and down the tree, starting from the leaves. In the first upward pass, the parties essentially
use a Merkle-tree to commit to x̂i = (xi, si) for all i ∈ [n] (using a hash function included in the
setup). Along with the hash value, each party also includes a SE-ZK-SNARK proof of correctness
in its message to its parent in the tree; correspondingly, each party verifies the the proofs from its
children, and also includes this proof in its input to the hash function. Recall that the SE-ZK-SNARK
proofs are associated with an identity; all the proofs used in our protocol shall use the prover’s index
as the identity. The relation proven to one’s parent includes the fact that the proofs from the children
verified. Though the relations are recursively defined, as we shall see, the complexity of the relations
will not grow exponentially with depth, as the relation at a node will depend only on the complexity

9 We require the communication graph of ρ to be connected and that all parties know this graph (and spanning tree).

ICALP 2018

XX:30 The Bottleneck Complexity of Secure Multiparty Computation

of verifying a SE-ZK-SNARK proof for the relations at its children, and not on computing those
relations themselves.

This is followed by a downward pass starting from the root, where the final aggregated commit-
ment α is sent to all the nodes. Here again, the messages are accompanied by appropriate proofs.
At the end of this pass, the honest parties are assured that the commitment they have received in-
cludes their own input and randomness; however, it is possible that the inputs from the other parties
are not correctly included.10 To address this, we make one more pair of up and down passes, in
which a multi-signature of the commitment is created and passed back to all the parties. Verifying
this multi-signature assures the honest parties that all the honest parties have received the same
commitment.

T is a spanning tree over the set of nodes [n]. chldrn(j) denotes the set of children of j, and parent(j) is the
parent of j (j other than root) in T . W.l.o.g, we assume that the indices of the nodes are sorted such that the root
is 1 and for all j > 1, parent(j) < j. The party at node j is denoted by Pj .

All messages are assumed to contain a header uniquely identifying its role in the protocol (corresponding to
the variable name and indices in the description below).
Commitment Phase of Πvpe〈ρ〉. The commitment phase uses SE-ZK-SNARKs for sets of NP relations Rup

j

and Rdown
j (with j denoting the prover’s index for the former and the receiver’s for the latter), defined recursively

as follows. Here, all the proofs will use the prover’s index as the identity.
• (φ,w) ∈ Rup

j , for j ∈ leaves(T), iff φ = (crs, c), w = (x̂, r), c = COM(x̂; r), where leaves(T) denotes the
set of leaves of T .
• (φ,w) ∈ Rup

j , for j 6∈ leaves(T), j 6= 1 (i.e., not the root), iff φ = (crs, c) andw = (x̂, {ck, βk}k∈chldrn(j), r)
s.t. c = COM(HASH({ck}k∈chldrn(j)), x̂; r)) and ∀k ∈ chldrn(j), SNARK.Verifyk

R
up
k

((crs, ck), βk, crs) = 1.

• (φ,w) ∈ Rdown
j , for j ∈ chldrn(1) (i.e., children of root), iff φ = (crs, c, α), w = (x̂, {c`, β`}`∈chldrn(1), r)

s.t. c = cj , α = COM(HASH({c`}`∈chldrn(1)), x̂; r)), and SNARK.Verify`
R

up
`

((crs, c`), β`, crs) = 1, ∀` ∈
chldrn(1) \ {j}
• (φ,w) ∈ Rdown

j , for j 6∈ chldrn(1), j 6= 1, iff φ = (crs, c, α), w = (x̂, {c`}`∈chldrn(parent(j)), r, c
′, γ) s.t.

c = cj , c′ = COM(HASH({c`}`∈chldrn(1)), x̂; r)), and SNARK.Verifyparent(i)
Rdown
i

((crs, c′, α), γ, crs) = 1, where

i = parent(j).
Below, for the sake of brevity, instead of specifying π ← SNARK.Proveid

R(crs, x, w), we often leave
w implicit and say that π is a proof that x ∈ L[R] with respect to the identity id. (Here L[R] = {x |
∃w s.t. (x,w) ∈ R}.)

1. Aggregate Commitments with Proofs.

a. For j = n to 1, Pj proceeds as follows: If j is not a leaf, first it receives (ck, βk) from each k ∈ chldrn(j)
and asserts that SNARK.Verifyk

R
up
k

((crs, ck), βk, crs) = 1. Then, Pj samples rj and computes cj =
COM(HASH({ck}k∈chldrn(j)), x̂j ; rj). Then:
Pj , for j > 1, sends (cj , βj) to Pparent(j), where βj is a proof that (crs, cj) ∈ L[Rup

j], with associated
identity j (prover’s index).
P1 sends, ∀k ∈ chldrn(1), sends Pk (α, σk, γk) where α = c1 where11 σk ← MS.Sign(SK1, ck),
and γk is a proof that (crs, ck, α) ∈ L[Rdown

k], with identity 1.

2. Distribute the Aggregated Commitment with Proofs. Above, children of the root leaf already received α
from the root, P1.

a. For j = 2 to n, Pj receives (α, σj , γj) from Pparent(j), and asserts that MS.verify(VKparent(j), cj , σj) =
1, and SNARK.Verifyparent(j)

Rdown
j

(φ, γj , crs) = 1, where φ = (crs, cj , α) if j ∈ chldrn(1) and φ = (crs, α)

10 One could have hashed signed inputs to assure each honest party that all honest parties’ inputs are correctly included
in the commitment; however, this leaves room for the adversary to supply the honest parties with commitments
which have inconsistent inputs for the corrupt parties. The next pass handles both these issues together.

11 Here a normal signature, instead of a multi-signature suffices. We overload MS to keep the setup shorter.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:31

otherwise. If the verification succeeds, it sends (α, σk, γk) to Pk for each k ∈ chldrn(j), where
σk ← MS.Sign(SKj , ck), and γk is a proof that (crs, α) ∈ L[Rdown

k], with identity j.

3. Create the Multisignature.

a. For j = n to 2, Pj sends a combined multisignature σj = MS.Combine({VKi, σi}i∈chldrn(j) ∪
{VKj , σ

′
j}, α) to parent(j), where σ′j = MS.Sign(SKj , α).

b. P1 computes a final combined multisignature
σ = MS.Combine({VKi, σi}i∈chldrn(1) ∪ {VK1, σ

′
1}, α), where σ′1 = MS.Sign(SK1, α).

4. Verify the Multisignature.

a. ∀k ∈ chldrn(1), P1 sends σ to Pk.
b. For j = 2 to n, Pj receives σ from Pparent(j) and checks if MS.MultiVer({VK`}`∈[n], α, σ) = 1. If so,

it sends σ to Pk, ∀k ∈ chldrn(j); otherwise, Pj aborts.

Execution Phase In each round, each party Pi sends messages to its outgoing neighbors in the
round according the semi-malicious protocol ρ. Meanwhile, similar to the recursive proofs in the
commitment phase, Pi also sends a proof showing that 1) Pi computes the message honestly using
the input committed in the first phase and the messages it receives so far, 2) it computes an aggregated
commitment of its input as well as its children’ commits, 3) it verifies the final aggregated commit α
4) it verifies the proofs that the messages received so far all follow ρ honestly.

Therefore, by the (additive-overhead) extraction of the SE-ZK-SNARK, the proofs are recursively
(computationally) bound to its previous proofs that according to the computation path of the protocol
and finally bound to the input. The input is then bound to the final combined commitment that has
been multisigned by all the parties in the first phase. Hence we can argue that, unless the collision
resistance of the hash function, the soundness of the commitment scheme, the unforgeability of the
multisignature scheme, or the extractionability of the SE-ZK-SNARK scheme fails, the corrupt parties
cannot deviate from the protocol without triggering an abort.

The proofs in the protocol are for relations Rρi,j,t corresponding to proving that a message from Pi
to Pj in the tth step is correctly computed according to the input and randomness x̂i that Pi committed
during the first phase of the protocol and the messages received during the protocol (with proofs,
which have been verified by Pi). This is formalized below.

Recall that in(i, τ) denotes the set of all j such that at round τ , ρ requires Pj to send a message to Pi. Rρi,j,t is
defined as follows:
• (φ,w) ∈ Rρi,j,t iff φ = (crs, α,m), w =

(
x̂, h, r, γ, c, σ, {mτ

k,i, θ
τ
k,i, δ

τ
k,i}τ∈[t−1],k∈in(i,τ)

)
such that

m = ρ
(
t; (i, j); {mτ

k,i}τ∈[t−1],k∈in(i,τ); x̂
)

, c = COM(h, x̂; r), and

MS.verify(VKparent(i), c, σ) = 1
MS.verify(VKk,m

τ
k,i, θ

τ
k,i) = 1

SNARK.Verifyparent(i)
Rdown
i

((crs, c, α), γ, crs) = 1

SNARK.VerifykRρ
k,i,τ

((crs, α,mτ
k,i), δτk,i, crs) = 1 ∀τ ∈ [t− 1], k ∈ in(i, τ).

(Note that the last condition is absent for t = 1.)
Execution Phase of Πvpe〈ρ〉. For each round t, Pi and Pj , where i ∈ in(j, t):

1. Pi computes mt
i,j = ρ(t; (i, j); {mτ

k,i}τ∈[t−1],k∈in(i,τ), x̂i), and a proof δti,j that mt
i,j ∈ L[Rρi,j,t] with

respect to the identity i. It also computes a signature θti,j on mt
i,j using its signing key SKi. Then it sends

(mt
i,j , θ

t
i,j , δ

t
i,j) to Pj .

2. For each j ∈ in(i, t), Pi receives (mt
j,i, δ

t
j,i) from Pj , defines φ = (crs, α,mt

j,i), and asserts that
SNARK.Verifyj

R
ρ
j,i,t

(φ, δtj,i, crs) = 1.

If this is the last round of the protocol, Pi computes and outputs yi = ρ(out, i; {mτ
k,i}τ∈[t−1],k∈in(i,τ), x̂i).

ICALP 2018

XX:32 The Bottleneck Complexity of Secure Multiparty Computation

We prove the security in Appendix E.5.

E.4 Using VPE To Compile From Semi-Malicious to Malicious
Security

If ρ is a semi-malicious secure protocol for a secure function evaluation functionality F , then there is
a simple standalone secure protocol for F in the the Fvpe〈ρ〉-hybrid model: the honest parties will
simply send their inputs for F to Fvpe〈ρ〉, and output the outputs received back (or ABORT). The
security of the protocol follows from the fact that Fvpe〈ρ〉ensures semi-malicious behavior from the
adversary in the ρ execution. Indeed, the only actions allowed for the adversary in Fvpe〈ρ〉– choosing
an input and randomness for each corrupt party, followed by aborting communication with an honest
party at any point – is allowed by the semi-malicious adversary model.

Further, the above compiler continues to be secure even if we replace Fvpe〈ρ〉 with a protocol
Πvpe〈ρ〉 that standalone securely realizes Fvpe〈ρ〉. While typically UC security is required for such
composition, note that only a single session of Fvpe〈ρ〉 is invoked above. Formally, a simulator Sim∗

for the final protocol in the F ideal model is constructed as follows: Given an adversary Adv, first we
define the (non-black-box) simulator SimAdv for Πvpe〈ρ〉 to obtain a hybrid execution in the Fvpe〈ρ〉,
with Sim as the adversary. Since Fvpe〈ρ〉 is internally running ρ with virtual parties Pi, we “open
it up” and combine the execution of {P̃i}i∈C with SimAdv to define a new adversary Adv′, which is
simply a semi-malicious adversary for ρ. Then we use the semi-malicious security of ρ to obtain the
final simulator Sim∗.

E.5 Security of the VPE Protocol

The goal is to show that the environment’s view (which includes the adversary’s view, along with
the honest parties’ inputs and outputs) in the real world is indistinguisable from its view in the ideal
world of Ff , when using an appropriately defined simulator.

To prove the security under the active corruption, we define five hybrids, where the first hybrid
denotes the real world execution and the last hybrid denotes the simulator in the ideal world. Let
x̂i = (xi, si) be the input of Pi and its private random string si, and let yi be the output of Pi at the
end of the execution. Every message in Πvpe〈ρ〉 from Pi to Pj is of the form (µti,j , πti,j), where t is
the round number, πti,j is a SE-ZK-SNARK proof about a statement involving crs, µti,j and possibly
α (which is part of a message µτj,i for a round τ during the commitment phase). The π component is
absent in the messages sent during the multi-signature phase of the commitment phase. Here, the µ
components are computed with no reference to the π components in any of the messages.

For each i = 0, · · · , 4, let HYBRIDi be the view of the (stand-alone) environment in the experi-
ments summarized below.

1. HYBRID0 is the environment’s view in the execution of Πvpe〈ρ〉 in the real world. The environ-
ment’s view includes the setup, all the messages received by the adversary during the protocol
execution, as well as the honest parties’ inputs and outputs {(xi, yi)}i∈H from this execution.

2. HYBRID1 is generated by the same experiment as HYBRID0 with the following modification: the
simulator (Sim1,Sim2,Sim3) is used to generate the SE-ZK-SNARK scheme’s setup crs as well
as all the proofs πti,j given by the honest parties i ∈ H.

It directly follows from the zero-knowledge property of SE-ZK-SNARK that HYBRID0
c
≈

HYBRID1.
3. HYBRID2 is generated by the same experiment as HYBRID1 with the following modification: In

the commitment phase, for each j ∈ H, Pj uses a commitment to a dummy string as cj . (Note

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:33

that in this hybrid the proofs are already generated by a simulator; the simulator takes cj as an
input, and does not need the message or randomness used to generate cj .)

From the hiding property of COM, we have HYBRID1
c
≈ HYBRID2.

4. HYBRID3 is in the Fvpe〈ρ〉-hybrid model, with a non-blackbox simulator Sim interacting with the
adversary Adv and the functionality Fvpe〈ρ〉. The details of Sim are shown in Figure 1. Briefly, it
behaves as follows:

Sim simulates the commitment phase execution of the honest parties in HYBRID2 faithfully (as
it no more depends on their inputs).
It uses an extractor for SE-ZK-SNARK system to extract the corrupt parties’ inputs and ran-
domness for ρ from the commitment phase, and forwards it to Fvpe〈ρ〉.
It continues with the simulation of the execution phase using the honest parties’ messages
received from Fvpe〈ρ〉, by adding simulated proofs to them. In this phase Sim simply verifies
all the proofs πti,j sent by each corrupt party Pi to any honest party Pj , and if any verification
fails, it sends (ABORT, j) to Fvpe〈ρ〉.

To complete the proof, we need to argue that HYBRID2
c
≈ HYBRID3.

Extraction from a Tree of Proofs. We describe an efficient procedure to extract witnesses from a
“tree of proofs,” when the proofs are given using a SE-ZK-SNARK system with additive polynomial
overhead extraction. Consider a rooted tree Q, with an NP relation Ru associated with each node u of
the tree such that (φ,w) ∈ Ru only if φ = (crs, x) and for all v ∈ chldrn(u), VerifyRv (φv, πv, crs) =
1 (additional conditions may be included), where φv = fv(φ,w), πv) = gv(φ,w) for some efficiently
computable functions fv, gv . Our goal is to extract a consistent set of witnesses wv for all the nodes v
in the tree, from an adversary who gives a proof πv0 for a statement φv0 , where v0 is the root of the
tree, such that (i) if u = parent(v), then (φv, wv) ∈ Rv, where, for v 6= v0, φv = fv(φu, wu) with
u = parent(v).

We consider an adversary who is given an auxiliary input z ← Z , a simulated CRS crs, and also
a set of trapdoors trapID∗ for a set of identities ID∗ (for simplicity we consider an a priori fixed set
ID∗, which suffices for our purposes). For brevity, we omit identities and trapID∗ from the description
below, with the understanding that all the proofs are with respect to specific identities (associated
with the nodes) that are not contained in ID∗. We shall define a set of machines Av , Ev for each node
in the tree Q as follows. Each Av will be defined as a PPT machine that will output a statement-proof
pair (φv, πv) for the relation Rv, and Ev is the extractor guaranteed to exist by Definition 12, such
that RT(Ev) ≤ RT(Av) + p(λ).

Av0 is the original adversary Adv which, given inputs (z, crs) and a random tape rv0 outputs
(φv0 , πv0). For all other nodes v in Q we inductively define Av as follows, in terms of Au and
Eu, where u = parent(v): It takes an input (z, crs) and a random tape rv = ru||rv, (length
of rv to be bounded below), such and runs Eu(z, crs, ru; rv) to obtain (φu, πu, wu), and outputs
(φv, πv) = (fv(φu, wu), gv(φu, wu)).

We point out that, thanks to the additive overhead extraction property, Av remains a polynomial
time adversary. Let q = p+ q0 be a polynomial where p is as in the definition of additive overhead
extraction, and q0 is an upperbound on the time needed to compute fv and gv for any node in the
tree (q is fixed independent of the adversary). Inductively, suppose that for a node u at a depth
d, RT(Au) ≤ RT(Av0) + dq(λ) (base case being d = 0 for u = v0). If v is a child of u, then
RT(Av) ≤ RT(Eu)+q0(λ) ≤ RT(Au)+p(λ)+q0(λ) ≤ RT(Av0)+(d+1)q(λ), by the definition
of Av, the additive overhead guarantee, and the inductive assumption and the definition of q. Also,
w.l.o.g, we keep the length of the random tapes (for Eu and Av) upperbounded by the running time
of the machines.

ICALP 2018

XX:34 The Bottleneck Complexity of Secure Multiparty Computation

Our final extraction procedure consists of Eu hardwired for all nodes u in Q. On input (z, crs, r)
it sets rv0 = r (where v0 is the root of Q), samples rv of the appropriate lengths for each node v,
defines rv to be the concatenation of ru for all ancestors u of v in Q, and runs Eu(z, crs, ru; rv) to
obtain wu for each node u. If the proof system used is a Z-auxiliary input SE-ZK-SNARK for the
set of relations {Rv} for nodes v in a polynomially large relation-tree Q, then by a union bound, the
probability that a PPT adversary Adv, given (z, crs) and trapID∗ as above, outputs (φ, π) that verifies
with respect to an id 6∈ ID∗, but the above procedure fails to recover a consistent set of witnesses for
all nodes is negligible.

HYBRID2
c
≈ HYBRID3. We briefly sketch the argument that the view of the environment in HYBRID3

is indistinguisable from that in HYBRID2. The main idea is to ensure that if the proofs and signatures
sent by a corrupt parties to an honest party during the execution phase verify, then the accompanying
message should match what the functionality Fvpe〈ρ〉 would generate and send to the honest party in
that round.

To argue this, we shall use the tree extractor from above again on trees of proofs from corrupt
parties to honest parties, this time with relations of the form Rρi,j,t at the root and consisting of nodes
of the form Rρi′,j′,t′ and Rdown

i′ (with i′ ∈ C, t′ < t). The extracted witnesses include purported values
of x̂i′ and set of messages from honest parties (possibly the empty set) that are “connected to” mt

i,j

in ρ (as well as (simulated) proofs accompanying those messages). The messages from the honest
parties must exactly be the ones that the simulator forwarded from Fvpe〈ρ〉, by the unforgeability of
the signatures.

We shall also argue that the extracted values x̂i′ from the corrupt parties by this extractor must be
same ones as extracted by Sim in the commitment step. This relies on unforgeability of signatures
used during the commitment phase.

Recall the forest obtained from T by deleting the honest parties’ nodes. First consider a corrupt
party i′ that appears in a tree in that forest which is rooted at i∗ 6= 1. In this case, the value x̂i′
extracted (from the commitment phase as well as the execution phase) is related to ci∗ , the aggregated
commitment sent by Pi∗ to its parent (which is an honest party). Due to the unforgeability of the
signature on ci∗ , in all the extractions, x̂i′ will be related to the same value of ci∗ . Further, due to the
binding of COM and the collision-resistance of HASH, the value of x̂i′ itself should be the same in all
extractions.

This does not cover the possibility that if the root is corrupt, it could partition the honest parties
into two sets and run independent executions of ρ with them (which is not allowed in the ideal world).
It is to prevent this that we use a multi-signature in the commitment phase. Consider a corrupt party
i′ in a tree T1 in the forest of corrupt parties, where T1 is rooted at 1, the root of T (T1 exists only
if 1 itself was corrupt). In this case x̂i′ extracted during the commitment phase is bound to α. We
defined the input extraction (in Figure 1) using an arbitrary honest party Pk such that in T , k is
adjacent to a leaf of T1. But the unforgeability of the multi-signature ensures that all honest parties
must agree on the same α. Hence, during the execution phase again, the extracted x̂i′ is bound to
the same α, no matter which honest party is the receiver. As before, due to the binding of COM and
collision-resistance of HASH, this ensures that the value of x̂i′ itself is the same in all extractions.

E. Boyle, A. Jain, M. Prabhakaran, C. Yu XX:35

Commitment Phase. Sim interacts with the corrupt parties on behalf of the honest parties {Pi}i∈H,
acccording to the HYBRID2 experiment. During the commitment phase it simply executes the honest
parties in HYBRID2 faithfully as this execution does not depend on their inputs.
If any of the proofs βi (i ∈ C, parent(i) ∈ H) or γj (parent(j) ∈ C, j ∈ H) fails to verify during the
commitment phase, the corresponding simulated honest party aborts and does not contribute to the
multi-signature. In this case Sim will send (ABORT, i) for all i ∈ H after the commitment phase is
over, and will stop the simulation.

Input Extraction. If the commitment phase completes with all the proofs βi and γj supplied by the
adversary being accepted, Sim will try to extract the inputs x̂i for all i ∈ C, using the tree extractor
(described earlier), as follows.
Let T be the tree used for aggregating the commitments. At the end of the commitment phase, Sim
considers the forest obtained by deleting the set of nodes H from T . Each tree in this forest is denoted
as Ti, where i is the root of that tree. For each tree Ti for i 6= 1, proceed as follows: redefine the
output of the adversary to be just the proof and the statement for the relation Rup

i (i.e., ((crs, ci), βi)),
and the auxiliary input Zi to be all the messages sent to the corrupt parties by Sim (on behalf of honest
parties) prior to that, as well as the common reference string of Πvpe〈ρ〉; define the relation-tree with
Rup
j for all j in Ti, rooted at Rup

i , and invoke the tree extractor for this relation tree and this adversary,
with auxiliary input Zi. If the extraction succeeds, it yields witnesses for all the proofs βj for all j in
Ti, and in particular, x̂j for all parties j in Ti. If P1 is corrupt we define an adversary which outputs a
statement (crs, ck, α) and a proof γk for the relation Rdown

k , where Pk is an (arbitrary) honest party
adjacent to a leaf of T1. We define a relation-tree as follows: it consists of Rdown

j for all j in the path
from k to 1 (the root) and Rup

j for all j ∈ T1 (except j = 1); this tree is rooted at Rdown
k . Then we

invoke the tree-extractor for the adversary with respect to this relation-tree, with auxiliary input Z1
which includes all the messages Sim sent to it till it produced the output. If successful, the extraction
obtains the witnesses for all the proofs γj for all j in the path from parent(k) till the root, and for all
the proofs βj for all j in T1 (except j = 1). The witness for γj for j ∈ chldrn(1) includes x̂1 and the
witnesses for βj include x̂j for all other j in T1.
If all the extractions are successful, Sim forwards the inputs x̂j for all corrupt parties Pj obtained
above are forwarded to Fvpe〈ρ〉.
Execution Phase. Sim simulates the execution phase using the honest parties’ messages received
from Fvpe〈ρ〉 at each round, by adding simulated proofs to them. Also Sim faithfully verifies all the
signatures (ci, σi) and proofs δti,j sent by each corrupt party Pi to any honest party Pj , and if any
verification fails, it sends (ABORT, j) to Fvpe〈ρ〉.

Figure 1 Simulator Sim used in the HYBRID3 (ideal execution of Fvpe〈ρ〉) for proving the security of
Πvpe〈ρ〉.

ICALP 2018

	Introduction
	Our Techniques
	Related Work

	Preliminaries and Definitions
	Bottleneck Complexity

	Lowerbound on Bottleneck Complexity of Distributed Functions
	Incremental FHE
	Definitions
	Construction of IFHE

	Summary of Further Results
	Additional Background
	Security of MPC
	Multisignatures
	Succinct Non-Interactive Arguments of Knowledge
	GSW FHE Scheme

	Proof of Theorem 6
	Formal Definition of Correctness for IFHE Scheme
	Proof of Security

	Semi-Malicious Protocol
	Proof of Security of Semi-Malicious MPC Protocol

	From Semi-Malicious to Malicious Security
	ID-Based SE-ZK-SNARK
	Verifiable Protocol Execution
	Protocol vpe
	Using VPE To Compile From Semi-Malicious to Malicious Security
	Security of the VPE Protocol

