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Abstract. In [8] it was shown that the coin-tossing functionality Fcoin

has limited use in 2-party secure function evaluation (SFE) in the com-
putationally unbounded (a.k.a information-theoretic) setting. Further it
was shown that for Fcoin to be useful in securely realizing any one in a
a large class of symmetric SFE (SSFE) functionalities, a certain compu-
tational assumption (namely the existence of a semi-honest secure OT
protocol) is necessary and sufficient. In this work, we close a gap in the
class of SSFE functionalities for which this result was proven in [8]: we
show that Fcoin can be used to securely realize any SSFE functionality
that cannot be realized in the computationally unbounded setting, if and
only if there exists a semi-honest secure OT protocol.

1 Introduction

Multi-party computation is a central problem in modern cryptography. An im-
portant question regarding secure function evaluation has been to understand
the relative “cryptographic complexity” of the different functions that are evalu-
ated – i.e., secure evaluation of which functions can be reduced to that of which
other functions. While several aspects of this problem have been well-studied
(e.g. [4,5,9,7,6] to name a few) a large number of problems remain open. In par-
ticular, we do not fully understand how, in the probabilistic polynomial time
(PPT) setting, the cryptographic complexity of various functionalities relates
to computational intractability assumptions, though again several works have
resolved this question in various special cases (see for e.g. [1,10]).

In this work, we follow up on [8], which studied the power of the coin-tossing
functionality Fcoin in the 2-party setting. Our focus will be on randomized sym-
metric secure function evaluation (SSFE) functionalities, in which both parties
get the same output. In [8], the following was shown (along with other results):

– A 2-party SSFE functionality with “bi-directional influence” reduces to Fcoin

in the PPT setting if and only if there exists a semi-honest secure OT pro-
tocol.
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The assumption that there exists a semi-honest secure OT protocol (in the
PPT setting) is a classic assumption in the context of secure function evaluation,
comparable in generality to the existence of a one-way function, but stronger.
The notion of reduction here is that of secure reduction in the Universal Com-
position framework.

Here, “bi-directional influence” refers to the case that the output distribu-
tion depends on both parties’ inputs. The class of SSFE functionalities without
bi-directional influence can be “less complex,” and may indeed reduce to Fcoin

unconditionally. On the other hand, some other SSFE functionalities without
bi-directional influence may be complex enough that they require some compu-
tational complexity assumption to reduce to Fcoin. This raises the question if such
reductions are equivalent to other computational intractability assumptions. In
this paper we answer this question in the negative:

– A 2-party SSFE functionality F reduces to Fcoin in the PPT setting, if and
only if,
• either F reduces to Fcoin in the computationally unbounded setting, or
• there exists a semi-honest secure OT protocol.

Since [8] explicitly characterized the class of SSFE functionalities that re-
duce to Fcoin in the computationally unbounded setting, our result completely
resolves the question of which SSFE functionalities reduce to Fcoin under what
computational assumptions. Indeed, our result shows that there is only one rele-
vant complexity assumption in this case, namely, the existence of a semi-honest
secure OT protocol.

1.1 Outline

The main components in proving our main result (Theorem 1) are the following:

– In Section 2 we define a new class of SSFE functionalities with “uni-directional
influence” called oblivious sampling functionalities (Definition 1) that is cru-
cial to our new result.

– Oblivious Sampling functionalities are essentially the ones that the result in
[8] mentioned above, did not cover. This is formalized as Lemma 2.

– Then we go on to show that if an oblivious sampling functionality reduces to
Fcoin, then there must exist a semi-honest secure OT protocol (Lemma 3).

In Section 3 we provide an immediate corollary of our main result (Corol-
lary 2) as well as a generalization (Theorem 3) which replaces Fcoin with a larger
class of SSFE functionalities (called publicly-selectable source, originally defined
in [8] and extended in Section 2).

2 Preliminaries

In this section we introduce important definitions (including some from [8]) that
are required to state and prove our results.



Secure function evaluation functionalities. A (randomized) 2-party symmetric
secure function evaluation (SSFE) functionality Ff is specified by a function
f : X × Y × R → Z.3 The functionality takes inputs x ∈ X from Alice, y ∈ Y
from Bob, uniformly samples r ∈ R and outputs f(x, y, r) to both Alice and
Bob. (If a party is actively corrupt, it can obtain its own output first and decide
whether the output should be delivered to the other party.) We shall write f(x, y)
to denote the distribution of f(x, y, r) when r is sampled uniformly from R.
An example is the common randomness functionality, denoted by Fcoin, with
X = Y = {0}, R = {0, 1}), f(x, y, r) = r.

We shall partition SSFE functionalities into three classes. We say that in
Ff Alice has influence on the output if there exist x′, x′′ ∈ X, and y ∈ Y such
that the distributions f(x′, y) 6= f(x′′, y) (and similarly we define Bob having
influence on the output).

– Uninfluenced functionalities. In this case neither Alice nor Bob has influence
on the output; i.e., the output is from a constant distribution and hence we
can set f(x, y, r) to be f(r).

– Functionalities with unidirectional influence. In this case exactly one party,
say Alice (or Bob), has influence on the output. We shall denote the output
distribution as f(x) (or f(y)) in this case. By abuse of notation, we will use
the same notation to denote a random variable drawn from this distribution.

– Functionalities with bidirectional influence. In this case both parties have
influence on the output.

Oblivious Sampling. In order to prove our results, we define a new class of SSFE
functionalities with unidirectional influence called oblivious sampling function-
alities. Intuitively, in these functionalities, Alice decides the distribution from
which the common output is sampled, but Bob does not fully learn which dis-
tribution the output comes from.

Towards formally defining this class, we require the notion of a non-redundant
input. Let Ff be a 2-party SSFE functionality with unidirectional influence.
Then x is a redundant input if there exists a set X ′ ⊆ X such that for each
x′ ∈ X ′, f(x′) 6= f(x), but f(x) is a convex combination of {f(x′)|x′ ∈ X ′} (i.e.,
f(x) =

∑
x′∈X′ αx′f(x′) for αx′ > 0 such that

∑
x′∈X′ αx′ = 1).

Definition 1. A 2-party SSFE functionality Ff with unidirectional influence
(say Alice has influence) is called an Oblivious Sampling functionality if there
exist two non-redundant inputs x0, x1 such that

3 In this work, unless otherwise specified, we allow functionalities to be randomized
by default. A “symmetric” functionality is one which gives the same output to both
parties, and we restrict our general definition to such functionalities. Finally, as
in [8] and related works, we shall always consider X,Y,R,Z to be finite and of
constant size independent of the security parameter that appears in the definition of
security; also the probabilities involved are constant. However, the results do extend
to the case when these sets are polynomially large in the security parameter, and the
probabilities are such that the outcome for a “non-redundant” input (x, y) cannot be
approximated as a convex combination of other inputs within an inverse polynomial
statistical distance.



– ∃z′ Pr[f(x0) = z′] 6= Pr[f(x1) = z′] (i.e., f(x0) 6= f(x1)), and
– ∃z Pr[f(x0) = z],Pr[f(x1) = z] > 0 (i.e., supports of f(x0) and f(x1) inter-

sect).

From a characterization in [8], it follows that Oblivious Sampling function-
alities are not UC-securely reducible to Fcoin in the computationally unbounded
setting (publicly-selectable sources, as defined below, are the only SSFE func-
tionalities which are). A modification of the proof there could be used to show
that one-way functions must exist for such a reduction to be possible in the PPT
setting. What we shall show is that, in fact, a semi-honest OT protocol must
exist for such a reduction.

We also note that Oblivious Sampling functionalities are not complex enough
to be complete in the computationally unbounded setting. Since the characteriza-
tion in [5] of complete SSFE functions in the semi-honest security setting requires
both parties to have more than one input value,4 there is no semi-honest secure
reduction of say, OT to an Oblivious Sampling functionality; and therefore there
is no UC-secure of reduction of OT to an Oblivious Sampling functionality (as
OT is deviation-revealing [12]). This makes it non-trivial to prove that such a
reduction in the PPT setting implies the existence of a semi-honest OT protocol.

Publicly-selectable sources. [8] defined an SSFE functionality to be a publicly-
selectable source if it is of the form Ff where f(x, y, r) = (g(x), h(g(x), r))
(possibly relabeled using an output alphabet), for some functions g and h (or
with Alice’s and Bob’s roles interchanged). That is, the function’s output distri-
bution for different values of x must either be identical (when g(x) = g(x′)) or
have disjoint supports (when g(x) 6= g(x′)). We slightly extend this definition so
that Ff is called a publicly-selectable source if F ′f obtained by restricting Ff to
non-redundant inputs has the same property.

Definition 2. A 2-party SSFE functionality Ff with unidirectional influence
(say Alice has influence) is called a publicly-selectable source if, for every two
non-redundant inputs x0, x1 such that f(x0) 6= f(x1), supports of f(x0) and
f(x1) are disjoint (i.e., 6 ∃z Pr[f(x0) = z],Pr[f(x1) = z] > 0).

Note that with this modification in the definition, an oblivious sampling
functionality could alternately be defined as an SSFE functionality with unidi-
rectional influence that is not a publicly-selectable source (as redefined here).

We point out that any publicly-selectable source functionality UC-securely
reduces to Fcoin by a protocol in which the party with the influence specifies
one of the non-redundant inputs, and then the two parties use Fcoin to sample
an outcome from that distribution. Indeed, it follows from the characterization
in [8] that these are the only SSFE functionalities which can be UC-securely
reduced to Fcoin.

4 [5] showed that an SSFE functionality is semi-honest complete iff there exist
x0, x1, y0, y1, z, such that Pr[z|x0, y0],Pr[z|x0, y1] > 0 and Pr[z|x0, y0] Pr[z|x1, y1] 6=
Pr[z|x0, y1] Pr[z|x1, y0].



Secure Reductions. We use standard security notions, that are summarized in
Appendix A. We say that a functionality F UC-securely reduces (or simply, re-
duces) to a functionality G if there exists a universally composable protocol that
securely realizes F , in which the parties are allowed access to ideal instances of
the functionality G. We distinguish between security in the probabilistic poly-
nomial time (PPT) setting — in which the adversaries and the environment —
are restricted to be PPT, and the computationally unbounded setting.

A functionality is called trivial if it can be UC-securely realized by a protocol
in which the parties use only a plain communication functionality to interact
with each other. For finite functionalities as we consider, the class of trivial
functionalities remains the same in the PPT and computationally unbounded
settings. In particular, based on the characterization in [12] it is easy to see that
the 2-party SSFE functionalities that are trivial are unidirectional functionalities
in which one party, say Alice, can determine the outcome as a deterministic
function of its input (and may in addition have redundant inputs).

Oblivious Transfer. We shall refer to the oblivious transfer or OT functionality
which takes two bits (x0, x1) as input from Alice, a single bit b from Bob as input,
and outputs xb to Bob, but nothing to Alice. (Note that this is not an SSFE
functionality, because it is not symmetric.) The only computational intractability
assumption that is referred to by our results is that there exists a protocol that
is a secure realization of the OT functionality against semi-honest adversaries
in the PPT setting. It is known that this is equivalent to the existence of an
OT protocol that is secure against active adversaries as well, if restricted to the
standalone security (as opposed to UC security) case (and even in a “black-box”
sense [3]).

3 Our Results

In this section we describe our main results, which are proven in the subsequent
sections.

Theorem 1. If an SSFE functionality F reduces to Fcoin in the PPT setting,
then either F is reducible to Fcoin in the computationally unbounded setting or
there exists a semi-honest secure OT protocol.

Our main contribution is to recognize the gap left behind by the results in
[8] which only addressed the case of SSFE functionalities F with bi-directional
influence. We fill this gap by identifying oblivious sampling functionalities (Def-
inition 1) as an interesting class of SSFE functionalities, and showing that if
such a functionality reduces to Fcoin, then there exists a semi-honest secure OT
protocol (Lemma 3).

We note that if a semi-honest secure OT protocol exists, then it is known
that Fcoin is complete in the PPT setting and a hence Fcoin is useful for realizing
a functionality like OT [11]. Hence we have the following corollary of the above
theorem.



Corollary 2 The following statements are equivalent:

1. Some 2-party SSFE functionality F that is not UC-reducible to Fcoin in the
computationally unbounded setting, reduces to Fcoin in the PPT setting.

2. There exists a semi-honest secure OT protocol (in the PPT setting).
3. Every 2-party SSFE functionality reduces to Fcoin in the PPT setting.

Finally, we can extend the above results to a wider class of functionalities
than just Fcoin. In particular, we show the following.

Theorem 3. If G is a publicly-selectable source, and an SSFE functionality F
reduces to G in the PPT setting, then either F is reducible to G in the computa-
tionally unbounded setting or there exists a semi-honest secure OT protocol.

To prove this we show that any non-trivial publicly-selectable source G is
“equivalent” to Fcoin in that either functionality can be reduced to the other
(Lemma 1).

4 Proofs

In this section we prove Theorem 1 and Theorem 3. But first we prove the
following simple lemma that will be useful in both proofs.

Lemma 1. For any publicly-selectable source G, in the computationally un-
bounded (as well as PPT) setting, G reduces to Fcoin; also, Fcoin reduces to G,
unless G is trivial.

Proof. W.l.o.g, let Alice be the party whose input may have influence on the
output in G. Let D denote the set of output distributions for non-redundant in-
puts for Alice. Note that since G is a publicly-selectable source, the distributions
in D have disjoint supports.
G reduces to Fcoin: this follows from a simple protocol for G as follows (we omit
the routine security analysis):

– On input x, Alice determines the unique convex combination of distribu-
tions in D that equals the output distribution for x. The uniqueness is a
consequence of those distributions having disjoint supports.

– Alice samples an element from D according to its weight in the above convex
combination, and announces it. (We remark that a cheating Alice could use
any strategy to choose an element from D; however it can be mapped to
simply choosing an input and then following the protocol honestly.)

– Alice and Bob obtain coins from Fcoin, and use them to sample an outcome
from the announced distribution.

Fcoin reduces to G, unless G is trivial: G is trivial iff every distribution in D has

zero entropy. Otherwise the following is a secure protocol5 for Fcoin using G
5 Note that in a secure realization for Fcoin (without guaranteed output delivery)

either party is allowed to abort the protocol, possibly after seeing the outcome of
the protocol. This is the standard UC security guarantee for 2-party functionalities
(and more generally, when there is no honest majority assumption).



(again, we omit the standard security analysis). Briefly, in this protocol the
parties apply a von Neumann extractor to the outcome sampled from G, to
obtain a fair coin.

– Let x be a fixed non-redundant input for Alice such that the output distri-
bution for x is in D and has positive entropy. Let Z0 ⊆ Z be a subset of the
outcomes so that for input x, the probability that the outcome is in Z0 is p,
0 < p < 1. Let Z1 = Z\Z0.

– Alice and Bob repeat the following until they are “satisfied”:

– Alice sends x to G twice.
– If in either instance, the output from G is not from the support of the

distribution corresponding to x, Bob aborts the protocol. Note that since
G is a publicly-selectable source, this essentially forces Alice to either
send an input equivalent to x or probabilistically abort.

– Else, if exactly one of the outputs is from Z0 and one from Z1 then the
parties are satisfied

– If the first and second outputs in the last pair of invocations of G were in Z0

and Z1 respectively, the common output is 0; else (the outputs where in Z1

and Z0 respectively) the common output is 1.

Since p is a constant independent of the security parameter, this protocol runs
in expected constant number of rounds, and except with negligible probability,
ends in a polynomial number of rounds. ut

4.1 Proof of Theorem 1

We start with the following classification of 2-party (randomized) SSFE func-
tionalities.

Lemma 2. Every 2-party SSFE functionality falls into one of the following cat-
egories.

1. UC-reduces to Fcoin (in the computationally unbounded setting).
2. An oblivious sampling functionality.
3. A functionality with bi-directional influence.

Proof sketch: This follows from the partitioning of SSFE functionalities into (a)
uninfluenced functionalities, (b) functionalities with unidirectional influence, and
(c) those with bidirectional influence (see Section 2). As noted in Section 2, an
uninfluenced SSFE functionality amounts to sampling from a fixed distribution,
and this readily UC-reduces to Fcoin. Hence functionalities of type (a) fall into
Category 1. For a functionality F of type (b), if F is a publicly-selectable source,
then again it falls into Category 1, by the first part of Lemma 1. On the other
hand if F of type (b) is not a publicly-selectable source, then as pointed out
after Definition 2, it is an oblivious sampling functionality and hence falls into
Category 2. Finally (c) is the same as Category 3. �



Given the above classification we prove Theorem 1 by considering function-
alities in each of the above categories separately.

– Category 1. Since F in this category is UC-reducible to Fcoin in the compu-
tationally unbounded setting, the condition in the theorem is satisfied.

– Category 2. If Fcoin is useful for UC-securely realizing a functionality F in
this category, and therefore in particular F UC-securely reduces to Fcoin,
then below we shall give a semi-honest secure OT protocol.

– Category 3. In [8] it has already been shown that if a functionality in this
category reduces to Fcoin, then there exists a semi-honest secure OT protocol.

Thus to complete the proof of Theorem 1 it remains to show the following.

Lemma 3. If an oblivious sampling functionality F has a UC-secure protocol
in the Fcoin-hybrid model, then there exists a semi-honest secure OT protocol.

Proof. Since F is an oblivious sampling functionality, it is an SSFE functionality
Ff with unidirectional influence (w.l.o.g, assume that Alice’s input influences
Bob’s output) such that there exist two non-redundant inputs x0, x1 ∈ X and
an output z ∈ Z, such that the distributions f(x0) 6= f(x1) and z falls in the
intersection of the supports of f(x0) and f(x1).

Suppose π is a protocol in Fcoin-hybrid that securely realizes F . Before we
specify and analyze our protocol, we elaborate on what it means for π to securely
realize F : there exists a simulator SAπ , such that for any environment and corrupt
Alice, it will be indistinguishable whether Alice is taking part in an execution
of π or Alice is taking part in an execution simulated by SAπ . (Similarly, there
is a simulator SBπ for corrupt Bob.) This simulator SAπ behaves as follows: it
interacts with corrupt Alice simulating to her Bob’s messages in π, while also
interacting with the ideal functionality F playing Alice’s role. At some point SAπ
would send an input to F on behalf of Alice, and obtain an outcome (which Bob
also obtains and outputs to the environment). We use the following observation
about the input that SAπ sends to F , when corrupt Alice follows the protocol π
honestly. Here, two inputs x and x′ are called equivalent if the distributions f(x)
and f(x′) are identical.

Claim. Consider the ideal execution involving a corrupt Alice, SAπ and the ideal
functionality F . If corrupt Alice follows π honestly using a non-redundant input
x, then the input that SAπ sends to F is, except with negligible probability,
equivalent to x.

Proof. Let αx′ be the probability with which SAπ sends the input x′ to F . Then
the resulting output distribution is

∑
x′∈X αx′f(x′). However, for the simulation

to be good, we require this to be negligibly different from f(x). Consider the set
X ′ of all inputs not equivalent to x. Since x is not redundant, f(x) lies outside the
convex hull of the set of distributions {f(x′)|x′ ∈ X ′}. Since the probabilities
are constant (independent of the security parameter), the Euclidean distance
between f(x) (considered a point in the space R|Z|) and this convex hull is some
constant, say `. Then, the distribution

∑
x′∈X αx′f(x′) has a Euclidean distance



of at least `(
∑
x′∈X′ αx′) from f(x). Since this distance must be negligible (as the

Euclidean distance is at most twice the statistical distance), and ` is constant,
it must be that

∑
x′∈X′ αx′ is negligible. In other words, except with negligible

probability SAπ sends an input equivalent to x, completing the proof of the claim.
ut

To show that there exists a semi-honest secure protocol for OT, we shall
show that there is such a protocol for the functionality Funi-AND, which takes a
bit each from Alice and Bob and outputs their logical AND to Bob (Alice gets
an empty output). (This is enough since it is easy to see that in the semi-honest
case OT reduces to Funi-AND.) Consider the following protocol for Funi-AND.

Let Alice’s input be x∗ ∈ {0, 1} and Bob’s input be y∗ ∈ {0, 1}. Let π be
a UC-secure protocol for an oblivious sampling functionality F , with two
non-redundant inputs x0 and x1 such that f(x0) 6= f(x1) and z is in the
support of both f(x0) and f(x1).

For i = 1 to k
Until Alice and Bob are “satisfied”

Alice picks bi ← {0, 1}, and executes π with Bob, with Bob imple-
menting Fcoin, with input xi := xbi
If y∗ = 0, then

Bob executes the protocol π with Alice, implementing Fcoin him-
self, and obtains output ẑ.

Else (y∗ = 1),
Bob runs the simulator SAπ for a corrupt Alice in π, until the
simulator extracts an input x̂i; the simulator expects a response
from F on sending this input to it.

Bob samples ẑ from f(x̂i), and feeds this back to the simulator
as the output from F .
Bob continues executing the simulator until the end of the pro-
tocol.

If ẑ = z then Alice and Bob are satisfied, else not.
Alice sends w = x∗ ⊕ b1 ⊕ b2 ⊕ . . .⊕ bk to Bob.
If y∗ = 0 Bob outputs 0, else he outputs w ⊕ b̂1 ⊕ b̂2 ⊕ . . . ⊕ b̂k, where the
bit b̂i is 0 iff x̂i = x0.

We shall argue that if π is a secure protocol for F , then this protocol is a
semi-honest secure protocol for Funi-AND in the PPT setting.

Firstly, we show that the protocol is correct: for any pair of inputs, the
outputs of the protocol is the same as that of the ideal functionality Funi-AND.
Alice produces an empty output in the protocol and in the ideal execution. When
y∗ = 0, Bob’s output is 0 in both cases. It only remains to analyze the case when
y∗ = 1. For this case, we argue that in the protocol, x̂i = xi for all i (except
with negligible probability), so that Bob’s ouput is indeed x∗ as it will be in the
ideal execution. This follows from the above claim regarding the correctness of
the input x extracted by the simulator SAπ , and a union bound over i = 1 to k.



It remains to consider the case when exactly one of Alice and Bob is passively
corrupt (the case when both are corrupt being trivial). In each case, we need to
show that the view of the corrupt party can be simulated based on the corrupt
party’s input and output (and given those, independent of the input of the other
party).

If Alice is corrupt, consider a simulator which simply runs our protocol with
Bob’s input set to (say) 0, and sends Alice’s input to Funi-AND. By the correctness
of the protocol, we need only argue that the view of Alice is nearly the same as
in the simulation for y∗ = 0 and y∗ = 1. Clearly this is true when y∗ = 0. On
the other hand, Alice’s view is nearly identical when y∗ = 1 and y∗ = 0 by the
indistinguishability guarantee of the simulator SAπ .

If Bob is corrupt, consider the following (semi-honest) simulation. If y∗ =
1, then the simulator sends 1 to Funi-AND and obtains x∗ in response; then it
faithfully runs our protocol with Alice’s input set to x∗. If y∗ = 0, then the
simulator obtains no information from Funi-AND; in this case it simply picks an
arbitrary input for Alice, say 0, and runs our protocol faithfully. Note that this
has the effect that the last message sent in the protocol when x∗ = 1 could
be wrongly distributed. However we argue that the last message when x∗ = 1
is nearly identically distributed as when x∗ = 0, conditioned on Bob’s view in
the rest of the protocol. For this, we first replace each execution of π in our
protocol as well as in our simulation with a simulation using SBπ interacting
with an instance of the ideal functionality F . This causes a negligible change in
the two distributions. Then, for an execution of π, conditioned on Bob’s view
(in which the only information about each bi is the fact that the response from
the ideal functionality F is z), p := Pr[bi = 0] = Pr[f(x0) = z]/(Pr[f(x0) =
z] + Pr[f(x1) = z]), and Pr[bi = 1] = 1 − p (independently for each i), for

some constant (i.e., independent of k) p, with 0 < p < 1. Then |Pr[
⊕k

i=1 bi =

0] − Pr[
⊕k

i=1 bi = 1]| = |(p − (1 − p))k| is negligible, or in other words
⊕k

i=1 bi
is close to a uniformly distributed bit. Thus the last message sent out by Alice
is nearly identically distributed for x∗ = 0 and x∗ = 1. ut

4.2 Proof of Theorem 3

Theorem 3 extends Theorem 1 to allow any publicly-selectable source G in place
of Fcoin. We show that it follows from Theorem 1 and Lemma 1. If F reduces
to a publicly-selectable source G in the PPT setting, then using Lemma 1, F
reduces to Fcoin in the PPT setting. By Theorem 1, then either there is a semi-
honest secure protocol for OT, or F reduces to Fcoin in the computationally
unbounded setting. In the former case we are done. In the latter case, if G is not
trivial then by Lemma 1 again, we have that F reduces to G in the computa-
tionally unbounded setting. On the other hand, if G is trivial, then so must F be
(since only trivial functionalities can be reduced to trivial functionalities, even
in the PPT setting [12]), and then again F reduces to G in the computationally
unbounded setting.



5 Conclusions and Open Problems

This work closes a gap left in the recent work of [8], thereby characterizing
the computational assumption necessary and sufficient for reducing any SSFE
functionality to Fcoin (or to any publicly-selectable source). The main technical
contribution in this work is to identify a new class of functionalities called obliv-
ious sampling functionalities, and to provide a semi-honest secure protocol for
OT, assuming that an oblivious sampling functionality reduces to Fcoin.

Despite our complete understanding regarding the question of reduction to
Fcoin and other publicly-selectable sources, several other aspects of randomized
SSFE functionalities remain relatively less understood. In particular, the ques-
tion of reduction to functionalities other than publicly-selectable sources remains
unexplored. Also, we leave open the question of extending our current charac-
terization to functionalities beyond SSFE functionalities. Finally, by considering
reductions under other security notions (like semi-honest security), we come
across more open problems for randomized functionalities. In particular, it is
not known which SSFE functionalities are trivial in the semi-honest security
model.

We hope that our techniques – especially, the identification of oblivious sam-
pling functionalities, and the resulting classification of SSFE functionalities –
will add to the tools that will aid in resolving these questions.
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A Security Definitions

We follow standard conventions and terminology for defining security of proto-
cols for multi-party computation tasks. For easy reference we reproduce these
definitions as given in [8], whose results we improve up on.

A protocol is secure if for every adversary in the real world (in which parties
execute a protocol), there is an adversary, or simulator, in the ideal world (in
which the task is carried out on behalf of the parties by a trusted third party
called a functionality) that achieves the same effect in every environment. De-
pending on the nature or adversary/simulator and the environment, we consider
three different kinds of security notions.

– A semi-honest or passive adversary (in the real or ideal execution) is one
which is not allowed to deviate from the (real or ideal) protocol. Semi-honest
or passive security is achieved if for every semi-honest adversary in the real
world there is a semi-honest simulator in the ideal world as above.

– A standalone environment is one which does not interact with the adversary
during the execution of the protocol. Standalone security is achieved if we
restrict the security requirement to standalone environments; in this case
the simulator can rewind the adversary without the environment detecting
it. In this work we do not consider this notion of security.

http://eprint.iacr.org/


– Universally composable (UC) security [2] is achieved when the security re-
quirement is met against all adversaries (possibly active) and all environ-
ments (possibly not standalone); the simulator is allowed to be an active
adversary. In this case there must exist a straight-line blackbox simulation
(i.e., the simulator internally runs the adversary as a blackbox and never
rewinds it).

In this work, we exclusively consider static adversaries, who do not adaptively
corrupt honest parties during the execution of a protocol.

PPT vs. computationally unbounded setting. In the PPT setting we restrict
all entities – the environment, the adversary and simulator – to probabilistic
polynomial time computation. In the computationally unbounded setting all
these entities can be computationally unbounded. (However, for the purpose of
the results in this work, one could require the simulator in the computationally
unbounded setting to be efficient (PPT) with blackbox access to the adversary.
Then, if a protocol is secure in the computationally unbounded setting, it will
be secure in the PPT setting too.

Hybrids. The plain model is a real world in which protocols only have access
to a simple communication channel; a hybrid model is a real world in which
protocols can additionally use a particular trusted functionality. While hybrid
worlds are usually considered only for UC security, we also use the terminology
in the setting of standalone security. We note that protocols for non-reactive
functionalities (i.e., those which receive input from all parties, then give output,
and then stop responding) do securely compose even in the standalone security
setting.

Reduction. We say that a functionality F reduces to a functionality G if F can
be UC-securely realized in the G-hybrid. In the real world protocol, that parties
have access to a trusted implementation of G in addition to the secure point-to-
point communication channel to securely realize F . Suppose π is a UC-secure
protocol for F in the G-hybrid. Then, parties generate a transcript based on their
local views and π can also call the trusted G implementation. The functionality
G can be any arbitrary functionality, i.e. it need not be a two party function,
parties need not play fixed roles while calling G and, in fact, both parties can
provide multiple inputs while performing a call to G.

UC-security in Hybrid worlds. As mentioned earlier, we shall only consider static
corruption of parties, i.e. at the beginning of an execution the adversary an-
nounces which party it wants to corrupt and cannot corrupt any further party
during the execution of the protocol. To show that a protocol π is a UC-secure
realization of F in the G hybrid, we need to show that for every adversarial
strategy in the G-hybrid there exists a simulator in the Ideal world such that
any environment is unable to distinguish the Real execution from the Ideal exe-
cution. In this work, we shall restrict ourselves to reductions where both F and



G are (at most) two party functionalities. Henceforth, we present the definition
restricted to this particular case. Suppose Alice is corrupted by the adversary
and Bob is honest. The simulator SAπ for Alice in the Ideal execution, inter-
acts with the adversarial Alice so that no environment can distinguish the Real
from the Ideal execution. The simulator also forwards communication between
adversarial Alice and the environment. Note, in particular, it implies that the
simulator cannot be rewinding in this case. During this execution, the calls to
the G functionality made by the adversarial Alice is answered by the simulator
SAπ . At some point during the interaction with adversarial Alice, the simulator
sends an input x to the ideal functionality F and receives and answer z. The
simulator continues the execution with the adversarial Alice and terminates af-
ter generating a complete transcript (we can assume that the adversarial Alice
strategy always completes a protocol).

If there exists an efficient SAπ which can make the Ideal execution indistin-
guishable from the Real execution to any environment, then F is secure in the
G-hybrid when Alice is corrupt. Additionally, if there exists an efficient simulator
SBπ which shows that F is secure in the G-hybrid when Bob is corrupt then π is a
UC-secure protocol for F in the G-hybrid. Intuitively, the existence of a simula-
tor shows that any effect achieved by the adversarial party could be reflected in
the Ideal world itself. The additional power of the simulator lies in the fact that
it receives the calls to G, i.e. it gets to see the input sent by the adversarial party
to G, and it decides the reply to this call. So, for example, when G is Fcoin, the
simulator can determine all the coin outcomes at the beginning of the execution
and this could provide additional power to the simulator over the parties in the
G-hybrid. Another example is when G is an oblivious sampling functionality, so
it is not possible to be always certain of the input to G just from the output
given by G, the simulator gets additional information when it sees the query
made to G.

B Representative Functionalities

It is instructive to consider some representative examples of SSFE functionalities
to form an intuition about the classes of functionalities under consideration. The
functions will be represented by a matrix where the (i, j)-th entry represents the
output distribution when Alice uses input i and Bob uses input j. A distribution
is represented as a vector where the k-th entry represents the probability of the
k-th output symbol. In most of the examples below, Bob has a single possible
input, and hence the matrix has a single column.

Influence of Inputs. Below we list three functionalities with no influence, and
two functionalities with uni- and bi- directional influence respectively. The first
function corresponds to Fcoin– it is an inputless function that outputs an unbiased
coin. The second function is a communication channel which sends Alice’s input
to Bob. Finally, the third function represents the function in which Alice and
Bob each has a bit as input and the functionality provides them the XOR of the
bits.



(〈1/2, 1/2〉)
(
〈1, 0〉
〈0, 1〉

) (
〈1, 0〉 〈0, 1〉
〈0, 1〉 〈1, 0〉

)
Publicly-selectable sources. If the output of the function uniquely determines the
input of the function (after we have already removed redundant inputs), then the
function is a publicly-selectable source. In other words, in a publicly-selectable
source the output distributions of the non-redundant inputs should have disjoint
supports. (

〈1, 0〉
〈0, 1〉

) (
〈1/2, 1/2, 0, 0〉
〈0, 0, 3/4, 1/4〉

)
Oblivious sampling. Following are some oblivious sampling functionalities.(

〈1/2, 1/2〉
〈1/4, 3/4〉

) (
〈1/2, 1/2〉
〈1, 0〉

) (
〈1/2, 1/2, 0〉
〈0, 1/2, 1/2〉

)
Redundancies. Consider the following function F with unidirectional influence: 〈1, 0〉

〈1/2, 1/2〉
〈0, 1〉


This function is not an oblivious sampling function, even though the output

distributions from different inputs have overlapping support. This is because the
second row of this matrix represents a redundant input as it can be expressed
as a convex linear combination of the first and the last rows. So, after removal
of the redundant input, the function is seen to be a publicly-selectable source.
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