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Abstract. Leakage-proof hardware tokens have been used to achieve
a large number of cryptographic tasks recently. But in real life, due to
various physical attacks, it is extremely difficult to construct hardware
devices that are guaranteed to be leakage-proof. In this paper, we study
the feasibility of general two-party computation using leaky hardware
tokens.

Our main result is a completeness theorem that shows that every non-
trivial leaky two-party functionality can be used for general secure
computation. In fact, the protocol we construct is non-interactive and
unconditionally secure. There are no restrictions on the leakage functions
associated with the token, except that it does not render the tokens
trivial, by revealing its entire secrets to the adversary.

1 Introduction

Hardware tokens have received considerable attention in recent years ( [1,3,4,6,
7, 9–11, 14, 17, 18, 20, 22, 24, 29, 33, 34], to name a few). In earlier works, specific
hardware devices were used to achieve specific cryptographic tasks. Later on,
as the potential of hardware devices was better understood, general hardware
tokens were used to achieve general tasks. For example, in [20], among other
things, the authors show feasibility of an unconditional, non-interactive UC
protocol for general functionalities, using stateful hardware tokens.

In all these works, the hardware-tokens used are considered to be leakage-
proof: there is a function f associated with the token (programmed with an input
from the party creating the token) such that a party who receives it can only
access the input/output behaviour of f(·), and cannot learn anything else about
the input already programmed into it.

Although theoretically clean, in practice it is difficult to construct hardware
devices that are truly leakage-proof. In particular, once the hardware device is in
the adversary’s possession, it can be subjected to physical attacks, like measuring
power consumption, that can reveal secret information. (See, for example, [5,28,
35] and references therein, for various physical attacks.) Given that hardware
devices cannot be guaranteed to be leakage-proof in real life, the natural question
that arises is whether we can use such leaky tokens to achieve cryptographic tasks.



In this paper, we study the feasibility of using such leaky tokens for construct-
ing general secure two-party computation protocols. Our focus is on theoretical
feasibility and not practical efficiency, and we consider information-theoretic
security. We think of a leaky token as a hardware one-time implementation of a
two-party functionality f(·, ·). The sender of the token chooses an input x and
creates such a token. The receiver can query the token with input y, at which
point the token outputs f(x, y). To model leakage, the adversary is allowed to ask
a (possibly randomized) “leakage query” L ∈ L, where L is a class of allowable
leakage functions. To this, the token responds with the leakage L(x). Once the
token is accessed (using a legitimate input or a leakage function), it loses all
information about x.

We point out a few aspects of our leakage model. On the positive side,
the leakage functions are unrestricted (computationally unbounded, randomized,
communicating arbitrary amount of information), and we prove the best possible
result in that, unless a leakage function that completely reveals the functionality
of the token is available to the adversary (in which case the hardware could
as well be replaced with plain messages), the tokens can be used for secure
evaluation of any function. On the other hand, we model the leakage function as
acting on a single token at a time. But we do allow the adversary to adaptively
choose the leakage function for each token, based on the information gathered
from previously accessed tokens. Also, our leakage is one-time. We leave it for
future work to consider models of multi-round leakage and joint leakage which
would allow the adversary to, among other things, leak correlated information
from multiple tokens.

Our Results. We construct a non-interactive, unconditionally secure general
two-party secure computation protocol in the leaky token hybrid model.
Instead of using leaky tokens which implement specific functionalities, we prove
the following general completeness theorem: every non-trivial leaky two-party
functionality is complete for unconditionally secure two-party computation. A
two-party functionality is called “trivial” if there is a leakage function in the
allowable leakage class that exhausts all the entropy from a token that was
initialized with a uniformly chosen sender’s input. Otherwise, the functionality
is called non-trivial.

Related Work. There has been a long line of work on leakage resilient primitives,
for example [12, 23, 32] and several more recent works. We mention just a few
of them which are more relevant to our setting. Hardware leakage has been
theoretically modeled and studied in several works including [15, 21, 23]; these
works consider a model with no protected parts (or tokens), but with significantly
restricted leakage functions. The study of leakage resilience for interactive
protocols was initiated in [13], which constructed secure multi-party computation
protocols using leaky tokens, but relying on computational assumptions. The
problem of tamperable tokens was raised in [8], who showed that certain token
functions are naturally resistant to certain restricted classes of tampering, or
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can be encoded to become so; this is applicable only when the tampering or
leakage function applied to the token is from a well-behaved class. Hardware
tokens have also been used to construct One Time Programs (OTP). An OTP
for a function f allows a party to evaluate f on a single input x chosen by
the party dynamically. OTPs are typically implemented as a package containing
some software along with some hardware tokens. OTPs were introduced in [18].
In [20], OTPs were used to construct an unconditionally secure non-interactive
protocol for two-party computation.

On the question of completeness of functionalities, building on his earlier
results [25, 26], in 2000, Kilian [27] presented an elegant protocol relying on
Nash equilibrium, to show that any non-trivial asymmetric functionality is
complete for security against malicious adversaries; later, [30,31] provide further
completeness results. The protocols presented in these works are all interactive.
A non-interactive completeness theorem for non-trivial functionalities was first
shown in [2]. However, all off these results are in the non-leaky model. Our
theorem can be seen as a generalization of the completeness of non-trivial
asymmetric functionalities [2, 27] to the leaky setting.

1.1 Technical Overview

Our goal is to use leaky tokens to construct a non-interactive, unconditionally
secure two-party protocol for general functionalities. In [20], the authors
construct such a protocol in the One Time Memory (OTM) hybrid model,
which was introduced in [18]. The OTM functionality is a two-party functionality
which, on input a pair of bits (b0, b1) from the sender and a bit c from the receiver,
returns bc to the receiver. That is, an OTM behaves like an implementation of
Oblivious Transfer (OT), but with the following crucial difference: in OT, after
the receiver specifies its input bit and receives its output bc, the sender gets an
acknowledgment that the receiver has received its output. However, in OTM, no
such acknowledgment is sent to the sender (for more on the consequences of this
crucial difference, see [18] and Section 4.2 in [20]). In light of the construction
given in [20], to achieve our goal, it is sufficient to realize the OTM functionality
using leaky tokens.

We consider a token to be a one-time evaluable implementation of a
deterministic, constant-sized function f of two variables, into which one variable
has been programmed. A user can evaluate the token only once, on any
input of its choice. But, we allow an adversarial user to adaptively specify
leakage functions for each token (which can be randomized and computationally
unbounded), in lieu of feeding it a valid input. We shall show that any such
token is complete for token-based non-interactive secure computation, as long as
none of the allowed leakage functions fully reveals the information programmed
into the token. Here, completeness means that any function that takes inputs
from two parties and provides output to only one of them (the receiver) can be
securely implemented using a token-based non-interactive protocol, even if the
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receiver is malicious and can leak from the tokens, adaptively. (The sender could
be malicious as well.)

Technically, the work most relevant to ours is a recent result of [2]. There,
a similar result is shown when there is no leakage from the tokens; also, a
deterministic extraction procedure given there turns out to be useful for us.
But handling arbitrary leakage presents several new technical challenges.

As a simple example, consider the following kind of token. It implements
1-out-of-m string OTM: i.e., the receiver can obtain one of m strings that are
programmed into the token. It also permits a simple leakage function, which
allows a corrupt receiver to learn m − 1 out of the m strings. If m = 2 this
function is the same as 1-out-of-2 OTM. But, for m ≥ 3, can such a token be
used to implement (non-leaky) 1-out-of-2 bit OTM?

It can in fact be argued that such a functionality, when implemented by
a trusted third party, cannot be used to obtain OTM, even using interactive
protocols! Suppose there is such an OTM protocol. Since the sender should not
learn the receiver’s input, the receiver will be able to run two simultaneous
executions of this protocol, with two different inputs, while producing the same
view for the sender; if the two executions have two different inputs to a 1-
out-of-m OTM session, the receiver will use the leakage facility to learn both
the inputs (since it is allowed to learn m − 1 ≥ 2 inputs). This would enable
the receiver to complete both executions and learn both inputs of the sender,
contradicting the security of the protocol. However, the token model differs from
the standard hybrid model in a crucial way. In the standard hybrid model, both
the parties learn about when each session is initiated as well as when the outputs
are delivered in each session. In contrast, in the token model, the sender does
not learn at what point — and in particular, in what order — the various tokens
are accessed by the receiver.

This leads us to the following simple protocol for OTM based on this token.
The sender sends two tokens for 1-out-of-m string OTM. Each of the m strings
in the first token, contains a random bit; in addition, the first of these m strings
contains a pointer to (i.e., the index of) one of the m strings in the next token.
Similarly, the second token contains m random bits, and in addition the first bit
is bundled with a pointer to one of the m strings. The random bit in the first
token that is pointed to by the second token is used to mask the sender’s first
input; similarly, the second input is masked by the random bit in the second
token that is pointed to by the first token. The masked values are sent along
with the tokens. An honest receiver who wants to access the first input would
open the pointer stored in the second token first, and find out the position in
the first token where the mask bit is. Note that the order in which the receiver
opens the two tokens reveals its input, but this remains hidden from the sender.

Now, in this protocol, a malicious receiver needs to access (using a leakage
function) one of the two tokens at first; in doing so, it can learn up to m − 1
strings in that token. But with probability 1/m, the one string that it leaves
out is the one that is pointed to by the other token. Thus, with probability at
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least 1/m, the receiver learns only one of the two inputs of the sender. This
uncertainty can be amplified by using the XOR of many such bits as the mask,
to obtain a statistically secure bit OTM protocol.

The above class of functions and leakage are quite well-behaved. But in
general, the leakage can be randomized, and comes from an infinite class of
possible functions. Our main contribution is to show that, in spite of this, any
token with non-trivializing leakage can be used to implement the above well-
behaved class of functions and leakage. Our protocol is oblivious to the class of
leakage functions (but does depend on the function f).4

The basic idea behind our protocol for implementing (leaky) 1-out-of-m
OTM is similar to (but more sophisticated than) that of the 1-out-of-2 OT
protocol in [2]. As in the OTM protocol there, roughly, our goal is to force the
adversary to suffer a small amount of uncertainty about one of the inputs of
the sender, and then amplify this uncertainty using many executions combined
using a deterministic extraction strategy, which takes a sum of (small degree)
products. (Standard randomized extraction is not applicable in this setting since
the adversary can see the seed before it accesses the tokens, and hence the seed
is not independent of the entropy source.) But an additional challenge in our
setting is that all of the leakage functions available to the adversary are not
available to a honest receiver. We need to translate this arbitrary gap between
the power of the adversary and the honest receiver to that between the two in
the leaky 1-out-of-m OTM functionality.

Another technical difference between the setting of [2] and ours is the
following: when there is no leakage present (as in [2]), the non-triviality
requirement on f implies that there are two specific inputs for the receiver which
are “undominated” such that a secure protocol can be designed by ignoring the
other inputs for f . That is, the honest receivers can be required to feed only one
of these two inputs to f . In contrast, when leakage functions (even deterministic
ones) are present, this is no more the case. This is exemplified by the leaky
1-out-of-m OTM itself: if the honest receiver is restricted to using only m − 1
of the possible m inputs, then a leakage function would let a malicious receiver
learn all the relevant secrets from the tokens, and then run the protocol with
different inputs. Thus, in our case it is important that the honest receiver uses
its entire domain of inputs.

Our solution involves a collection of m maps from the range of the function f
to Zp (for an appropriately chosen p), where m is the number of inputs to f that
an honest receiver has. The tokens from the sender are grouped into “bundles” of
2m tokens each, two for each map. Within a bundle, the output from a token is
meant to be mapped to Zp using the map associated with that token, and then
multiplied together. (The deterministic extraction in our case involves adding
together the products from each bundle, modulo p.)

4 For setting concrete parameters, one would need a concrete bound on the value of
the entropy parameter measuring the non-triviality of the function in the presence
of leakage.
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The non-triviality of the function given the leakage function family guar-
antees that for every admissible leakage function L, there is some y such that
H(f(X, y)|L(X)) is lowerbounded by a constant. Suppose ŷ be the y in a bundle
for which this uncertainty is accumulated the most. The maps above are chosen
in such a way that a fraction of this uncertainty will be preserved in the product
corresponding to ŷ, while for every other y, at least with a constant probability,
its corresponding product will become fixed to 0. Thus, even given the product
corresponding to all other y’s (which is fixed to 0 with some probability), there
is some uncertainty in the product corresponding to ŷ. Finally, for each y,
the products from all the bundles are summed together to extract a mask
corresponding to y. The above property of the maps ensures that, for some
ŷ, the extracted value is close to uniformly random, even conditioned on the
extracted values corresponding to the other m− 1 y’s.

2 Preliminaries

Protocols and Security. We follow standard definitions of protocol execution
and security as specified in [19] and [16]. We will use FOTM to denote the OTM
functionality of [18, 20]. We will also use a generalization of OTM to the case
of 1-out-of-m OTM, where the sender holds m inputs (instead of 2), out of
which the receiver selects one. The reason we focus on the One Time Memory
functionality is because of the following theorem:

Theorem 1 ( [20],Theorem 13). Let f(x, y) be a non-reactive, sender-
oblivious, polynomial-time computable two-party functionality. Then there exists
an efficient, statistically UC-secure non-interactive protocol which realizes f in
the FOTM-hybrid model.

Modeling Leakage. Let f : X×Y → Z be a constant-size deterministic function.
Let L be a set of possibly randomized leakage functions. To model leakage, we
define the token functionality F (f,L). The functionality receives x ∈ X from the
sender. An honest receiver sends y ∈ Y to F (f,L) and obtains f(x, y). A malicious
receiver, on the other hand, may query F (f,L) with a leakage function L ∈ L and
obtain L(x). If L is a randomized leakage function, L(x) specifies a distribution,
and the ideal functionality samples w ← L(x) and returns it to the receiver. For
conciseness of notation, for randomized leakage functions L, we will use L(x) to
also mean a sample from that distribution.

Functionality F (f,L):

– On receiving the message (input, sid, Pj , x) from party Pi, store the tuple (Pi, Pj , sid, x)
and send (received, Pi, sid) to party Pj . Ignore all input messages from Pi with
session id sid.

– Honest Query. On receiving (output, sid, Pi, y) from party Pj , if no tuple of the
form (Pi, Pj , sid, x) exists, do nothing. Else, send (output, sid, Pi, f(x, y)) to party
Pj , and delete the tuple (Pi, Pj , sid, x).
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– Leaky Query. On receiving (leak, sid, Pi, L) from party Pj , if L /∈ L or no tuple of
the form (Pi, Pj , sid, x) exists, do nothing. Else, send (leak, sid, Pi, L(x)) to party
Pj , and delete the tuple (Pi, Pj , sid, x).

It is clear that no security is possible if the adversary is allowed arbitrary
leakage queries. For example, if the adversary is allowed to ask the identity map
as its leakage query, then it learns x and renders the functionality ‘trivial’. To
avoid this, we restrict the adversary to use only those leakage queries that leave
some uncertainty in the output corresponding to some Bob’s input y ∈ Y. This
is formalized below.

Definition 1. Let f : X×Y → Z be a constant-size deterministic function, and
let L be a set of functions with domain X. Let X be the uniform distribution
on X. Then, the token functionality F (f,L) is called non-trivial if there exists a
constant c > 0 such that

min
L∈L

max
y∈Y

H(f(X, y) | L(X)) ≥ c.

Amplifying Uncertainty. In our proofs, we will consider random variables
that have constant uncertainty conditioned on the adversary’s view. To amplify
this uncertainty, we will take the sum of an appropriate number of such random
variables. To this end, the following generalization of a lemma from [2] will be
useful.

Lemma 1. Let p be a fixed prime number. For any positive integer N , let
X1, · · · , XN be N independent random variables over the alphabet Zp, such that
for some constant ε > 0, for all i ∈ [N ], for all z ∈ ZNp , Pr[Xi = z] < 1 − ε.
Then the statistical distance between the distribution of

∑N
i=1Xi (summation in

Zp) and the uniform distribution over Zp is negligible in N .

3 Leaky-OTM from Leaky Tokens

In this section we show how to use any non-trivial leaky token to implement

a functionality F̃ (m)
OTM described below. Here, the parameter m is equal to the

number of inputs for (honest) Bob to the token. We leave out from the notation

of F̃ (m)
OTM a parameter d specifying the length of the “messages” that Alice gives

as input to F̃ (m)
OTM. d can be set to any constant in our following construction, by

choosing the parameter p ≥ 2d.

Functionality F̃ (m)
OTM:

– When Bob is honest: function as a 1-out-of-m (string) OTM. i.e., accept m
strings, each d bits long, (x1, · · · , xm) from Alice, and an index i ∈ [m] from Bob.
Output xi to Bob.
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– When Bob is corrupt: function as (m− 1)-out-of-m OTM. Here, Alice’s input
is the same as above; Bob can input any set S  [m] and receive {xj |j ∈ S} as
output.

Let F be any non-trivial leaky token functionality, with m inputs for (honest)

Bob. The idea behind our protocol for F̃ (m)
OTM is a generalization of an earlier

protocol for OTM from non-trivial (non-leaky) tokens [2]. The main complication
in allowing leakage is that honest Bob does not have access to all the inputs an
adversarial Bob can have. In particular, unlike in [2], it is not true that we can
find two “undominated” inputs for Bob. Indeed, restricting to any strict subset
of the m inputs can render the function trivial in the presence of the leakage
functions. This complicates our construction when m > 2. (When m = 2, one
could use the protocol in [2], but our protocol does not become identical to that
in [2] if we set m = 2.)

While the protocol in [2] considered tokens in bundles of two, we shall use
bundles of size 2m. Further, unlike in that protocol where the same set of maps
were used in all tokens to map Bob’s (input, output) pairs to elements in a field,
we use m different sets of maps for the 2m tokens in the bundle, to map these
pairs to Zp (for a large enough prime constant p). We give the formal description
of the protocol below, and defer the proof of security to Appendix B.

Set up: Let F = (f,L) be a non-trivial leaky functionality evaluating a function
f : X× Y → Zp for some prime p5 and allowing a set of leakage functions L such that
for all L ∈ L, miny∈YH(f(X, y)|L(X)) > c for some constant c, where X is uniformly
distributed over X.

Alice can send tokens for F with an input x ∈ X of her choice. An honest Bob can
evaluate the token once with y ∈ Y of his choice to obtain f(x, y). Let m = |Y | be the
number of inputs for (honest) Bob. An adversarial Bob can evaluate L(x) for a leakage
function L ∈ L of his choice.

Output Maps: Define m maps M1, · · · ,Mm, of the form Mi : Y×Zp → Zp as follows.
Fix an arbitrary input x∗ ∈ X, and let z∗j = f(x∗, yj). For i = 1 to m and j = 1 to m,
define

Mi(yj , z) =

{
z − z∗j + 1 if j = i,

z − z∗j if j 6= i

This ensures that for each i, j, Mi(yj , ·) is a permutation over Zp, and for each yi, there

is a map (namely Mi) such that Mi(yi, f(x∗, yi)) = 1 but Mi(yj , f(x∗, yj)) = 0 for all

j 6= i.

Alice’s program: Alice’s input is m elements in Zp, (s1, · · · , sm).

1. Alice carries out the following computations:

5 W.l.o.g, the output alphabet can be considered Zp by choosing a prime p such that
for each y ∈ Y, |{f(x, y)|x ∈ X}| ≤ p.
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• For ` = 1 to κ, for i = 1 to m and t ∈ {1, 2}:
• Pick x`,i,t ← X.
• For j = 1 to m, let Rj`,i,t = Mi(yj , f(x`,i,t, yj)).

• For j = 1 to m:

• Let R
j
` = Πm

i=1Π
2
t=1R

j
`,i,t.

• let rj =
∑κ
`=1R

j
` .

• For j = 1 to m, let zj = sj + rj .

2. Alice creates several F-tokens with the following inputs:

• Tokens labeled (`, i, t) for ` ∈ [κ], i ∈ [m], t ∈ {1, 2}, with inputs x`,i,t.
• mdlog pe more tokens to “communicate” the bits of (z1, · · · , zm): in a token to

send a bit 0, use input x̂0, and in a token to send a bit 1, use input x̂1, where
x̂0 and x̂1 are such that f(x̂0, y∗) 6= f(x̂1, y∗) for some y∗.

Bob’s program: Bob’s input is an index c ∈ [m].

1. Bob accesses the F-tokens sent by Alice with the following inputs:

• For the tokens labeled (`, i, t) for ` ∈ [κ], i ∈ [m], t ∈ {1, 2}, use input yc to
obtain an output z`,i,t = f(x`,i,t, yc).

• Use input y∗ in the remaining tokens to learn (z1, · · · , zm) (or just zc).

2. For all (`, i, t) let Rc`,i,t = Mi(yc, z`,i,t); let R
c
` = Πm

i=1Π
2
t=1R

c
`,i,t.

3. Let rc =
∑κ
`=1R

c
`. Then output sc = zc − rc.

4 OTM from Leaky-OTM

Suppose Alice and Bob parties have access to parallel copies of F̃ (m)
OTM, for some

constant m. If m = 2, F̃ (m)
OTM is the same as OTM. In this section we show

how to implement OTM non-interactively, using parallel copies of F̃ (m)
OTM and a

single message from Alice to Bob, even when m ≥ 3. The protocol uses the
deterministic extraction strategy of [2]. The protocol crucially relies on the fact

that Alice does not learn when Bob accesses various copies of F̃ (m)
OTM (which

are implemented using tokens). Correspondingly, Alice never learns when Bob
accesses the OTM that is being implemented.

Overview. Firstly, note that implementing OTM using F̃ (m)
OTM tokens (for m ≥ 3)

is in fact impossible using a non-interactive protocol in which the order in which
Bob accesses the token is not adaptive: Bob could mentally run two executions
with two different values for his choice bits. Each execution would require the

honest Bob to access at most one out of m positions in each F̃ (m)
OTM instance. But

an adversarial Bob can access m− 1 ≥ 2 positions in each instance. Thus he can
complete both executions successfully, and learn both inputs of Alice. (A similar

argument can be used to rule out implementing OTM in F̃ (m)
OTM-hybrid is used

9



where Alice learns when Bob accesses an F̃ (m)
OTM instance, even if interaction is

allowed, as long as Bob is computationally unbounded.)

So necessarily we shall need to rely on Bob being able to access the tokens
adaptively, and in different order. This leads us to the following basic idea
underlying our construction. Alice’s inputs are hidden in two tokens, at random
positions. In addition, the first token (in a fixed position) contains a pointer to
the position in the second token where an input is hidden; similarly, the second
token (in a fixed position) has a pointer to the position in the first token that
holds the other input. To access the first input, Bob first opens the second token
at the fixed position, to recover a pointer to the first token, and then accesses
the first token to recover the input stored in that position from the first token.
Similarly, if Bob wants to access the second input, he should first open the first
token, recover a pointer that tells him which position in the second token he
should access, and then open the second token at that position.

A malicious Bob must first open one of the two tokens. When he opens one
token, and recovers m − 1 positions, there is a 1/m probability that the one
position that he did not access is the one containing Alice’s input in that token.
This gives us a weak form of OTM, in which, with some probability, Bob learns
at most one secret.

To amplify this to a full-fledged OTM using a non-interactive protocol,
several individual secrets are additively combined to form a random mask that
is then used to mask the actual input of Alice. We give the formal description
of the protocol below, and defer the proof of security to Appendix C.

Alice’s program: Alice’s input is two bits s0, s1.

1. Alice carries out the following computations:
• For i = 1 to κ,
• pick x0i , x

1
i ← [m] and for each j = 1 to m, pick b0i,j , b

1
i,j ← {0, 1}.

• let a0i,1 = (x0i , b
0
i,1) and a1i,1 = (x1i , b

1
i,1); for j = 2 to m, let a0i,j = (0, b0i,j)

and a1i,1 = (0, b1i,j); for j = 2 to m.
• let R0

i = b0i,x1i
and R1

i = b1i,x0i
.

• Let r0 =
∑κ
i=1R

0
i and r1 =

∑κ
i=1R

1
i (summation in Z2).

• Let z0 = s0 + r0 and z1 = s1 + r1.
2. Alice invokes, in parallel, several copies of F̃ (m)

OTM with the following inputs:

• Sessions labeled (i, β) ∈ [κ]× {0, 1} with input (aβi,1, . . . , a
β
i,m).

• Another session of F̃ (m)
OTM to “communicate” the bits (z0, z1): Alice can use

(z0, z1, 0, · · · , 0) as her input in this session. (An adversary may receive both
these bits, if m ≥ 3.)

Bob’s program: Bob’s input is a choice bit b.

1. Bob invokes the same copies of F as Alice with the following inputs:
– For i = 1 to κ,
• If b = 0, first access the session numbered (i, 1) with input 1, and obtain
x1i , and then access the session numbered (i, 0) with input x1i to obtain
the bit R0

i .
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• If b = 1, first access session (i, 0) with input 1, recover x0i and then access
the session (i, 1) with input x0i to recover R1

i .

– Recover zb from the last session of F̃ (m)
OTM, using b as input.

2. After all sessions of F̃ (m)
OTM are completed, compute rb =

∑κ
i=1R

b
i , and sb = zb − rb

(all operations in Z2). Output sb.
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A Protocols and Security

Following in [19] and [16], a protocol is represented as a system of probabilistic
interactive Turing machines (ITMs), where each ITM represents the program to
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be run within a different party. Specifically, the input and output tapes model
inputs and outputs that are received from and given to other programs running
on the same machine, and the communication tapes model messages sent to and
received from the network. Adversarial entities are also modeled as ITMs.

To argue security of a protocol, we proceed as follows: first, an ideal
functionality is defined, which is a “trusted party” that is guaranteed to
accurately capture the desired functionality. Then, the process of executing a
protocol in the presence of an adversary is formalized. This is called the real-life
model. Finally, an ideal process is considered, where the parties only interact
with the ideal functionality, and not amongst themselves. Informally, a protocol
realizes an ideal functionality if running of the protocol amounts to “emulating”
the ideal process for that functionality

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe
the ideal and real world executions. The real-life model consists of the two parties
P1 and P2, and the adversary A. Adversary A can corrupt any party. When
A corrupts party Pi , it learns Pi’s entire internal state, and takes complete
control of Pi’s input/output behaviour. Let realΠ,A(κ, x, y) be the distribution
that describes the joint distribution of the outputs of the honest party and the
adversary when protocol Π is run with security parameter κ, inputs x and y for
P1 and P2 respectively, and adversary A.

The ideal process consists of two “dummy parties” P̂1 and P̂2, the ideal
functionality F , and the ideal world adversary S, called the simulator. In the
ideal world, the uncorrupted dummy parties simply hand over their inputs to F .
As in the real world, adversary S can corrupt any party. Once it corrupts party P̂i
, it learns P̂i’s input, and takes complete control of its input/output behaviour.
Let idealF,S(κ, x, y) be the random variable describing the joint distribution of
the outputs of the honest party and the adversary in the ideal world.

We say that a protocol Π securely realizes functionality F if for every real
world adversary A, there exists a (possibly unbounded) ideal world simulator
S, such that for all inputs x and y, the ensembles { realΠ,A(κ, x, y) }κ and
{ idealF,S(κ, x, y) }κ are statistically close.

B Proof of Security of the Leaky-OTM Protocol

B.1 Proof of Lemma 1

In this section, present the proof of Lemma 1. The proof is along the lines of
the proof for a simpler for this lemma, from [2]. First, we prove a special case of
Lemma 1, obtained by restricting the support of all random variables to a set of
two elements.

Lemma 2. Let p be a fixed prime number. For any positive integer N , let
X1, · · · , XN be independent random variables over the alphabet Zp, such that
there exist α, β ∈ Zp and some constant ε > 0, such that for all i ∈ [N ], the
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support of Xi is {α, β}, and for all i ∈ [N ], and ε ≤ Pr[Xi = α] ≤ 1 − ε. Then

the statistical distance between the distribution of
∑N
i=1Xi (summation in Zp)

and the uniform distribution over Zp is negligible in N .

Proof. Firstly, define X ′i = Xi − β, and z = α − β, so the support of X ′i is
{0, z}. Also, let δi := Pr[X ′i = z]. For w ∈ Zp, we analyze Pr [

∑
iX
′
i = w]. Let

u = wz−1 (where u ∈ Zp is treated as an integer in {0, · · · , p − 1}). Let Sk(ξ)
be the formal polynomial in ξ defined as

S(ξ) = ΠN
i=1((1− δi) + δiξ).

Let Cd be the coefficient of ξd in S(ξ). Then Pr [
∑
iX
′
i = w] =

∑
t≥0 Ctp+u.

But we have
∑
t≥0 Ctp+u = 1

p

∑p−1
k=0 ω

−kuS(ωk), where ω = ei2π/p, because

ω−ku · (ωk)tp+u = 1 and
∑p−1
k=0 ω

kr = 0 for all r ∈ Zp \ {0}. Hence,6

Pr

[∑
i

X ′i = w

]
=
∑
t≥0

Ctp+u =
1

p

p−1∑
k=0

ω−kuS(ωk)

=
1

p
+

1

p

p−1∑
k=1

ω−kuS(ωk) because S(1) = 1

=
1

p
± 1

p

p−1∑
k=1

|S(ωk)|

=
1

p
± 1

p

p−1∑
k=1

(1− α)N where α := 1− |(1− ε) + εω|

=
1

p
± (1− α)N

The bound on |S(ωk)| ≤ (1− α)N used above holds because, for 1 ≤ k ≤ p− 1,
for all i ∈ [N ], |(1 − δi) + δiω

k| ≤ 1 − α, since for each i, δi ∈ [ε, 1 − ε]. Note
that α is a constant (since p and ε are constants independent of N) such that
0 < α < 1, and hence (1−α)N is negligible in N . This concludes the proof that∑
iX
′
i, and hence

∑
iXi, are distributed almost uniformly over Zp.

Proof of Lemma 1. Now we complete the proof of Lemma 1, using Lemma 2.
Here, the random variables Xi can all have different supports, but each support
should be of size at least two. With each Xi, we associate a pair (zi0, z

i
1) as the

two values in Zp which Xi has the maximum probability of taking (breaking
ties arbitrarily). Note that Xi should have a mass of at least ε/p on each of
zi0, z

i
1. Since there are only a constant number (i.e.,

(
p
2

)
) possible values for the

pairs (zi0, z
i
1), we can fix a pair α, β such that at least a constant fraction of

the N Xi’s have (zi0, z
i
1) = (α, β). Let the random variable T = {i|(zi0, zi1) =

6 The notation a = b± c = b± d stands for a ∈ [b− c, b+ c] ⊆ [b− d, b+ d].
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(α, β) and Xi ∈ {α, β}}. There is a constant γ such that with all but negligible
probability |T | ≥ γN . Conditioned on this, for each setting of T , we can write∑N
i=1Xi = Y0 +

∑γN
i=1 Yi, where the Yi are independent of each other, and Yi,

for i > 0, satisfy the condition of Lemma 2. Then it follows from Lemma 2 that∑γN
i=1 Yi is almost uniformly ditributed over Zp, and hence so is

∑N
i=1Xi. Since

this holds for every value of T (when |T | ≥ γN), we conclude that
∑N
i=1Xi is

almost uniformly ditributed over Zp.

B.2 Simulation and Proof

Description of the Simulator. To construct the simulator, we follow the approach
of [2] and divide the invocation of F (f,L) into the following imaginary phases:

– Communication Phase: W.l.o.g., we assume that Bob first schedules the
communication sessions, and uses the input y∗ prescribed for the communi-
cation sessions. (Any other strategy is “dominated” by this, in that it can
be simulated by an adversary as above.)

– Phase 1: This phase starts when Bob invokes one of the 2κm sessions, and
lasts until, for c1κ values of ` ∈ [κ], at least one x`,i,t has been invoked. Here,
c1 is a constant to be determined later.

– Phase 2: This phase consists of the remaining invocations of F (f,L).

When the adversary queries the token x`,i,t with leakage function L, some
constant entropy is left in one of the columns, i.e., there exists j ∈ [m] such that
H(f(x`,i,t, yj) | L(x`,i,t)) > c. We show later that with constant probability, this

entropy is translated into uncertainty about R
j

` . To formalize this notion, we
have the following definition.

Definition 2. For ` ∈ [κ] and j ∈ [m], let (x, t) be the first session invoked by
the adversary in bundle `. Further, let L be the leakage query. We say that “` is
potentially-j-undetermined” if H(f(x`,i,t, yj) | L(x`,i,t)) > c.

As the functionality is not trivial, each token invoked by the adversary leaves
some entropy in one of the columns. Thus, for each bundle ` that is invoked
(that is, there exists some token x`,i,t in bundle ` which has been invoked by the
adversary), there is some j ∈ [m] such that ` is potentially-j-undetermined. We
now describe the simulator.

– Communication Phase: Uniformly pick ŝ1, . . . , ŝm ← Zp, and faithfully
simulate all communication sessions using these as the sender’s inputs.

– Phase 1: To simulate a new session (`, i, t), accept y`,i,t from Bob and return
f(x`,i,t, y`,i,t) for a uniformly chosen input x`,i,t in X.

– Input Extraction: At the end of Phase 1, there exists ̂ ∈ [m], such that at
least c1κ/m bundles invoked by the adversary in Phase 1 are potentially-̂-

undetermined. The simulator sends j = [κ]\{̂} to F̃ (m)
OTM and obtains (m−1)

messages (s1, . . . , ŝ−1, ŝ+1, . . . , sm).

15



– Phase 2: The simulator answers the remaining queries by selecting x`,i,t
uniformly at random, conditioned on rj = sj − ŝj for j 6= ̂.}

The correctness of simulation rests on the following claims about the real
execution.

Claim. In the real execution, the sequence (r1, . . . , rm) is almost (i.e., up to
negligible statistical distance) uniformly distributed over Zmp .

Proof. We will show that for each j ∈ [m], there exist a large number of indices

` ∈ [κ] such that R
j

` has constant entropy, even conditioned on R
j′

` for j′ 6= j.
For a fixed ` ∈ [κ] and j ∈ [m], we say “` is j-good” if the following event occurs:

• x`,j,0 = x∗ and,
• Mi(yj , f(x`,i,t, yj)) 6= 0 for i 6= j and t ∈ { 0, 1 }.
First note that the above event occurs with constant probability. This is

because as the functionality f(·, ·) is not trivial, each column contains at least
two distinct values. Further, as the map Mi(yj , ·) is one-to-one, for at least one
of these distinct values, we have Mi(yj , f(x`,i,t, yj)) 6= 0. Now, conditioned on
the above event, we have that

• Rj
′

` = 0 for j′ 6= j. This is because x`,j,0 = x∗, and therefore,
Mj(yj′ , f(x∗, yj′)) = 0.

• Rj` = z ·Mj(yj , f(x`,j,1, yj)), for some z 6= 0.

Thus, when ` is j-good, R
j

` has at least constant entropy, even given R
j′

`

for j′ 6= j (as R
j′

` = 0 independently of R
j

`). Now, let Sj be the set of indices
which are j-good, i.e., Sj := { ` ∈ [κ] | ` is j-good}. Then, with all but negligible

probability, |Sj | = Ω(κ). We can write rj as rj = uj+vj , where uj :=
∑
`∈Sj

R
j

` .

To show that the rj ’s are (almost) uniformly distributed, it is sufficient to show
that jointly the uj ’s are (almost) uniformly distributed, given the vj ’s. In fact,

even given {Rj` |` 6∈ Sj} (which determines vj) for all j, each element in {Rj` |` ∈
Sj} has at least a constant amount of entropy. The claim now follows directly
from Lemma 1.

Claim. In the real execution, conditioned on a sequence (r1, . . . , rm), the x`,i,t
invoked by the adversary in Phase 1 are almost uniformly distributed.

Proof. To show this, we show that the random variables x`,i,t invoked in Phase
1 are independent of (r1, . . . , rm). Let T ⊂ [κ] be the subset of indices ` such
that after Phase 1, none of the m tokens x`,i,t for i ∈ [m] have been invoked.
Note that |T | = (1− c1)κ. For each j ∈ [m], let Sj ⊂ T be the subset of indices
that are j-good. Then, as before, we can write rj = uj + vj . As before, the ujs
are independent and (almost) uniformly distributed, and thus rj is independent
of all x`,i,t invoked in Phase 1.
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Claim. Let ̂ be defined for the real execution as it is defined in the simulation.
Then r̂ is almost uniformly distributed, even conditioned on (r1, . . . , r̂−1, r̂+1, . . . , rm)
and the adversary’s view in Phases 1 and 2.

Proof. We will analyze queries the adversary makes in Phase 1, and show that

with constant probability, each query leaves some uncertainty in some R
j

` . This
small amount of certainty can then be amplified using Lemma 1. Formally,
consider an index ` ∈ [κ], and let x`,i0,t0 be the first token with index `
invoked by the adversary in Phase 1, using some leakage function L ∈ L.
Since the functionality of the token F is non-trivial, we know that with some
constant probability there is a j ∈ [m] such that L(x`,i0,t0) does not completely
determine f(x`,i0,t0 , yj). Then, we shall argue, with constant probability, x`,i,t
for all (i, t) 6= (i0, t0) will be such that:

• Rj
′

` = 0 for all j′ 6= j (irrespective of x`,i0,t0), and

• Rj` = z · π(f(x`,i0,t0 , yj)), for z 6= 0, and π a permutation.

When the above event occurs, we will say that bundle ` is “j-undetermined”.
Then to complete the argument, we may consider giving the adversary x`,i,t for
all (i, t) 6= (i0, t0) (in addition to L(x`,i0,t0), so that the adversary can compute

z, π and R
j′

` = 0 for all j′ 6= j, and its uncertainty about f(x`,i0,t0 , yj) will

translate to uncertainty about R
j

` .

To see the first point above, note that in this bundle there is some other token
labeled (`, i1, t1) such that i1 = j (if i0 = j as well, we can take t1 = 1 − t0).
With a constant probability (namely 1/|X|), x`,i1,t1 = x∗, so that for all j′ 6= j

we have Rj
′

`,i1,t1
= 0 which implies R

j′

` = 0 (independent of x`,i0,t0).

To see the second point, firstly note that if x`,i1,t1 = x∗, then Rj`,i1,t1 6= 0
(in fact, 1) by choice of Mj . Further, with some constant probability, for all
the tokens with label (`, i, t) in this bundle such that (i, t) 6= (i0, t0) and (i, t) 6=
(i1, t1), we will have Mi(yj , f(x`,i,t, yj)) 6= 0. This is because the set {f(x, yj)|x ∈
X} must necessarily have at least two elements (as otherwise there would not
have been any uncertainty about f(x`,i0,t0 , yj)), and the map Mi(yj , ·) is one-
to-one; so there is at least one value for x`,i,t such that Mi(yj , f(x`,i,t, yj)) 6= 0.

Thus with constant probability, Π(i,t)6=(i0,t0)R
j
`,i,t 6= 0. We take this quantity as

z in the second point above, and take π to be Mi0(yj , ·).
Thus, at the end of Phase 1, there exists an index ̂ such that a constant

fraction of bundles queried by the adversary in Phase 1 are ̂-undetermined. By
Lemma 1, we can conclude that r̂ is (almost) uniformly distributed.

C Proof of Security of the OTM Protocol

We begin by describing the simulator. To do so formally, we divide the

invocations of F̃ (m)
OTM into the following imaginary stages.
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– Communication Phase: W.l.o.g., we assume that Bob first schedules the
communication session. (Any other strategy is “dominated” by this, in that
it can be simulated by an adversary as above.)

– Phase 1: This phase starts when Bob invokes one of the 2κ sessions, and
lasts until, for c1κ values of i ∈ [κ], at least one of the sessions (i, 0) and
(i, 1) has been invoked. Here, c1 is a constant to be determined later.

– Phase 2: This phase consists of the remaining invocations of F̃ (m)
OTM.

The simulator handles the above phases as follows:

– Communication Phase: Uniformly pick z0, z1, and faithfully simulate all
communication sessions using these as the sender’s inputs.

– Phase 1: To simulate a new session (i, β) ∈ [κ] × { 0, 1 }, accept j = j−

from Bob, choose (aβi,1, . . . , a
β
i,m) uniformly at random from the appropriate

domain, and respond to Bob with (aβi,1, . . . , a
β
i,j−1, a

β
i,j+1, a

β
i,m).

– Input Extraction: At the end of Phase 1, there exists a bit b̄ such that there

are at least c1κ/2 indeces i ∈ [κ], such that the adversary invoked (i, b̄)
before invoking (i, 1 − b̄). The simulator sends b := 1 − b̄ to the OT ideal
functionality and obtains input sb.

– Phase 2: The simulator answers the remaining sessions (i, β) by selecting

(aβi,1, . . . , a
β
i,m) uniformly at random, conditioned on rb = sb − zb.

The proof of security relies on the following properties of the real execution:

1. (r0, r1) are uniformly distributed.

2. Conditioned on a particular (r0, r1), the sequences (aβi,1, . . . , a
β
i,j−1, a

β
i,j+1, . . . , a

β
i,m)

revealed to the adversary in Phase 1 are uniformly distributed.
3. Let (b, b̄) be as defined for the simulator at the end of Phase 1. Then rb̄ is

almost uniform even given rb and the adversary’s view in both the phases.

The first point follows directly from the fact that R0
i and R1

i are indepen-
dently and uniformly distributed. To see the second point, let S ⊂ [κ] be the set of
indeces i, such that neither (i, 0) nor (i, 1) was invoked by the adversary in Phase
1. Note that |S| = (1 − c1)κ. We can write rβ = vβ + uβ for β ∈ { 0, 1 }, where

ub =
∑
i∈S R

β
i . As u0 and u1 are independently and uniformly distributed, we

have that (aβi,1, . . . , a
β
i,j−1, a

β
i,j+1, . . . , a

β
i,m) revealed in Phase 1 are independent

of rβ .

Now we come to the third point. There exists b̄ ∈ { 0, 1 } such that c1κ/2
of the sessions i invoked by the adversary are such that the session (i, b̄) was
invoked before session (i, 1− b̄). Following notation in previous section, we will
say that such an index i is partially-b̄-undetermined. Let i be such a partially-b̄-
undetermined index, and let j ∈ [m] be the index whose value is not revealed to

the adversary in session (i, b̄). Consider the event x1−b̄
i = j, which we will refer to

by saying that index i is b̄-undetermined. When this event occurs, the adversary
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remains uncertain about Rb̄i . Further, this event occurs with constant probability
(namely, 1/m). Thus, out of the c1κ/2 partially-b̄-undetermined indeces at the
end of Phase 1, Ω(κ) of them are also b̄-undetermined. Let S ⊂ [κ] be the
set of the b̄-undetermined indeces. Then, we can write rb̄ = ub̄ + vb̄, where
ub̄ =

∑
i∈S R

b̄
i . By Lemma 1, ub̄ is almost uniformly distributed, and hence rb̄ is

almost uniformly distributed.

Non-interactive, Unconditionally Secure Two-Party Computation. Combining
the protocol from this section with Theorem 13 from [20], we have the following
theorem.

Theorem 2. Let f : X × Y → Z be a constant-size deterministic function, and
let L be a set of functions with domain X, such that F (f,L) is a non-trivial leaky
functionality. Let g(x, y) be a polynomial time, two-party functionality where only
the receiver gets the output. Then, there exists a non-interactive, unconditionally
secure protocol that securely realized g(x, y) in the F (f,L)-hybrid model.
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