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Abstract

We present a simple and efficient compiler for transforming secure multi-party computation
(MPC) protocols that enjoy security only with an honest majority into MPC protocols that
guarantee security with no honest majority, in the oblivious-transfer (OT) hybrid model. Our
technique works by combining a secure protocol in the honest majority setting with a protocol
achieving only security against semi-honest parties in the setting of no honest majority.

Applying our compiler to variants of protocols from the literature, we get several applications
for secure two-party computation and for MPC with no honest majority. These include:
• Constant-rate two-party computation in the OT-hybrid model. We obtain a

statistically UC-secure two-party protocol in the OT-hybrid model that can evaluate a general
circuit C of size s and depth d with a total communication complexity of O(s)+ poly(k, d, log s)
and O(d) rounds. The above result generalizes to a constant number of parties.
• Extending OTs in the malicious model. We obtain a computationally efficient pro-

tocol for generating many string OTs from few string OTs with only a constant amortized
communication overhead compared to the total length of the string OTs.
• Black-box constructions for constant-round MPC with no honest majority. We

obtain general computationally UC-secure MPC protocols in the OT-hybrid model that use only
a constant number of rounds, and only make a black-box access to a pseudorandom generator.
This gives the first constant-round protocols for three or more parties that only make a black-box
use of cryptographic primitives (and avoid expensive zero-knowledge proofs).

1 Introduction

Secure multiparty computation (MPC) [47, 25, 5, 13] allows several mutually distrustful parties to
perform a joint computation without compromising, to the greatest extent possible, the privacy of
their inputs or the correctness of the outputs. MPC protocols can be roughly classified into two
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types: (1) ones that only guarantee security in the presence of an honest majority, and (2) ones
that guarantee security1 against an arbitrary number of corrupted parties.

A qualitatively important advantage of protocols of the second type is that they allow each
party to trust nobody but itself. In particular, this is the only type of security that applies to
the case of secure two-party computation. Unfortunately, despite the appeal of such protocols,
their efficiency significantly lags behind known protocols for the case of an honest majority. (For
the potential efficiency of the latter, see the recent practical application of MPC in Denmark [6].)
This is the case even when allowing parties to use idealized cryptographic primitives such as bit
commitment and oblivious transfer.

In this work we revisit the problem of founding secure two-party computation and MPC with no
honest majority on oblivious transfer. Oblivious transfer (OT) [45, 22] is a two-party protocol that
allows a receiver to obtain one out of two strings held by a sender, without revealing to the sender
the identity of its selection. More precisely, OT is a secure implementation of the functionality
which takes inputs s0, s1 from the sender and a choice bit b from the receiver, and outputs sb to the
receiver. Kilian [36] showed how to base general secure two-party computation on OT. Specifically,
Kilian’s result shows that given the ability to call an ideal oracle that computes OT, two parties
can securely compute an arbitrary function of their inputs with unconditional security. We refer to
secure computation in the presence of an ideal OT oracle as secure computation in the OT-hybrid
model. Kilian’s result was later generalized to the multi-party setting (see [18] and the references
therein). Unfortunately, these constructions are quite inefficient and should mainly be viewed as
feasibility results.

When revisiting the problem of basing cryptography on OT, we take a very different perspective
from the one taken in the original works. Rather than being driven primarily by the goal of obtaining
unconditional security, we are mainly motivated by the goal of achieving better efficiency for MPC
in “the real world”, when unconditional security is typically impossible or too expensive to achieve.2

Advantages of OT-based cryptography. There are several important advantages to basing
cryptographic protocols on oblivious transfer, as opposed to concrete number-theoretic or algebraic
assumptions.

• Preprocessing. OTs can be pre-computed in an off-line stage, before the actual inputs
to the computation or even the function to be computed are known, and later very cheaply
converted into actual OTs [2].

• Amortization. The cost of pre-computing OTs can be accelerated by using efficient methods
for extending OTs [3, 32, 30]. In fact, the results of the current paper imply additional
improvement to the asymptotic cost of extending OTs, and thus further strengthen this
motivation.

• Security. OTs can be realized under a variety of computational assumptions, or even with
unconditional security under physical assumptions. (See [42] for efficient realizations of UC-
secure OT in the CRS model under various standard assumptions.) Furthermore, since the
methods for extending OTs discussed above only require protocols to use a relatively small

1Concretely, in this type of protocols it is generally impossible to guarantee output delivery or even fairness, and
one has to settle for allowing the adversary to abort the protocol after learning the output.

2 Our results still imply efficient unconditionally secure protocols under physical assumptions, such as off-line
communication with a trusted dealer, secure hardware, or noisy channels.
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number of OTs, one could potentially afford to diversify assumptions by combining several
candidate OT implementations [31].

1.1 Our Results

Motivated by the efficiency gap between the two types of MPC discussed above, we present a
simple and efficient general compiler that transforms MPC protocols with security in the presence
of an honest majority into secure two-party protocols in the OT-hybrid model. More generally and
precisely, our compiler uses the following two ingredients:

• An “outer” MPC protocol Π with security against a constant fraction of malicious parties.
This protocol may use secure point-to-point and broadcast channels. It realizes a functionality
f whose inputs are received from and whose outputs are given to two distinguished parties.

• An “inner” two-party protocol ρ for a (typically simple) functionality gΠ defined by the outer
protocol, where the security of ρ only needs to hold against semi-honest parties. The protocol
ρ can be in the OT-hybrid model.

The compiler yields a two-party protocol ΦΠ,ρ which realizes the functionality f of the outer protocol
with security against malicious parties in the OT-hybrid model. If the outer protocol Π is UC-
secure [10] (as is the case for most natural outer protocols) then so is ΦΠ,ρ. It is important to note
that ΦΠ,ρ only makes a black-box use of the outer protocol Π and the inner protocol ρ,3 hence the
term “compiler” is used here in a somewhat unusual way. This black-box flavor of our compiler
should be contrasted with the traditional GMW compiler [25, 24] for transforming a protocol with
security in the semi-honest model into a protocol with security in the malicious model. Indeed, the
GMW compiler needs to apply (typically expensive) zero-knowledge proofs that depend on the code
of the protocol to which it applies. Our compiler naturally generalizes to yield MPC protocols with
more than two parties which are secure (in the OT-hybrid model) in the presence of an arbitrary
number of malicious parties.

Combining our general compiler with variants of protocols from the literature, we get several
applications for secure two-party computation and MPC with no honest majority.
Revisiting the classics. As a historically interesting example, one can obtain a conceptually
simple derivation of Kilian’s result [36] by using the BGW protocol [5] (or the CCD protocol [13])
as the outer protocol, and the simple version of the GMW protocol in the semi-honest OT-hybrid
model [25, 26, 24] as the inner protocol. In fact, since the outer protocol is not required to provide
optimal resilience, the BGW protocol can be significantly simplified. The resulting protocol has
the additional benefits of providing full simulation-based (statistical) UC-security and an easy
generalization to the case of more than two parties.
Constant-rate two-party computation in the OT-hybrid model. Using a variant of an
efficient MPC protocol of Damg̊ard and Ishai [20] combined with secret sharing based on algebraic
geometric codes due to Chen and Cramer [14] as the outer protocol, we obtain a statistically UC-
secure two-party protocol in the OT-hybrid model that can evaluate a general circuit C of size s
with a total communication complexity of O(s). (For simplicity, we ignore from here on additive
terms that depend polynomially on the security parameter k, the circuit depth, and log s. These

3Furthermore, the functionality gΠ realized by ρ is also defined in a black-box way using the next-message function
of Π. This rules out the option of allowing the compiler access to the code of f by, say, incorporating it in the output
of gΠ.
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terms become dominated by the leading term in most typical cases of large circuits.) This improves
over the O(k3s) complexity of the best previous protocol of Crépeau et al. [18], and matches the
best asymptotic complexity in the semi-honest model.

By using preprocessing to pre-compute OTs on random inputs, the protocol in the OT-hybrid
model gives rise to a (computationally secure) protocol of comparable efficiency in the plain model.
Following off-line interaction that results in each party storing a string of length O(s), the parties
can evaluate an arbitrary circuit of size s on their inputs using O(s) bits of communication and no
cryptographic computations. Note that the preprocessing stage can be carried out offline, before
the actual inputs are available or even the circuit C is known. Furthermore, the cost of efficiently
implementing the off-line stage can be significantly reduced by using techniques for amortizing the
cost of OTs on which we improve. The above results extend to the case of more than two parties,
with a multiplicative overhead that grows polynomially with the number of parties.

Unlike two-party protocols that are based on Yao’s garbled circuit method [47], the above
protocols cannot be implemented in a constant number of rounds and require O(d) rounds for a
circuit of depth d. It seems that in most typical scenarios of large-scale secure computation, the
overall efficiency benefits of our approach can significantly outweigh its higher round-complexity.
Extending OTs in the malicious model. Somewhat unexpectedly, our techniques for obtaining
efficient cryptographic protocols which rely on OT also yield better protocols for realizing the OTs
consumed by the former protocols. This is done by using an outer protocol that efficiently realizes
a functionality which implements many instances of OT. More concretely, we obtain a protocol for
generating many OTs from few OTs whose amortized cost in communication and cryptographic
computation is a constant multiple of the efficient protocol for the semi-honest model given by
Ishai, Kilian, Nissim, and Petrank [32]. Using the protocol from [32] inside the inner protocol,
we can upgrade the security of this OT extension protocol to the malicious model with only a
constant communication and cryptographic overhead. This improves over a recent result from [30]
that obtains similar efficiency in terms of the number of hash functions being invoked, but worse
asymptotic communication complexity. Our OT extension protocol can be used for efficiently
implementing the off-line precomputation of all the OTs required by our protocols in the OT-
hybrid model.
Black-box constructions for constant-round MPC with no honest majority. We combine
our general compiler with a variant of a constant-round MPC protocol of Damg̊ard and Ishai [19]
to obtain general computationally UC-secure MPC protocols in the OT-hybrid model that use only
a constant number of rounds, and only make a black-box access to a pseudorandom generator. This
provides a very different alternative to a similar result for the two party case that was recently
obtained by Lindell and Pinkas [38], and gives the first constant-round protocols for three or more
parties that only make a black-box use of cryptographic primitives (and avoid expensive zero-
knowledge proofs).
Additional results. In Section 5 we describe two additional applications: a constant-rate black-
box construction of OT for malicious parties from OT for semi-honest parties (building on a recent
black-box feasibility result of [34, 29]), and a construction of asymptotically optimal OT combin-
ers [31] (improving over [30]). In Appendix B we present a two-party protocol in the OT-hybrid
model that uses only a single round of OTs and no additional interaction. (This applies to function-
alities in which only one party receives an output.) In the final version we present a stream-lined
protocol which only makes n + o(n) OT calls, where n is the size of the input of the party which
receives the output.
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1.2 Techniques

Our main compiler was inspired by the “MPC in the head” paradigm introduced by Ishai, Kushile-
vitz, Ostrovsky, and Sahai [35] and further developed by Harnik, Ishai, Kushilevitz, and Nielsen [30].
These works introduced the idea of having parties “imagine” the roles of other parties taking part
in an MPC (which should have honest majority), and using different types of cross-checking to en-
sure that an honest majority really is present in the imagined protocol. Our approach is similar to
the construction of OT combiners from [30] in that it uses an outer MPC protocol to add privacy
and robustness to an inner two-party protocol which may potentially fail.4 A major difference,
however, is that our approach provides security in the malicious model while only requiring the
inner protocol to be secure in the semi-honest model.

The central novelty in our approach is a surprisingly simple and robust enforcement mechanism
that we call the “watchlist” method (or more appropriately, the oblivious watchlist method). In
describing our approach, we will refer for simplicity to the case of two-party computation involving
two “clients” A and B. In our compiler, an outer MPC protocol requiring an honest majority
of servers is combined with an inner two-party computation protocol with security against only
semi-honest adversaries. This is done by having the outer MPC protocol jointly “imagined” by
the two clients. Each server’s computation is jointly simulated by the two clients, using the inner
semi-honest two-party protocol to compute the next-message-functions for the servers. The only
method we use to prevent cheating is that both clients maintain a watchlist of some fraction of
the servers, such that client A will have full knowledge of the internal state of all servers in A’s
watchlist, while client B has no idea which servers are on A’s watchlist. Then client A simply
checks that the watchlisted servers behave as they should in the imagined outer MPC protocol. If a
dishonest client tries to cheat for too many servers, then he will be caught because of the watchlist
with overwhelming probability. On the other hand, since the outer MPC protocol is robust against
many bad servers, a dishonest client must attempt to cheat in the computation of many servers in
order to be able to gain any unfair advantage in the execution of the protocol. Our watchlist-based
method for enforcing honest behavior should be contrasted with the non-black-box approach of the
GMW compiler [25] that relies on zero-knowledge proofs.

It is instructive to contrast our approach with “cut-and-choose” methods from the literature. In
standard cut-and-choose protocols, one party typically prepares many instances of some object, and
then the other party asks for “explanations” of several of these objects. A central difficulty in such
an approach is to prevent the compromised instances from leaking information about secrets, while
combining the un-compromised instances in a useful way (see e.g. [38]). In contrast, our approach
achieves these goals seamlessly via the privacy and robustness of the outer MPC protocol. To
see how our approach leads to efficiency improvements as well, we will make an analogy to error-
correcting codes. In traditional cut-and-choose, one has to prepare many copies of an object that
will only be used once, analogous to a repetition-based error-correcting code. Underlying our
approach are the more sophisticated error-correcting codes that can be used in MPC protocols in
the honest majority setting. While we have to sacrifice some working components (our servers) due
to the watchlists, the others perform useful work that is not wasted, and this allows us to get more
“bang for the buck”, especially in settings where amortization is appropriate.

4This idea is also reminiscent of the player virtualization technique of Bracha [7] and the notion of concatenated
codes from coding theory.
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2 Preliminaries

Model. We use the Universal Composition (UC) framework [10] to formalize and analyze the
security of our protocols. (Our protocols can also be analyzed in the stand-alone setting, using the
composability framework of [9, 24], or in other UC-like frameworks, like that of [43].) The parties in
the protocols have access to (private, point-to-point) communication channels, as well as possibly
one or more ideal functionalities such as OT or broadcast. The UC model is “asynchronous.” The
order of activation of parties can be modeled as controlled by the environment (see [44]), and the
communication channels among parties are adversarially controlled (modeled as ideal functionalities
which explicitly allow the adversary to control them [11]). We shall follow the convention in [11]
that the communication between the parties and the functionalities themselves is ideal (private and
instantaneous), so that any non-ideal behavior (for example, that the adversary can block outputs)
must be explicitly modeled as part of the functionality.

Secure Function Evaluation (SFE) functionalities. For most part, we will be dealing with
multi-party secure function evaluation functionalities, defined in terms of a function f on m inputs,
with m outputs (where m is the number of parties). We consider functionalities which allow the
adversary to block the output to the honest players after receiving its own output. For clarity, we
describe the functionality in more detail below:

Input phase: From each party Pi, the functionality accepts input (input, xi. On receiving each
input it notifies the adversary. The functionality remains in this phase until valid inputs (i.e.,
in the domain of f) from all m parties have been received.

Output phase: On exiting the input phase, the functionality computes (y1, . . . , ym) = f(x1, . . . , xm).
For each i such that Pi is corrupt, send (output, yi) to the adversary. (If the adversary adap-
tively corrupts a player Pi, send yi at that point.) Then, for each i such that Pi is honest, on
receiving instruction (deliver, i) from the adversary send (output, yi) to Pi.

We point out that even if yi is the empty string, the output message is delivered to the party
Pi. This serves as a confirmation to the party that all parties (including the corrupt ones) have
sent their inputs to the functionality, and that the functionality has reached the output phase.

A consequence of the asynchronous UC model is that if multiple functionality instances are
being used by parties in a protocol, they are not co-ordinated together, except as allowed by the
functionalities. Thus the case of SFE functionalities, the adversary can, for instance, choose an
order in which it sends inputs to the functionalities, obtaining output from one functionality before
sending inputs to the next; the outputs to honest parties from all the functionalities can still be
delivered together.

We shall also consider functionalities which are more general than the SFE functionalities
described above. In a randomized SFE functionality, the function f also takes as input a “random
tape,” a string that will be chosen uniformly at random by the functionality. A reactive functionality
consists of repeated invocations of an SFE functionality, but provides an additional input to the
function f , namely a “state” which is initially the empty string and is updated during each output
phase.
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Oblivious Transfer. The basic oblivious transfer primitive we rely on is a
(
2
1

)
string-OT, referred

to as OT. More precisely, OT is a 2-party SFE functionality (as defined above), specified by the
function f :

(⋃
n({0, 1}n)2

)
× {0, 1}} → {ε} × {0, 1}∗ defined as follows: f((s0, s1), b) = (ε, sb)

(where ε stands for the empty string). Here the length of the strings n is part of the functionality
specification.

In our constructions we shall also employ
(
q
1

)
string-OT. There are efficient and unconditionally

UC-secure reductions with constant communication overhead of these primitives to
(
2
1

)
bit-OT

(implicit in [16, 8, 21, 17]). Hence, one could also assume bit-OT as our basic primitive. When
settling for computational security, OT on long strings can be efficiently reduced to a single instance
of OT on short strings via the use of a pseudorandom generator.

Our watchlist initialization protocol will use Rabin string-OT, which is a randomized SFE
functionality: the function f takes a single string s from the sender (and the empty string from the
receiver), and with a fixed probability δ, outputs (ε, s), and with probability 1 − δ outputs (ε, ε).
We point out how a Rabin-string-OT with rational erasure probability p/q (for positive integers
p < q) can be securely realized using

(
q
1

)
string-OT with constant communication overhead. The

sender inputs q strings to the
(
q
1

)
string-OT, of which a random subset of p are the message being

transferred and the rest are arbitrary (say the zero string); the receiver picks up one of the q strings
uniformly at random; then the sender reveals to the receiver which p-sized subset had the string
being transferred; if the receiver picked a string not belonging to this set, it outputs erasure, and
else outputs the string it received.5

Finally, we shall also rely on parallel access to multiple instances of OT— i.e., on a functionality
OTt which first executes the input phase of t instances of OT and then executes the output phase
for all of them. As remarked above, simply using t instances of OT directly does not securely realize
OTt. However, the following simple protocol does realize OTt, using t (unsynchronized) instances
of OT:

1. First, the t OT sessions are run on random inputs ((ri
0, r

i
1); c

i) (for 1 ≤ i ≤ t).

2. Then for all i, Receiver sends di = bi ⊕ ci, where bi is its input for the i-th session in OTn.

3. Then for all i, Sender sends (xi
0 = si

di⊕ri
0, x

i
1 = si

1−di⊕ri
1), and Receiver recovers si

bi = xi
ci⊕ri

ci .

3 Protocol Compiler

In this section we describe how to build a protocol ΦOT
Π,ρ that securely realizes a functionality F

against active corruptions, using two component protocols Π and ρOT of weaker security. Π is a
protocol for F itself, but uses several servers and depends on all but a constant fraction of them
being honest. ρOT is a protocol for a functionality G (which depends on Π), but is secure only
against passive corruptions. Below we describe the requirements on Π, ρOT and the construction
of ΦOT

Π,ρ.

5Note that the sender can “cheat” by using arbitrary inputs to the
`

p
q

´
string-OT and declaring an arbitrary set as

the p-sized subset containing the message. But this simply corresponds to picking one of the messages in the declared
p-sized subset (considered as a multi-set) uniformly at random, and using it as the input to the p/q-Rabin-string-OT.
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3.1 The Outer Protocol Π

Π is a protocol among n+m parties (we will use n = Θ(m2k), k being the security parameter for Π),
with m parties Ci (i = 1, . . . ,m) designated as the clients, and the other parties P j (i = 1, . . . , n)
designated as the servers.

• Functionality: Π is a protocol for some functionality F (which could be deterministic or
randomized, and possibly reactive) among the m clients. The servers do not have any inputs
or produce any outputs.

• Security: Π UC-securely realizes the functionality F , against adaptive corruption of up to t
servers, and either static or adaptive corruption of any number of clients (see Section 3.4.1).
We assume static client corruption by default. We will require t = Ω(n). The corruptions are
active (i.e., the corrupt parties can behave arbitrarily) and the security could be statistical
or computational.

• Protocol Structure: The protocol Π proceeds in rounds. In each round:

– Each party (client or server) sends messages to the other parties (over secure point-to-
point channels) and updates its state by computing on its current state. For clarity of
exposition, we shall add the restriction that the servers do not directly communicate
among themselves, but only with the clients.6

– Then it reads the messages received in this round, and incorporates them to its state.
We shall require that (for honest parties) these messages are not erased from the state
while the state is updated in the next round.

Each server P j maintains a state Σj . For the sake of an optimization in our applications, we
will write Σj as (σj , µ1↔j , . . . , µm↔j), where µi↔j is just the collection of messages between
Ci and P j . We will refer to µi↔j as the “local” parts of the state and σj as the “non-local”
part of the state. Our optimization stems from the fact that the client Ci is allowed to know
the local state µi↔j of each server P j .

The servers’ program in Π is specified by a (possibly randomized) function π which takes as
input a server’s current state and incoming messages from the clients, and outputs an updated
state as well as outgoing messages for the clients. That is,7

π(σj ;µj ;w·→j)→ (σ′j ,m
′
j→·). (1)

where µj = (µ1↔j , . . . , µm↔j) is the vector of local states, and w·→j = (w1→j , . . . , wm→j)
is messages received in this round by server P j from the clients. The output m′

j→· =
(m′

j→1, . . . ,m
′
j→m) stands for messages to be sent by P j to the clients. The output σ′j is

the updated (non-local) state of the server P j . The local states are updated (by definition)
as µ′i↔j := µi↔j ◦ (wi→j ,m

′
j→i).

6We shall remove these restrictions later, and also allow the parties in Π to use broadcast/multicast channels. See
Section ??.

7For the sake of brevity we have omitted the round number, server number, and number of servers as explicit
inputs to π. We shall implicitly use the convention that these are part of each component in the input.
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3.2 The Inner Functionality G and the Inner Protocol ρOT

In the compiled protocol, as we shall describe shortly, each client Ci will play the role of Ci in a
session of the outer protocol Π. In addition the clients C1, . . . , Cm will collectively “implement” each
of the servers P j (j = 1, . . . , n). We define a (possibly randomized) m-party reactive functionality
G which stands for the program of the servers; the instance corresponding to the j-th server P j

will be denoted by Gj .
We will need a protocol ρOT (in the OT-hybrid model) to carry out this computation. But the

security requirement on this protocol is quite mild: ρOT securely realizes Gj against passive cor-
ruption (i.e., honest-but-curious adversaries). The security could be statistical or computational.
Also, the security could be against adaptive corruption or static corruption (see Section 3.4.1).
For the sake of round efficiency, our main construction requires ρOT to be secure against adaptive
(passive) corruption (without which the number of rounds in our final protocol will need to be
increased by a factor of O(k); see Section 3.4.3).

In all our applications, we keep the communication complexity low by exploiting an important
optimization possible in the inner protocol ρOT. Suppose that in Gj , an invocation of π (for some
round number) (1) depends only on the local state µi↔j and possibly wi→j for some i, (2) does not
change the state σj , and (3) is deterministic. We call such a computation a type I computation (all
other computations are called type II computations). Since Ci must have the local state µi↔j and
the message wi→j available locally, it can by itself carry out the computation of π and send the
resulting messages to the other clients (without violating security against passive corruption). Thus,
one can arrange that the communication complexity of the inner protocol reflects the computational
complexity of only type II computations in π.

3.3 The Compiled Protocol

The compiled protocol ΦOT
Π,ρ will securely realize the functionality Fa gainst active corruptions

(like Π), but the only participants in this protocol are the m clients who have inputs and outputs
(denoted by Ci, i = 1, . . . ,m). ΦOT

Π,ρ has the following two phases.

1. Watchlists initialization: In the first phase, using OT, the following “watchlist” infrastructure
is set up. First each honest client randomly chooses a set of k servers to put on its watchlist
(which only that client knows). Then, for each server P j we will set up a “watchlist broadcast
channel” Wj such that any client can send a message on Wj and all the clients who have
server P j on their watchlists will receive this message.

As we shall see, our implementation will allow a corrupt client to gain access (albeit partial)
to the watchlist broadcast channels of more than k servers. Nevertheless, by an appropriate
choice of parameters, we shall ensure that the total number of servers for which the adver-
sary will have access to the watchlist channel will be O(km2) < t/2 (except with negligible
probability). If a corrupt client gains such access to Wj , then we allow the adversary to learn
which other clients have access to Wj .

Jumping ahead, we remark that when the adversary gains access to Wj , we will consider
server P j as corrupted; this phase allows the adversary to corrupt less than t/2 servers in this
way. We shall describe the implementation of this infrastructure in Section 3.3.1.

2. Simulating the execution of Π: In the second phase the clients start simulating a session of Π.
Each client Ci plays the role of Ci in Π. In addition, the clients will themselves implement
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C1 C2

OT

W1

ρOT
1

OT

Wj

ρOT
j

OT

Wn

ρOT
n

C1 C2

Figure 1: A schematic representation of the compiled protocol ΦOT
Π,ρ (for a 2-party functionality).

C1 and C2 are the clients in the outer protocol. Boxes labeled ρOT
j represent sessions of the inner

protocol, involving two parties interacting via an OT channel and the watchlist channel Wj . The
programs enclosed by the dotted lines indicate the clients in the compiled protocol, C1 and C2.

the servers in Π using the inner protocol ρOT for G. We shall denote by ρOT
j the j-th session of

ρOT, implementing Gj , corresponding to the server P j in Π. At the beginning of each round,
client Ci provides the message from Ci to P j at that round as its input to ρOT

j .

The watchlists are used to force the clients (to some extent) to behave honestly in each
instance of the inner protocol. In more detail:

(a) For each invocation ρOT
j of the inner protocol, the watchlist broadcast channel Wj is

used to carry out a “coin-tossing into the well” to generate the coins for each client to
be used in that protocol.8 That is, to generate a random tape for client Ci for use in

8This coin-tossing step is not necessary when certain natural protocols with a slightly stronger security guarantee
— like the basic “passive-secure” GMW protocol in the OT-hybrid model — are used. See Remark 1 below.
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ρOT
j , first all the clients (including Ci) send a share of the random tape over Wj . Then

all clients except Ci broadcast these shares (not over the watchlist channels). Ci uses
the sum (say XOR) of all these shares (including its own) as the random tape in ρOT

j .

(b) Each client is required to report over Wj its inputs to the inner protocol session ρOT
j ,

as well as every protocol message that it receives within that session. This includes the
messages received from the OT channels used within the protocol.

All honest clients are required to carry out consistency checks on the messages it can read
from the various watchlists and the messages it receives in the rest of the protocol execution.
If any of the following consistency checks fail, then the client is required to abort the execution
of the entire (compiled) protocol. For concreteness, we shall require that after each round,
the clients ensure that no one has aborted (using a round of acknowledgment message) before
continuing.

Consistency checks: An honest client Ci who has server P j in its watchlist must do the
following consistency checks between the messages reported over Wj by all the clients and
the messages in ρOT

j that it receives.

• First, Ci must ensure that the shares of the random tapes declared by all clients match
the ones they have sent over Wj . Then, it can compute the random tape for each client
using the shares sent to Wj .

• Using the random tape above and the inputs to ρOT
j reported on Wj , Ci can compute all

messages to be sent on ρOT
j by all the clients. Ci is required to check that all the messages

it has access to are consistent with the calculated messages: this includes the messages it
directly receives in ρOT

j (as messages on communication channels or as outputs from the
OT functionality), and the messages received by all the honest clients in ρOT

j as reported
by them over Wj .

Note that a client watching server P j knows ahead of time exactly what messages should be
received by each client in ρOT

j if all clients are honest. Also it sees the messages received by the
clients (as reported by them). This is sufficient to catch any deviation in the execution, if the
protocol uses only communication channels. However, if the protocol involves the use of OT
channels (or more generally, other ideal functionalities) then it creates room for an adversary
to actively cheat and possibly gain an advantage over passive corruption. In particular, the
adversary can change its inputs to the OT functionality, deviating from what it announces
on the watchlist channels, and arrange for the probability of being detected to depend on the
inputs of honest clients. To prevent this kind of cheating, we shall force that if the adversary
changes its input to the OT functionality, then with at least a constant probability this will
produce a different output for an honest client (if the adversary is the sender in the OT), or
(if the adversary is the receiver in the OT) the adversary will end up reporting a different
output from OT over the watchlist than what it would have reported if it were honest. This is
easily enforced by using a simple standard reduction of OT to OT with random inputs from
both parties, as follows:

• All uses of OT in the inner protocol ρOT are replaced by the following subprotocol. First
the sender uses a pair of random strings (r0, r1) as its input to OT and the receiver uses
a random bit c. Then, the receiver sends z := b⊕ c to the sender, where b is its original
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input to the OT. The sender responds with (r0 ⊕ xz, r1 ⊕ x1⊕z). The receiver recovers
xb := rc ⊕ (rc ⊕ xz⊕c).

It is to such a modified inner protocol ρOT that we add the use of watchlist channels and
checks.

Remark 1 (On tossing coins.) A protocol which is secure against passive corruptions is not nec-
essarily secure when the adversary can maliciously choose the random tape for the corrupt players.
This is the reason our compiler needs to use a coin-tossing in the well step to generate the coins
for the inner protocols. However, typically, natural protocols with unconditional security remain
secure even if the adversary can choose the coins. This is the case for perfectly secure protocols
like the basic “passive-secure” GMW protocol (in the OT-hybrid model). When using such an inner
protocol, the compiler can simply omit the coin-tossing into the well step.

3.3.1 Setting up the Watchlist Broadcast Channels

First, using OT channels, we will implement simpler watchlist channels Wij , for each client-server
pair (Ci, P j), such that any of the clients can send a message in Wij , and Ci will receive this
message if and only if server P j is on its watchlist. Then we shall use these channels to implement
the watchlist broadcast channels Wj . (Note that when there are only two clients, the two variants
are equivalent.)

The basic idea in implementing Wij is for the clients to pick up sufficiently long one-time pads
from each other using OT, and later send messages masked with a fresh part of these one-time pads.
For this we shall be using Rabin-string-OT (i.e., erasure channel with a fixed erasure probability,
and adequately long binary strings being the alphabet). See Section 2 for implementation details.

The construction of the watchlist channels is as follows: First each client randomly chooses a
set of k servers to put on its watchlist. Next, each pair of clients (i′, i) engages in n instances of
δ-Rabin-string-OTs where client Ci′ sends a random string rj (of length `) to Ci. By choice of
δ = Ω(k/n), we ensure that except with negligible probability Ci obtains the string in more than
k of the n instances. (By the union bound, this will hold true simultaneously for all pairs (i′, i),
except with negligible probability.) Now, client Ci specifies to client Ci′ a random permutation σ
on [n] conditioned on the following: if j is in the watchlist of Ci and σ(j) = j′, then rj′ was received
by Ci. Now, to send a message on the watchlist channel Wij , the client Ci′ will use (a fresh part
of) rσ(j) to mask the message and send it to Ci. Note that if j is in the watchlist of client Ci, then
this construction ensures that Ci can read all messages sent on Wij by any client. If the strings rj

are ` bits long then at most ` bits can be sent to the watchlist channel constructed this way.
Now, we consider obtaining watchlist broadcast channel Wj from watchlist channels Wij set

up as above. This is similar to how broadcast is obtained from point-to-point channels in [27]. To
send a message on Wj first a client sends the message on Wij for every i. Then each client Ci on
receiving a message on a watchlist channel Wij sends it out on Wi′j for every i′ 6= i. (If Ci does
not have access to Wij , it sends a special message (of the same length) to indicate this.) Then it
checks if all the messages it receives in this step over Wij are the same as the message it received
in the previous step, and if not aborts.

It can be verified that the above construction indeed meets the specification of the watchlist
infrastructure spelled out in the beginning of this section.
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Theorem 1 Let F be a (possibly reactive) m-party functionality. Suppose Π is an outer MPC
protocol realizing F , as specified in Section 3.1, with n = Θ(m2k) and t = Θ(k), for a statistical
security parameter k. Let G be the functionality defined in Section 3.2 and ρOT a protocol that
securely realizes G in the OT-hybrid model against two-step passive corruption. Then the compiled
protocol ΦOT

Π,ρ described above securely realizes F in the OT-hybrid model against active (static)
corruptions. If both Π and ρOT are statistically/computationally secure, then the compiled protocol
inherits the same kind of security.

ΦOT
Π,ρ has communication complexity poly(m) · (CΠ + nrΠCρ), round complexity O(rΠrρ), and

invokes OT poly(m) · nrΠqρ times, where CΠ is the communication complexity of Π, rΠ is the
number of rounds of Π, Cρ is the communication plus randomness complexity of ρOT, rρ is the
round complexity of ρOT, and qρ is the number of invocations of OT in ρOT.

Here by communication complexity of a protocol in the OT-hybrid model we include the commu-
nication with the OT functionality. By randomness complexity of a protocol we mean the total
number of random bits used by (honest) parties executing the protocol. We remark that the com-
plexity bounds given above can typically be tightened when analyzing specific inner and outer
protocols.

Proof: The proof of security for our compiler follows from a conceptually very simple simulator
T , which shows that the compiled protocol is as secure as an execution of the outer protocol in
which no more than t servers are corrupted. T plays the adversary in an outer protocol execution,
and simulates an execution of the compiled protocol to the adversary A. (See Figure 2.)

At a very high level, T ’s job is simple. Since T simulates the OT channels that the adversary
A uses in the (simulated) execution of ΦOT

Π,ρ, it will have full knowledge of everything that is sent
over the watchlists, as well as in every invocation of OT used within the inner protocol. Thus, T
will know immediately if and when the adversary deviates from honest behavior in the emulation
of any of the servers. At that point, T would (adaptively) corrupt that server in the outer protocol
execution so that it can continue the simulation faithfully. Recall that we need to ensure that T
corrupts no more than t servers in the outer protocol execution. It is easy to argue that if the
adversary cheats with respect to any server that is on an honest party’s watchlist, then it will
be caught with constant probability (this is enforced in part by the reduction of OT to OT with
random inputs). Then, since each honest party’s watchlist is large, if the adversary causes too many
servers to behave dishonestly, it will be caught by an honest party with overwhelming probability,
and will result in the protocol being aborted. Therefore the simulation also would have simulated
an abort before having to corrupt too many servers.

Now we describe the simulation in more detail. We will consider an arbitrary environment in
two scenarios. In the first scenario, the clients Ci (i = 1, . . . ,m) take part in a session of the
compiled protocol ΦOT

Π,ρ, with an adversary A. In the other scenario the clients Ci (i = 1, . . . ,m)
take part in a session of the outer protocol Π, along with n servers P j (j = 1, . . . , n), and T which
plays the role of the adversary in this session.
T has the following structure. It internally runs a ΦOT

Π,ρ session for A (shown to the left in
Figure 2) and letsA interact with the environment directly. T will simulate toA the communication
from all the honest clients, and the OT channels in ΦOT

Π,ρ. Externally, T will run in a Π session
(shown to the right in Figure 2), and will interact with the honest clients and the servers in that
session. The simulation proceeds as follows.
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Figure 2: An outline of the simulator T . Externally T takes part in a session of the outer protocol
(on the right). Internally, T interacts with an adversary A (which in turn interacts with the
environment) in a simulated session of the compiled protocol (shown towards the left; cf. Figure 1).
In each inner protocol session that is part of the simulated session of the compiled protocol, T
carries out consistency checks on everything that A reports on the (simulated) watchlist channels.
As long as an inner protocol session ρOT

j remains correct, T uses the simulator Sρj (for honest-but-
curious security of the inner protocol) to translate an interaction with the outer server P j into the
interaction in ρOT

j . If an inconsistency it detects does not lead to aborting in ρOT
j , then T corrupts

the server P j on the right hand side to continue the simulation.

1. First, T perfectly simulates the watchlist setup phase of ΦOT
Π,ρ, by playing the role of each

uncorrupted client, interacting with the corrupted clients. T simulates the OT channels used
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for this.

While setting up the watchlist channels (see Section 3.3.1) each corrupt client Ci can, for each
uncorrupt client Ci′ , select O(k) watchlists Wij (except with negligible probability), such that
it can read what Ci′ writes to Wij . T notes all such j, over all pairs of clients (Ci, Ci′) (corrupt
and uncorrupt, respectively). If there are more than t/2 = Θ(m2k) such values j, then T fails
and bails out; by the choice of the parameter δ = O(k/n), this occurs only with negligible
probability. Otherwise (i.e., if there are at most t/2 such j), T corrupts all those servers P j

in the execution of Π.

Note that T has access to all the watchlist broadcast channels (whereas each client in ΦOT
Π,ρ

has access to only the watchlist broadcast channels for the servers on its watchlist). Also, T
knows which all watchlist broadcast channels the adversary has (partial) access to. Further,
T has access to all inputs to the OT channels (where as clients have access to only the outputs
they receive from the OT channels). It will rely on this extra information in the subsequent
steps.

2. During the rest of the execution of the protocol, T must simulate various kinds of messages
in the compiled protocol ΦOT

Π,ρ. These messages fall into the following kinds:

(a) Client-to-client communication in the Π (outer protocol) session.

(b) Communication in the ρOT (inner protocol) sessions (which is used to emulate the servers
in the outer protocol). Some of this communication is via OT channels.

(c) Communication in the watchlist channels.

(d) Abort messages.

To simulate the client-to-client communication in the outer protocol, T passes on the messages
between corrupted clients in the ΦOT

Π,ρ session and the uncorrupted clients in the Π session
unaltered. In order to simulate the messages sent to a watchlist broadcast channel Wj to
which the adversary has (partial) read access, T will corrupt the server P j in the outer
protocol right at the beginning, and with access to all the inputs of the honest clients in these
sessions, will faithfully carry out the execution in the sessions. Simulating the communication
in the remaining sessions of the inner protocol requires more care, and is described in detail
below. At a high level, for each such session ρOT

j , for as long as the adversary remains honest
(but possibly curious) in ρOT

j , T will internally run a copy Sρj of the simulator for the inner
protocol. Inputs for Sρj are derived from P j in the external outer protocol, and the messages
that the adversary sends on the simulated watchlist channel Wj . In addition, T must be
able to detect when the adversary deviates from honest behavior and be able to continue the
simulation by simulating an abort, or simulating the honest clients continuing the protocol
without detecting the deviation (for which it will corrupt the server P j). All this is carried
out as follows:

• Full consistency checks: T carries out the same consistency checks as the honest clients
in ΦOT

Π,ρ (i.e., consistency between messages in ρOT
j and Wj for each j), but unlike an

honest client, T can carry out a “full” consistency check — i.e., detect any deviation
from honest behavior in any inner protocol session — as it has access to all the inputs
to the watchlist broadcast channels and to the inputs to the OT channels.
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• Input to and output of ρOT
j : The simulator Sρj expects to interact with the functionality

Gj , which T simulates by simply relaying messages to and from the external server P j .
But further, being a simulator for passive adversaries, expects to be provided with the
inputs to corrupt clients (which it will faithfully forward to the functionality Gj). The
input in the case of a corrupt client Ci is a message wi→j , from Ci to P j . But Ci is
required to send this input on the watchlist broadcast channel Wj prior to using it in
ρOT

j . If the consistency checks (as described above) pass, T takes this input given to the
watchlist broadcast channels as the corrupt clients’ inputs. Sρj will then pass on these
inputs to the simulated functionality Gj , which are relayed to P j . In response, T obtains
the message m′

j→i from P j , which it passes on to Sρj as the response from Gj .

• Execution of ρOT
j : On receiving a message from a corrupt client in the inner protocol

session ρOT
j , (message to an uncorrupted client or as input to the OT channel), if all the

consistency checks (as described above) are passed, then T passes on the ρOT message
from the corrupt client to the inner simulator Sρj . Messages from Sρj to corrupt clients
are passed on directly, as messages from the simulated ρOT

j session (i.e., as message from
an uncorrupted client or as output from the OT channel).

• Handling consistency check failures: If some consistency check fails, T faithfully simu-
lates the consistency checks carried out by each client Ci (which is a subset of the checks
done by T itself). If any of the simulated clients Ci catches an inconsistency, that client
aborts it, as required by the protocol, and will prevent any client from proceeding to
the next round. Whether a client aborts or not in a round can be perfectly simulated,
but if none of the clients catch the inconsistency, then their behavior in the subsequent
rounds depends on their private states. So, when none of the simulated clients have
aborted after an inconsistency occurs in the messages reported on Wj , T continues the
simulation as follows:

(a) T first corrupts the server P j in the Π execution. Recall that Π is a non-erasing
protocol, and hence T gets to learn all the messages between P j and all the clients,
as well as all the other servers. These messages can be used to reconstruct messages
between the honest clients and (the simulated) Gj .

(b) Then, in the execution of ρOT
j , T directs Sρj to corrupt all the clients (as an adaptive

corruption); in turn Sρj would request corruption of the clients in the ideal execution
of Gj , up on which T provides the history of messages between Gj and the clients
(as obtained above) to Sρj .

(c) Given this, Sρj will provide T with simulated current state for each of the clients in
ρOT

j . (Note that it is not important whether ρOT is erasing or non-erasing.) Here we
have required security of ρOT against two-step passive corruption: the simulator Sρj

must be able to adaptively simulate the state of all the clients on the second-step
corruption.

(d) T continues the simulation using these states of the clients in ρOT
j . T also has access

to the further inputs that these programs receive from the clients as it has corrupted
the server P j .

We need to argue that no environment can distinguish between T running in an execution of
Π and the actual execution of ΦOT

Π,ρ with adversary A. and that T does not corrupt more than t
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servers in Π (except with negligible probability).
The former follows by design of the simulation. In fact, if the simulation by Sρj were perfect, then

T also results in a perfect simulation. More generally, if the simulation by Sρj is indistinguishable
(statistically or computationally), then the simulation by T is also indistinguishable (statistically
or computationally, respectively). We argue this using a few hybrids.

Firstly, Gj and P j are identical, except for the (cosmetic) difference that Gj explicitly allows
the adversary to control when it sends messages to the honest parties, whereas with P j , it is the
communication channel between P j and the honest parties that gives such control to the adversary.
So, in the first hybrid derived from the simulation, we replace P j in the external outer protocol
with Gj , for every j, without changing the environment’s behavior.

Now, consider n+1 hybrid experiments: in the j-th hybrid execution Sρ1 , . . . ,Sρj−1 (along with
the functionalities G1, . . . ,Gn they interact with) are replaced by the sessions of the protocol ρOT.
The j-th and j + 1-st hybrids differ in one session of ρOT. In the latter hybrid, Sρj simulates the
protocol as long as the adversary remains honest (but curious) in the simulated session. Further,
if and when there is a deviation in the session ρOT

j , Sρj obtains the honest clients’ states in their
interaction with Gj (recall that T detects the deviation, corrupts P j if the simulation needs to
be continued, learns the the honest clients’ states in the session) and simulates the honest clients’
states in ρOT

j adaptively. If the simulation continues after this point (i.e., the simulated protocol
does not abort), then the j-th and j + 1-st hybrids evolve identically (wherein the honest clients
faithfully follow the protocol in ρOT

j starting from their current state). Since the probability of
aborting is independent of the inputs to the honest clients (which is ensured by the use of random
inputs to OT channels, as further discussed below), it is perfectly simulated by T . Thus if an
environment can distinguish between these two hybrids, there is an environment which can break
the adaptive security guarantee given by Sρj .

Then, by the hybrid argument, the first hybrid (which is identical to the simulation, taking place
in an outer protocol execution) and the n + 1-st hybrid above, which is identical to the execution
of the compiled protocol, are indistinguishable to the environment.

What remains to be shown is that in the simulated execution T does not corrupt more than
t servers in the outer protocol. T corrupts a server when a consistency check fails but an honest
client fails to detect the deviation. Inconsistency involves a corrupt client violating the consistency
between the messages in ρOT

j and the messages it reports on Wj (corresponding to some server
P j). If an honest client has P j in its watchlist then it will catch the first kind of inconsistency
with constant probability. Indeed, unless the inconsistency involves an input to or output from an
OT channel, the client will catch the inconsistency with probability 1. If the inconsistency is in
the inputs given to an OT channel or in the reported outputs from an OT channel, then T will
find it, but the honest client is guaranteed only probability 1

2 of finding it: if the corrupt corrupt
client feeds a different input as a sender in the

(
2
1

)
OT channel, then with probability 1

2 the honest
client will pick up the altered input; if the corrupt client as a receiver in the OT channel feeds one
choice bit to the channel, but reports the other over the watchlist broadcast channel, then it has
only probability 1

2 of being able to correctly report the output it received from the channel (or even
less, if OT is a string OT channel). Note that here we rely on the fact that all uses of OT in ρOT

j

have random inputs from both parties.
So a server corruption by T occurs with at most probability 1/2, or only when no honest

client has the relevant server in its watchlist. As long as the simulated protocol has not aborted,
each server is in the watchlist of an honest client with probability at least k/n (conditioned on
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servers corresponding to previous corruptions not being in the watchlist). Thus the probability of
T having to carry out t/2 server corruptions during the simulations is at most (1− k

n)t/2 = 2−Ω(k)

since t = Θ(n). While initializing the watchlists T could corrupt up to t/2 servers (except with
negligible probability). Thus in all, except with negligible probability, T corrupts at most t servers
in the Π session.

�

3.4 Extensions to the Compiler

3.4.1 On Adaptive Security

Above we assumed that the inner protocol ρOT is secure against static two-step corruptions, and
Π is secure against static client corruptions (and up to t adaptive server corruptions). Then the
compiled protocol ΦOT

Π,ρ is secure against static corruptions. However, if ρOT is secure against
adaptive corruptions, depending on the security of Π we can get ΦOT

Π,ρ to be secure against adaptive
corruptions.

• If Π is secure against an adversary who can adaptively corrupt up to m − 1 clients and up
to t servers, then ΦOT

Π,ρ is secure against adaptive corruption up to m − 1 clients. All known
constant-round protocols are restricted to this type of adaptive security, unless honest parties
are allowed to erase data.

• If Π is secure against an adversary which could in addition, after the protocol execution ends,
corrupt all the remaining honest clients and servers together, then ΦOT

Π,ρ is secure against
adaptive corruption of up to all m clients. This is the typical adaptive security feature of
outer protocols whose round complexity depends on the circuit depth, and even of constant-
round protocols if data erasure is allowed.

3.4.2 Removing restrictions on Π

We assumed that in the outer protocol the servers do not directly communicate with each other.
This restriction can be removed, in fact in two ways. Firstly there is a simple modification to our
compiler (and the security analysis) to allow such outer protocols. Alternately, we can pre-compile
the outer protocol so that the server-to-server communications are securely and efficiently routed
through the clients.

Modifying the compiler. First, we redefine the inner functionality Gj so that any direct com-
munication between two servers is implemented using (simple additive) secret-sharing among the
clients. More precisely Gj works as follows:

• Gj internally runs the program for P j , which expects to interact with the clients Ci and
servers P j in the outer protocol Π.

• Recall that at the beginning of a round the program for P j accepts message wi→j from each
client Ci and message uj′→j from each server P j′ , that were sent at the end of the previous
round.
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Instead, from each client Ci, Gj accepts (wi→j , u
(i)
1→j , . . . , u

(i)
n→j); it reconstructs uj′→j =

u
(1)
j′→j + . . . + u

(m)
j′→j for each j′ = 1, . . . , n.9

It passes (w·→j ,u·→j) to the program for P j , with w·→j = (w1→j , . . . , wm→j) as messages
sent to P j by the clients Ci and u·→j = (u1→j , . . . , un→j) as the messages sent to P j by the
other servers.

• Recall that at the end of a round, the program for P j sends messages m′
j→i to each client Ci

and u′j→j′ to each other server P j′ . Instead, Gj sends (m′
j→i, u

(i)
j→1, . . . , u

(i)
j→n) to each client

Ci, where u
(i)
j→j′ are random values such that u

(1)
j→j′ + . . . + u

(m)
j→j′ = u′j→j′ .

At the beginning of each round, the inputs that Ci provides to ρOT
j include the message from

Ci to P j at that round, and the share of any messages from any server P j′ to P j that was received
as output from ρOT

j′ in the previous round.
The purpose of the watchlists is now two-fold: in addition to forcing honest behavior within

each instance of the inner protocol, now the watchlists are used to force that the clients honestly
relay the shares of server-to-server messages across multiple instances ρOT

j .

• To enforce consistency between multiple instances of the inner protocol, each client Ci is
required to report over the watchlist broadcast channel Wj every message that it provides as
input to or receives as output from every invocation of the inner protocol ρOT

j for Gj .

• Then, the consistency checks are extended to check consistency of messages in every pair of
watchlists Wj and Wj′ : Recall that in ρOT one server P j′ may send a message to another
server P j , and then in ΦOT

Π,ρ updating the shared state of the server P j will involve each client
including an output from ρOT

j′ as a subsequent input to ρOT
j . If an honest client Ci has servers

P j and P j′ on its watchlist, then Ci should check that outputs from ρOT
j′ and inputs to ρOT

j

that each client reports over Wj′ and Wj are consistent with each other.

The simulation is then modified as follows. Firstly, the consistency checks done by the simulator
T are extended to include the above pairwise checks. Secondly, since Gj ’s interface with the clients is
slightly differently from that of P j (as it accepts and gives out shares of server-to-server messages),
the simulator T translates between these two interfaces. The input to Gj from a corrupt client Ci is
of the form (wi→j , u

(i)
1→j , . . . , u

(i)
n→j) from which T forwards wi→j to P j (after consistency checks).

In response, T obtains the message m′
j→i from P j . Recall that Sρj expects a response from Gj to

Ci, which is of the form (m′
j→i, u

(i)
j→1, . . . , u

(i)
j→n) where u

(i)
j→j′ are shares of server-to-server messages.

As long as at least one client is uncorrupted, T simply picks random values as the shares u
(i)
j→j′ ,

and passes on (m′
j→i, u

(i)
j→1, . . . , u

(i)
j→n) as the response from Gj . (If adaptive corruption of clients

is being considered (see Section 3.4.1), then on corrupting the last client, all past server-to-server
messages are computed and the shares received by this last client is set to be consistent with these
messages.) The only other change in T is that it carries out the extra consistency checks, and if it

9By default, the addition refers to bitwise XOR. However, if the server-to-server message in the outer protocol
consists of elements which belong to (and will undergo computations in) some other finite abelian group, then it may
be better to use that group for the additive sharing of those elements. This allows implementing group additions
performed by the server in the outer protocol non-interactively, by having clients directly add their shares.
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detects an uncaught inconsistency between the messages in Wj and Wj′ , then it corrupts one of
the two servers P j and P j′ .

The security analysis goes through as before (with a somewhat more extensive hybrid argument
to handle the simulation of the server-to-server messages), but with the probability of corrupting t
servers bounded by 2−Ω(k/m2). This is because the upperbound on the probability of an uncaught
inconsistency occurring is now (1 − k(k−1)

n(n−1)), corresponding to at least one of two servers between

which an inconsistency occurs being not on the watchlist. Hence (1 − k(k−1)
n(n−1))

t/2 = 2−Ω(k2/n) =

2−Ω(k/m2), since n = Θ(km2).

Precompiling the outer protocol. An alternate approach to handling an outer protocol with
server-to-server messages is to first precompile it to one without such messages (while still remaining
secure, with at most a constant factor reduction in the number of server corruptions that can be
tolerated). The idea for this transformation is simple: instead of P j sending a message to P j′ , it
sends “shares” of this message to each client, who then forwards it to P j′ in the next round, who
reconstructs the original message from the shares. The shares are derived using a secret sharing
scheme which is also “non-malleable” — i.e., the corrupt clients cannot modify their shares without
being caught cheating by P j′ while it tries to reconstruct the message from the shares. For this,
we define a non-malleable secret-sharing scheme. As it turns out, this notion is closely related to
(but slightly different from) the notion of Algebraic Manipulation Codes introduced by Cramer et
al [15]. We shall focus on the 2-client setting, which requires a 2-party sharing scheme.

Definition 3.1 A 2-party c-secure non-malleable secret sharing scheme over a (constant sized)
alphabet Σ consists of two efficient algorithms, share (randomized) and reconstruct (deterministic),
such that the following properties hold:

• It forms a secret-sharing scheme, i.e., each of the two shares produced by share is by itself dis-
tributed independently of the secret being shared, but when both shares are given to reconstruct
it outputs the original secret.

• There exists a constant c > 0 such that for every (computationally unbounded) adversary A,
and every secret x ∈ Σ,

Pr[(α, β)← share(x), α′ ← A(α), α′ 6= α, reconstruct(α′, β) 6= ⊥] < 1− c

• There exist efficient probabilistic “faking” algorithms Fake1 and Fake2 such that Fake1 outputs
α, σ such that for any secret x ∈ Σ, we have that (α, Fake2(σ, x)) is distributed identically to
the distribution share(x).

We note that this definition of 2-party c-secure non-malleable secret sharing parallelizes in a natural
way (where a reconstructed string is considered ⊥ if a ⊥ occurs anywhere inside the string), and so
we can also talk of using such a scheme on arbitrarily long strings over the alphabet Σ.

We will be interested in constructions of such schemes where the shares themselves are constant-
sized (depending on the constant c). We now describe a simple construction that achieves this
definition, and yields only a constant-factor overhead. Let MAC be a family of constant-secure
one-time message authentication code (MAC) schemes for producing MAC tags for constant-size
messages, with the additional property of non-redundant keys — that is, that there do not exist
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two keys K1 and K2 such that for all messages x, we have that MACK1(x) = MACK2(x). Note that
the the following simple MAC, MACa,b(x) = ax + b has the properties that we seek, and in fact no
two keys agree on more than one message x.

Now, to share a bit x, we first randomly additively share x into two bits x1 and x2. Next10,
we choose two MAC keys K1,K2 for MAC’ing bits, and we choose two more MAC keys K ′

1,K
′
2 for

MAC’ing messages of length |K1|. Now, the shares will be:

α :=
(
(x1,MACK2(x1)) ,

(
K1,MACK′

2
(K1)

)
,K ′

1

)
, β :=

(
(x2,MACK1(x2)), (K2,MACK′

1
(K2)),K ′

2

)
The reconstruction checks for the natural consistency conditions, and outputs x = x1 + x2 if

and only if they hold. It is easily verified that the above construction meets the non-malleability
requirement for some constant c. Furthermore, using MACa,b(x) = ax + b over a large enough field
this construction can be used to yield a non-malleable secret sharing scheme achieving any level of
security s, with an O(log(1/s)) expansion of shares. More efficient schemes are possible, but this
suffices for our purposes here.

This definition and construction can also be generalized to the multi-party case in a straight-
forward way.

It is easy to verify that if an outer protocol is modified so that server-to-server messages are
routed through clients using a c-secure non-malleable secret-sharing scheme (for a suitable constant
c), the resulting protocol still remains secure with a threshold say t′ = t/2.

3.4.3 Using Inner Protocol With Only Static Passive Security

Using inner protocol secure against 2-step corruption. Note that our simulator T relied
on the security of the inner protocol ρOT against adaptive (passive) corruption in a limited manner:
if an uncaught inconsistency occurred in ρOT

j , then T got all the clients in ρOT
j to be corrupted

together. So, it is sufficient that ρOT is secure only against “2-step passive corruption.” In this
model of corruption, apart from some parties being passively corrupted at the beginning of the
protocol, all remaining parties can be corrupted together at any point in the protocol. That is,
a simulator Sρ should be able to simulate the protocol messages from the initially uncorrupted
parties, and if at any point the adversary corrupts all the parties, then it should be able to simulate
their internal states. At this point Sρ can corrupt all these parties in the ideal execution and is
allowed to see all their past communication (inputs and outputs) with the ideal functionality.

A non-reactive inner functionality. Instead of using the reactive inner functionality G, we
can employ a non-reactive inner functionality Ĝ, which essentially carries out the functionality of
G one round at a time. This will be convenient in describing our modified simulation below, as we
shall be simulating each round of the inner protocol separately. Ĝj is described below, in terms of
Gj .

10Note that the simpler construction of α :=(x1, MACK2(x1), K1) and β :=(x2, MACK1(x2), K2) does not satisfy the
non-malleability requirement. Since the adversary may know x, given α = (x1, MACK2(x1), K1), it can find x2, and
create α′ = (x1, MACK2(x1), K

′
1), such that MACK1(x2) = MACK′

1
(x2). Note that such malleability, in particular,

leads to a “chosen-share attack” which can leak some information about the shared secret (if the adversary can
learn whether or not its attack succeeded). While we do not rule out that some information could be learned in our
definition of non-malleable secret sharing (indeed, our definition only asks for constant security), we do require that
in any such attack, the adversary always has some constant probability of getting caught.
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• From each client Ci, get input (wi→j ,Σ
(i)
j ), where wi→j will be considered the input of Ci to

Gj in a particular round, and Σ(i)
j will be considered an additive share of the internal state of

Gj at the end of the previous round.11

• Compute Σ(1)
j + . . . + Σ(m)

j , to reconstruct the internal state of Gj at the end of previous
round. Use the reconstructed state and the inputs wi→j (for i = 1, . . . ,m) to evaluate the
round function of Gj , to obtain (mj→1, . . . ,mj→m,Σ′

j).

• To each client Ci give output (mj→i,Σ
′
j

(i)
) where Σ′

j

(i)
form a random additive sharing of the

updated state Σ′
j .

Then our compiler will require an inner protocol, ρ̂OT which securely realizes Ĝ against 2-step
passive corruption. The compiler’s description remains virtually unchanged, but using ρ̂OT in each

round, with each client Ci feeding the output Σ′
j

(i)
from one round as the input Σ(i)

j in the next
round. Correspondingly, the consistency checks are extended to ensure that the inputs to ρ̂OT

announced over the watchlist channel satisfy the requirement that the share Σ(i)
j input by Ci in one

round is indeed equal to the share Σ′
j

(i)
(as declared over the watchlist channel) that is obtained

by Ci in the previous round. The proof of security of the compiled protocol closely follows the
previous proof with the following changes: T now uses the simulator Sρ̂ in each round, instead of
Sρ; also, since there is a new consistency check for each j, T corrupts the server P j if this check
fails. The rest of the simulation and proof remains virtually unchanged.

Using inner protocol with only static security. Earlier we required the inner protocol ρ̂OT

to be a little more than being secure against static passive corruption, namely secure against two-
step passive corruption. This condition is indeed satisfied by the typical protocols which are secure
against passive corruption. Nevertheless, as we show here, this requirement can in fact be removed,
thanks to the fact that the ρ̂OT protocol is used to emulate the server computation in an outer
protocol Π, and Π is secure against adaptive corruption of the servers. However this modification
requires us to (partially) sequentialize the activation of the servers, rather than let the clients
interact with all the servers concurrently. We sketch this modification below.

For clarity of exposition, we shall fully sequentialize the activation of the servers in Π: at each
round the clients will send messages to a single server and receive responses from it. Correspond-
ingly, in the compiled protocol sessions of ρ̂OT are run sequentially.

Earlier we gave a simulator T which showed that no matter what the outer protocol is, the
compiled protocol is as secure as the outer protocol with a limited number of server corruptions.
But now we will need to use the security properties of the outer protocol; so we cannot give
a simulator T as before. Instead we give a simulator which works similar to T but also uses the
simulator for the outer protocol SΠ. In fact, the new simulator does not directly use Sρ̂ to carry out
the simulation (though the existence of Sρ̂ is necessary for the simulation to be indistinguishable).

The simulator works similar to T , but simulating the outer protocol using SΠ (while taking
part in an ideal execution involving the functionality F). In the (simulated) outer protocol, after
sending inputs to a server P j and after receiving the response from it, the simulator “tentatively”

11The additive sharing could be done in any suitable group. See Footnote ??.
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corrupts that server: that is it requests SΠ to provide the state of the server P j .12 From this state
it reconstructs the state of the clients in ρOT

j and carries out a faithful execution of ρOT
j . If at any

point in this execution, an inconsistency is detected (and the execution is not aborted), then the
simulator continues the simulation normally, because it already has the states of the clients with it.
But if no inconsistency is detected, then the simulator must “undo” the corruption of P j . Note that
as far as the execution in Π and SΠ are concerned, the execution has not progressed while ρOT

j is
being executed. So the simulator can continue SΠ from the point just before requesting corruption
of P j . This has the effect that the further simulation by SΠ need not be consistent with the state
provided by SΠ during the tentative corruption. However the simulation is indeed consistent with
the responses from P j that were provided just before the tentative corruption. Key to arguing the
indistinguishability of this simulation is that, since ρOT is secure against passive corruption, the
faithful execution of ρOT

j that the simulator carried out is indistinguishable from a simulation by
Sρ̂ using just the inputs and outputs to the server P j .

CONTINUE HERE

4 Instantiating the Building Blocks

For concrete applications of our compiler, we need to choose outer and inner protocols to which
the compiler can be applied. The requirements on these components can be considered much easier
to meet than security against active corruption in the case of no honest majority. As such the
literature provides a wide array of choices that we can readily exploit.

Instances of the Outer Protocol. For the purpose of feasibility results, the classical BGW
protocol [5, 10] can be used as the outer protocol. But in our applications, we shall resort to two
efficient variants obtained from more recent literature [19, 20].13

Using a combination of [20, 14] (as described below) a boolean circuit C of size s and depth
d (with bounded fan-in) can be evaluated with a total communication complexity of O(s) +
poly(n, k, d, log s) bits, where k is a statistical security parameter, for n servers and any constant
number of clients.14 The protocol requires O(d) rounds. For this protocol the only type II func-
tions in the servers’ program (see Section 3.1) consist of evaluating multiplications in a finite field
F whose size is independent of the number of servers. (Here we do not consider linear functions
over F, which can be handled “for free” by the inner protocol provided that the servers’ states are
additively shared over F among the clients.) The total number of multiplications computed by all
servers throughout the protocol execution is O(s) + poly(n, d) (for any constant number of clients).

An MPC protocol as above can be obtained by combining a version of an MPC protocol from [20]
with algebraic geometric secret sharing over fields of constant size [14].15 This combination directly

12If we do not sequentialize the activations of the servers, inconsistency in ρOT
j for any j will require us to corrupt

all the servers P j′ that are activated concurrently with ρOT
j . Since the outer simulator cannot handle more than t

corruptions over all, we cannot afford this.
13Efficiency aside, by using UC-secure outer protocols, our compiled protocols are also UC-secure.
14While we do not attempt here to optimize the additive term, we note that a careful implementation of the

protocol seems to make this term small enough for practical purposes. In particular, the dependence of this term on
d can be eliminated for most natural instances of large circuits.

15Using Franklin and Yung’s variant of Shamir’s secret sharing scheme [46, 23], as originally done in [20], would
result in logarithmic overhead to the communication complexity of the protocol, and a polylogarithmic overhead in
the complexity of the applications.
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yields a protocol with the above properties for NC0 circuits, which was recently used in [35] to
obtain constant-rate zero-knowledge proofs and in [30] to obtain constant-rate OT combiners. In
Appendix A we describe this construction in more detail, extended to handle arbitrary depth-d
circuits, at the cost of requiring O(d) rounds.

Another useful instance of an outer protocol is obtained from the constant-round protocol
from [19], as described in Section 5.2. Unlike the previous constant-round MPC protocol from [4],
this protocol only makes a black-box use of a pseudorandom generator.

Instances of the Inner Protocol. The main choice of the inner protocol, which suffices for most
of our applications, is the simple version of the GMW protocol [25, 24] that provides perfect security
against a passive adversary in the OT-hybrid model, and is easily seen to be secure against two-step
passive corruption (Section 3.2) as well. The communication complexity is O(m2s) where m is the
number of clients and s is the size of the boolean circuit being evaluated (excluding XOR gates).
The round complexity is proportional to the circuit depth (where here again, XOR gates are given
for free). When evaluating functions in NC1 (which will always be the case in our applications)
the inner protocol can be implemented using a single round of OTs in the two-party case, or a
constant number of rounds in the general case, without compromising unconditional security. This
is done by using a suitable randomized encoding of the function being computed, e.g., one based
on an unconditionally secure variant of Yao’s garbled circuit technique [47, 33]. In the two-party
case, the protocol needs to use only as many OTs as the length of the shorter input. This will be
useful for some applications.

5 Applications

In this section we describe the main applications of our general compiler. These are mostly obtained
by applying the compiler to variants of efficient MPC protocols and two-party protocols from the
literature.

5.1 Constant-Rate Secure Computation in the OT-Hybrid Model

Our first application is obtained by instantiating the general compiler with the following ingredients.
The outer protocol is the constant-rate MPC protocol described in Section 4. The inner protocol
can be taken to be the “passive-secure GMW” protocol in the OT-hybrid model.

Theorem 2 Let C be a boolean circuit of size s, depth d and constant fan-in representing an m-
party deterministic functionality f for some constant m ≥ 2. Then there is a statistically UC-secure
m-party protocol realizing f in the OT-hybrid model whose total communication complexity (includ-
ing communication with the OT oracle) is O(s) + poly(k, d, log s), where k is a statistical security
parameter, and whose round complexity is O(d). Security holds against an adaptive adversary
corrupting an arbitrary number of parties.

The OTs required by the above protocol can be generated during a preprocessing stage at no
additional cost. The above theorem extends to the case of a non-constant number of parties m, in
which case the communication complexity grows by a multiplicative factor of poly(m). The theorem
applies also to reactive functionalities, by naturally extending the outer protocol to this case, and

24



to randomized functionalities, provided that they are adaptively well-formed [12] or alternatively if
honest parties are trusted to erase data.

Finally, it can be extended to the case of arithmetic circuits (at the cost of settling for compu-
tational security) by using an inner protocol based on homomorphic encryption. We defer further
details to the full version.

5.2 Black-Box Constructions for Constant-Round MPC with no Honest Ma-
jority

Traditional MPC protocols for the case of no honest majority followed the so-called GMW paradigm [25,
24], converting protocols for the semi-honest model into protocols for the malicious model using
zero-knowledge proofs. Since such proofs are typically expensive and in particular make a non-black-
box use of the underlying cryptographic primitives, it is desirable to obtain alternative constructions
that avoid the general GMW paradigm and only make a black-box use of standard cryptographic
primitives.

The protocols of [36, 18] (as well as the more efficient constructions from Section 5.1) achieve
this goal, but at the cost of round complexity that depends on the depth of the circuit. The question
of obtaining constant-round protocols with the same features remained open.

In the case of MPC with honest majority, this problem was solved by Damg̊ard and Ishai [19],
providing a black-box alternative to a previous protocol of Beaver, Micali, and Rogaway [4] that
made a non-black-box use of a pseudorandom generator. The case of two-party computation was
recently resolved by Lindell and Pinkas [38] (see also [40, 37]), who presented a constant-round
two-party protocol that makes a black-box use of (parallel) OT as well as a statistically hiding
commitment. The question of extending this result to three or more parties remained open, as the
technique of [38] does not seem to easily extend to more than two parties. Partial progress in this
direction was recently made in [28].

By applying our compiler to a variant of the MPC protocol from [19], we obtain the following
theorem:

Theorem 3 For any m ≥ 2 there exists an m-party constant-round MPC protocol in the OT-hybrid
model which makes a black-box use of a pseudorandom generator and achieves computational UC-
security against an active adversary which may adaptively corrupt at most m− 1 parties.

Note that unlike the protocol of [38] our protocol is UC-secure and does not rely on statistically
hiding commitments. On the down side, it requires a larger number of OTs which is comparable to
the circuit size rather than the input size, though the latter cost may be amortized using efficient
methods for extending OTs (see Section 5.3) and moved to a preprocessing phase. We defer further
optimizations of the protocol to the full version.

Proof sketch: The protocol from [19] is a general constant-round protocol involving n servers
and m clients. It is adaptively, computationally UC-secure against an adversary that may corrupt an
arbitrary strict subset of the clients and a constant fraction of the servers. Furthermore, players in
this protocol only make a black-box use of a PRG, or alternatively a one-time symmetric encryption
scheme. If all the invocations of the encryption scheme were done by clients, the claimed result
would follow by directly applying our compiler with this protocol as the outer protocol (since
local computations performed by clients remain unmodified by the compiler). While the protocol
from [19] inherently requires servers to perform encryptions, it can be easily modified to meet the
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form required by our compiler. This is done by making the servers only perform encryptions where
both the key and the message to be encrypted are known to one of the clients. Using the watchlist
approach, the protocol produced by the compiler will make the corresponding client perform the
encryption instead of the server.

For simplicity, we describe this modification for the case of two clients, Alice and Bob. This
easily generalizes to any number of clients m. In any case where a server in the protocol of [19]
needs to broadcast an encryption of the form Ek(m), it will instead do the following. The server
parses the key k as a pair of keys k = (kA, kB) and additively secret-shares the message m as
m = mA + mB. Now it sends kA,mA to Alice and kB,mB to Bob (this is a dummy operation
that is only used to argue security). Finally, the server broadcasts EkA

(mA) and EkB
(mB). Note

that each of these two computations is of Type I, namely it is done on values already known to
one of the clients. Moreover, it is easy to see that the above distributed encryption scheme is still
semantically secure from the point of view of an adversary that corrupts just one of the clients.
Thus, the simulation argument from [19] (that only relies on the semantic security of E) applies as
is. �

5.3 OT Extension in the Malicious Model

Beaver [3] suggested a technique for extending OTs using a one-way function. Specifically, by
invoking k instances of OT one can implement a much larger number n of OTs by making use
of an arbitrary one-way function. A disadvantage of Beaver’s approach is that it makes a non-
black-box use of the one-way function, which typically makes his protocol inefficient. A black-box
approach for extending OTs was suggested by Ishai, Kilian, Nissim, and Petrank [32]. In the
semi-honest model their protocol has the following features. Following an initial seed of k string
OTs (where k is a computational security parameter), each additional string OT only requires to
make a couple of invocations of a cryptographic hash function (that satisfies a certain property
of “correlation robustness”16 as well as a PRG. The amortized communication complexity of this
protocol is optimal up to a constant factor, assuming that each of the sender’s strings is (at
least) of the size of the input to the hash function. To obtain a similar result for the malicious
model, [32] employed a cut-and-choose approach which multiplies the complexity by a statistical
security parameter. A partial improvement was recently given in [30], where the overhead in terms
of the use of the hash function was reduced to a constant, but the overhead to the communication
remained the same. This result was obtained via the use of efficient OT combiners [31]. We
improve the (amortized) communication overhead to be constant as well. While our result could
be obtained via an improvement to the construction of OT combiners in [30] (see Section 5.4), we
sketch here a simple derivation of the result by applying our compiler to the protocol for the semi-
honest model in [32]. In the full version we will show an alternative, and self-contained, approach
for obtaining a similar result by applying our general secure two-party protocol to an appropriate
NC0 functionality.

The efficient OT extension protocol is obtained as follows. The outer protocol will be the MPC
protocol from Section 4 with two clients, called a sender and a receiver, and k servers. The protocol
will be applied to the following multi-OT functionality. The sender’s input is an n-tuple of pairs
of k-bit strings, and the receiver’s input is an n-tuple of choice bits. The receiver’s output is the

16 The correlation robustness property defined in [32] is satisfied by a random function. Arguably, it is sufficiently
natural to render practical hash functions insecure if they are demonstrated not to have this property.
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n-tuple of chosen k-bit strings. This outer protocol can be implemented so that each of the k
servers performs just a single Type II computation, consisting of an NC0 function with one input
of length O(n) originating from the sender and another input of length O(n/k) originating from the
receiver. Using a suitable randomized encoding (see Section 4), each of these inner computations can
be securely implemented (in the semi-honest model) using O(n/k) OTs on k-bit strings. However,
instead of directly invoking the OT oracle for producing the required OTs, we use the OT extension
protocol for the semi-honest model from [32]. The two-party protocol obtained in this way realizes
the multi-OT functionality with computational UC-security, and only makes a black-box use of a
correlation-robust hash function as well as a seed of O(k2) OTs (which also includes the OTs for
initializing the watchlists). Its constant communication overhead (for n� k) is inherited from the
outer and inner components. We defer further optimizations to the full version.

Black-Box Constructions of OT. Note that the above construction (before plugging in the
protocol from [32]) has the feature that the inner protocol can make a black-box use of any OT
protocol for the semi-honest model. This implies the following black-box approach for converting
“semi-honest OTs” into “malicious OTs”. First, make O(k) black-box invocations of an arbitrary
malicious OT to generate the watchlists. (Here and in the following, we allow a free black-box
use of a PRG to extend a single OT on short strings, or few bit OTs, into OT on a long strings.)
Then, make O(n) black-box calls to any OT protocol for the semi-honest model to generate n
instances of OT in the malicious model. The above black-box approach applies both to the UC and
to the standalone model. Together with the black-box constructions of OT of Ishai, Kushilevitz,
Lindell, and Petrank [34] and Haitner [29], we get a black-box construction of malicious OT in
the standalone model from semi-honest OT with a constant amortized OT production rate. The
constant rate applies both to the cases of bit-OT and string-OT.

5.4 OT Combiners

An OT combiner [31] allows one to obtain a secure implementation of OT from n OT candidates,
up to t of which may be faulty. The efficiency of OT combiners was recently studied by Harnik,
Ishai, Kushilevitz, and Nielsen [30], who obtained a construction for the semi-honest model that
tolerates t = Ω(n) bad candidates and has a constant production rate, namely produces m good
instances of OT using a total of O(m) calls to the candidates. They also present a similar variant
for the malicious model, but this variant has two weaknesses. First, the OTs being produced are
only computationally secure (even if the good OT candidates have unconditional security, say by
using semi-trusted parties or physical assumptions). Second, the communication complexity of
the combiner protocol has a multiplicative overhead that grows polynomially with a cryptographic
security parameter. Our approach can be used to eliminate both of these weaknesses, obtaining
unconditionally secure OT combiners in the malicious model that tolerate t = Ω(n) bad candidates
and have a constant production rate and a constant communication overhead.

We achieve the above by applying the protocol of Theorem 2 such that each OT which is
associated with server i (both during the actual protocol and during the watchlist initialization)
is implemented by invoking the i-th OT candidate. Unlike Theorem 2, here we need to rely on
the robustness of the outer protocol (rather than settle for the weaker notion of “security with
abort”). Another modification to the protocol of Theorem 2 is that the protocol is not aborted as
soon as the first inconsistency is detected, but rather only aborts when there are inconsistencies
involving at least, say, t/10 servers. This is necessary to tolerate incorrect outputs provided by
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faulty OT candidates. Since the faulty candidates can be emulated by an adversary corrupting the
corresponding servers, we can afford to tolerate a constant fraction faulty candidates.
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A A Constant-Rate Outer MPC Protocol

In this section we describe the construction of the main instance of the outer MPC protocol Π (see
Section 3.1), which we use to derive most of our applications. (The only application which does
not rely on this outer protocol is the one described in Section 5.2). The protocol involves n servers
and m clients, where only clients have inputs and outputs. Before describing the construction,
we summarize the efficiency achieved by this protocol. For simplicity we shall restrict ourselves to
m = O(1) and n = poly(k), where k is a statistical parameter. To evaluate a boolean circuit C of size
s and depth d (with bounded fan-in), the communication complexity is CΠ = O(s)+poly(k, d, log s)
bits.17 Assuming broadcast as an atomic primitive, the protocol requires rΠ = O(d) rounds.

Recall that the complexity of the inner protocol ρOT depends on the functionality G that it
implements. As described in Section 3.2, since ρOT needs to be secure only against passive corrup-
tions, it is the complexity of type II computations by the servers in Π that will affect the complexity
of ρOT. The total complexity of such computations (say, the number of finite functions evaluated)
by all servers throughout the entire protocol execution of Π is O(s)+poly(n, d). In other words, the
amortized complexity of type II computations in G, per round, per server is O( s

nrΠ
) + poly(n, d),

and (using the passive-secure GMW protocol) this is the amortized communication complexity of
ρOT. That is, in Theorem 1 the term nrΠCρ can be replaced by O(s) + poly(n, d).

The MPC protocol naturally extends an MPC protocol from [20], combined with Algebraic-
Geometric secret sharing over fields of constant size [14]. This combination yields a protocol with
the above properties for NC0 circuits, which was recently used in [35] to obtain constant-rate zero-
knowledge proofs and in [30] to obtain constant-rate OT combiners. Here we present a natural
extension of this protocol that applies to arbitrary circuits, at the cost of requiring O(d) rounds.

To simplify the following exposition we will only consider the case of two clients Alice and Bob.
An extension to the case of a larger number of clients is straightforward.

Another simplifying assumption is that the circuit C consists of d layers of width w, where each
layer performs NAND operations on values produced by the previous layer only. Circuits of an
arbitrary structure can be easily handled at a worst-case additional cost of poly(n, d). (This cost
can be amortized away for almost any natural instance of a big circuit. For instance, a sufficient
condition for eliminating this cost is that for any two connected layers there are at least n wires
connecting between the layers.)

As a final simplification, we present the protocol in terms of Shamir’s secret sharing scheme,
in which the field size is small but non-constant. The claimed efficiency is obtained by replacing
Shamir’s scheme with an analogous scheme based on AG codes, described in [14], in which the field
size is independent of the number of players. (Using Shamir’s scheme would result in a logarithmic
overhead to the communication complexity of the protocol, and a polylogarithmic overhead in the
complexity of the applications.) This change results in an additional decrease of the fractional
security threshold, that will not affect the asymptotic complexity of the protocol.

A.1 Building Blocks

Our protocol heavily relies on tools and sub-protocols from previous works that we describe below.
17While we do not attempt here to optimize the additive term, we note that a careful implementation of the

protocol seems to make this term small enough for practical purposes. In particular, the dependence of this term on
d can be eliminated for almost every “natural” circuit C.
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Secret sharing for blocks. Shamir’s secret sharing scheme [46] distributes a secret s ∈ F by
picking a random degree-d polynomial p such that p(0) = s, and sending to server j the point p(j).
(Here F is a finite field such that |F | > n.) The generalization of Franklin and Yung [23] achieves
far better efficiency with a minor cost to the security level. In this scheme, a block of ` secrets
(s1, . . . , s`) is shared by picking a random degree-d polynomial p such that p(1− j) = sj for all j,
and distributing to server j the point p(j). (Here we assume that −`+1, . . . , n denote n+` distinct
field elements.) Any set of d + 1 servers can recover the entire block of secrets by interpolation.
On the other hand, any set of t = d − ` + 1 servers learn nothing about the block of secrets from
their shares. (Secret sharing scheme in which there is a gap between the privacy and reconstruction
thresholds are often referred to as “ramp schemes”.) For our purposes, we will choose ` to be a
small constant fraction of n and d a slightly bigger constant fraction of n (for instance, one can
choose d = n/3 and ` = n/4). This makes the amortized overhead of distributing a field element
constant, while maintaining secrecy against a constant fraction of the servers.

Adding and multiplying blocks. Addition and multiplication of shared blocks is analogous to
the use of Shamir’s scheme in the BGW protocol [5]. Suppose that a block a = (a1, . . . , a`) was
shared via a polynomial pa and a block b = (b1, . . . , b`) was shared via a polynomial pb. The servers
can then locally compute shares of the polynomial pa + pb, which are valid shares for the sum a+ b
of the two blocks. If each server multiplies its two local shares, the resulting n points are a valid
secret-sharing using the degree-(2d) polynomial p = papb of the block ab = (a1b1, . . . , a`b`). Note,
however, that even if pa, pb were obtained from a random secret sharing, papb is not a random
degree-(2d) secret sharing of ab. Thus, if we want to reveal ab we will need to mask papb by a
random degree-2d secret-sharing of a block of 0’s before revealing it. Also, in order to use ab for
subsequent computations we will need to reduce its degree back to d.

Proving membership in a linear space. Our protocol will often require a client to distribute
to the servers a vector v = (v1, . . . , vn) (where each vj includes one or more field elements) while
assuring them that v belongs to some linear space L. This should be done while ensuring that the
adversary does not learn more information about v than it is entitled to, and while ensuring the
honest parties that the shares they end up with are consistent with L. For efficiency reasons, we
settle for having the shares of the honest parties close to being consistent with L. Since we will
only use this procedure with L that form an error correcting code whose minimal distance is a large
constant multiple of d, the effect of few “incorrect” shares can be undone via error-correction. (In
fact, in our setting of security with abort error detection will be sufficient.) More concretely, our
procedure takes input v = (v1, . . . , vn) ∈ L from a dealer D (Alice or Bob). In the presence of an
active, adaptive adversary who may corrupt any client and at most t servers, it should have the
following properties:

• Completeness: If D is uncorrupted then every honest server j outputs vj .

• Soundness: Suppose D is corrupted. Except with negligible probability, either all honest
servers reject (in which case the dealer is identified as being a cheater), or alternatively the
joint outputs of all n servers are most 2t-far (in Hamming distance) from some vector in
v ∈ L.

• Zero-Knowledge: If D is uncorrupted, the adversary’s view can be simulated from the shares
vj of corrupted servers.
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Verifiable Secret Sharing (VSS) can be obtained by applying the above procedure on the linear
space defined by the valid share vectors. Note that in contrast to standard VSS, we tolerate some
inconsistencies to the shares on honest servers. As discussed above, such inconsistencies can be
corrected by the higher level protocol.

Implementing proofs of membership. We will employ a sub-protocol from [20] (Protocol 5.1)
for implementing the above primitive. This protocol amortizes the cost of proving that many
vectors v1, . . . , vq owned by the same dealer D belong to the same linear space L by taking (ε-
biased, pseudo-)random linear combinations of these vectors together with random vectors from L
that are used for blinding. The high level structure of this protocol is as follows.

• Distributing shares. D distributes v1, . . . , vq to the servers.

• Distributing blinding vectors. D distributes random vectors r1, . . . , rκ ∈ L that are used for
blinding. (This step ensures the zero-knowledge property; soundness does not depend on the
valid choice of these vectors r.)

• Coin-flipping. The servers flip coins that produce κ independent seeds for an ε-biased gener-
ator [41]. Each of these seeds defines a (pseudo-)random linear combination of the q vectors
distributed by the dealer. Since both κ and the seed length are small (poly(k, n, log s)) we
can use an MPC protocol based on inefficient VSS to implement the coin flips. (Moreover, in
the case of two clients we let the other client, who does not serve as a dealer, pick the coins
and broadcast them.)

• Proving. The dealer computes the κ linear combinations of its vectors vi defined by the coin
tosses, and adds to each linear combination the corresponding blinding vector. It broadcasts
the results. (Here too, the complexity is only (poly(k, n, log s))). We note that if the code
defined by L is efficiently decodable from up to 2t errors (which will be the case for all L we
will employ) this step can be skipped.

• Complaining. Each server applies the κ linear combinations to its part of the vectors dis-
tributed by the dealer, and ensures that the result is consistent with the values broadcast in
the previous step. Also, each server checks that all κ vectors broadcast by the dealer are in
L. If any of these checks fail for a server, it broadcasts a complaint.

This is the only step of the protocol that requires servers to compute functions whose domain
is not finite. But as the inputs for this computation are known to the dealer, this is a type
I computation. As such, its complexity will not affect the complexity of the inner protocol
ρOT.

• Outputs. If more than t servers broadcast a complaint, all servers reject. Otherwise, the
servers output the shares distributed by the dealer in the first step (discarding the blinding
vectors and the results of the coin-flips).

We will sometimes employ the above protocol in a scenario where vectors v1, . . . , vq are already
distributed between the servers and known to the dealer, and the dealer wants to convince the
servers that these shares are close to being consistent with L. In such cases we will employ the
above sub-protocol without the first step. We note that in any application of the above procedure
in our protocol, if the dealer is caught cheating there are two ways to proceed (depending on the
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type of required security): (1) abort; (2) eliminate the dealer, replacing his input with 0, and
restarting the protocol without this client. (Restarting is necessary only in the case where there are
more than 2 clients.) In any case, the event of a dealer being identified as a cheater can be easily
incorporated into the simulation, and in particular is independent of the inputs of the uncorrupted
client/s.

Proving global linear constraints. We will often need to deal with a more general situation of
proving that vectors v1, . . . , vq not only lie in the same space L, but also satisfy additional global
constraints. A typical scenario applies to the case where the vi are shared blocks defined by degree-d
polynomials. In such a case, we will need to prove that the secrets shared in these blocks satisfy a
specified replication pattern (dictated by the structure of the circuit C we want to compute). Such
a replication pattern specifies which entries in the q blocks should be equal. A key observation
made in [20] is that: (1) such a global constraint can be broken into at most q` atomic conditions
of the type “entry i in block j should be equal to entry i′ in block j′”, and (2) by grouping these
atomic conditions into `2 types defined by (i, i′), we can apply the previous verification procedure
to simultaneously verify all conditions in the same type. That is, to verify all conditions of type
(i, i′) each server concatenates his two shares of every pair of blocks that should be compared in this
type, and then applies the previous verification procedure with L being the linear space of points
on degree-d polynomials (p1, p2) which satisfy the constraint p1(1− i) = p2(1− i′). Note that the
communication required by this procedure will still be poly(k, n, log s), and the local computations
done by the servers are still performed on inputs that are known to the dealer (and thus can
be efficiently handled using the watch list approach). Unlike [20] we will also employ the above
procedure in the case where p1, p2 may be polynomials of different degrees (e.g., d and 2d), but the
same technique applies to this more general case as well.

A.2 The Protocol

The protocol is a natural extension of the protocol from [20], which can be viewed as handling the
special case of NC0 functions using a constant number of rounds. We handle circuits of depth
d by using O(d) rounds of interaction. The protocol from [20] handles general functions by first
encoding them into NC0 functions (using [1]), but such an encoding step is too expensive for our
purposes.

Recall that we assume the circuit C to consist of d layers of width w each, and that each gate in
layer i depends on two outputs from from layer i− 1. To further simplify the exposition we assume
that each such gate is the NAND of its two inputs. Unlike protocols based on Yao’s garbled circuit
techique [47], the protocol can be easily extended to compute arithmetic circuits over F , which can
be useful for many applications of secure computation.

The high level strategy is to pack the inputs for each layer into blocks in a way that allows to
evaluate the NAND gates in this layer “in parallel” on pairs of blocks. That is, the computation
of the layer will consist of disjoint parallel computations of the form a NAND b, where a and b are
blocks of ` binary values and the NAND operation is performed coordinate-wise. This will require
blocks to be set up so that certain inputs appear in several places. Such a replication pattern will
be enforced using the procedure described above. Throughout the protocol, if a prover is caught
cheating the protocol can be aborted or restarted as discussed above.

The protocol will proceed as follows:
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1. Sharing inputs. The clients arrange their inputs into blocks with a replication pattern that sets
up the parallel evaluation for the first layer (namely, so that the first layer will be evaluated by
taking the NAND of blocks 1,2, of blocks 3,4, etc.). Each client then secret-shares its blocks,
proving to the servers that the shares of each block agree with a polynomial of degree at most
d and that the secrets in the shared blocks satisfy the replication pattern determined by the
first layer of C. (Such proofs are described in the previous section.) In addition, in the case
of boolean circuits servers need to be convinced that all secrets are either 0 or 1. This can
be done in several standard ways. If F is of characteristic 2, then valid shares of 0/1 blocks
form a linear space over the binary field, and therefore such proofs can be obtained using the
procedures described above. In general, the servers can securely reveal 1−a ·a for each block
a (which should evaluate to a block of 0’s) or alternatively work with an arithmetic circuit C
that starts by powering the inputs to the order of F .

2. Evaluating C on shared blocks. The main part of the protocol is divided into d phases, one
for evaluating each layer of C. For h = 1, 2, . . . , d we repeat the following:

• NANDing and blinding. At the beginning of the phase, the inputs to layer h are arranged
into blocks, so that the outputs of layer h can be obtained by taking the NAND of
each consecutive pair of blocks. Moreover, each block is secret-shared using a degree-d
polynomial. We would like to reveal the outputs of the layer to Alice, masked by random
blinding blocks picked by Bob. For this, Bob will VSS random blocks, one for each block
of output. The secret-sharing of these blocks is done using polynomials of degree 2d.
(Again, verifying that the shares distributed by Bob are valid is done using the procedure
described above.) For every pair of input blocks a, b whose NAND is computed, each
server j locally computes the degree-2 function c(j) = 1−a(j)b(j)+r(j), where a(j), b(j)
are its shares of a, b and r(j) is its share of the corresponding blinding block r distributed
by Bob. For each pair of blocks combined in this way, the server sends his output (a
single field element) to Alice. Note that the points c(j) lie on a random degree-2d
polynomial pc, and thus reveal no information about a, b. Moreover, the polynomial pc

can be viewed as some valid degree-2d secret sharing of the block c = 1− ab + r.

• Reducing degree and rearranging blocks for layer h+1. Alice checks that the points c(j)
indeed lie on a polynomial pc of degree at most 2d (otherwise she can either apply error
correction or abort, depending on the security setting). Then she recovers the blinded
output block c = 1− ab + r by letting cj = pc(1− j). Now Alice uses all blinded blocks
c obtained in this way to set up the (blinded) blocks for computing layer h + 1.
For this, she sets up a new set of blocks that are obtained by applying a projection
(namely, permuting and copying) to the blocks c that corresponds to the structure of
layer h + 1. (In particular, the number of new blocks in which an entry in a block c
will appear is precisely the fan-out of the corresponding wire in C.) Let c′ denote the
rearranged blinded blocks.
Now Alice secret-shares each block c′ using a degree-d polynomial pc′ . She needs to prove
to the servers that the shares she distributed are of degree d and that the entries of the
shared blocks c′ satisfy the required relation with respect to the blocks c that are already
shared between the servers using degree-2d polynomials. Such a proof can be efficiently
carried out using the procedure described above. Note that pairs of polynomials (pc, pc′)
such that pc is of degree at most 2d, pc′ is of degree at most d, and pc(i) = pc′(j) form
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a linear space (for any fixed i, j), and hence the 2n evaluations of such polynomials
on the points that correspond to the servers form a linear subspace of F 2n. Also, the
corresponding code will have a large minimal distance because of the degree restriction,
which ensures that the adversary cannot corrupt a valid codeword without being detected
(and even corrected).

• Unblinding. To set up the input blocks for the evaluation of layer h+1, we need to cancel
the effect of the blinding polynomials pr distributed by Bob. For this, Bob distributes
random degree-d unblinding polynomials pr′ that encodes blocks r′ obtained by applying
to the r blocks the same projection defined by the structure of layer h+1 that was applied
by Alice. Bob proves that the polynomials pr′ are consistent with the pr similarly to
the corresponding proof of Alice in the previous step. (In fact, both sharing the pr′ and
proving their correctness could be done in the first step.) Finally, each server obtains its
share of an input block a for layer h + 1 by letting a(j) = c′(j)− r′(j).

3. Delivering outputs. The outputs of C are revealed to the clients by having the servers send
their shares of each output block to the client who should receive it. By the robustness of
the secret sharing, the client can decode the correct output from the shares. (Alternatively,
in our setting we can allow a client to abort if the shares it receives are not consistent with
any degree-d polynomial).

The security of the above protocol can be proved along the lines of the BGW protocol [5] and
the protocol from [20].

We finally note that when the circuit C is an NC0 circuit (namely, each bit of the output
depends on a constant bits of the input) the above protocol can be implemented using a single
phase, as was originally done in [20]. This variant of the protocol will be useful for the application
to extending OTs.

B Non-Interactive 2-Party SFE

In this section we describe a minimally interactive two-party protocol in the OT-hybrid model that
uses only a single round of OTs and no additional interaction. The SFE functionalities considered
here provide output to only one party.

First, we shall describe a protocol that achieves security against covert-adversaries, but with a
deterrence probability that can be easily reduced to negligible by choosing parameters appropriately.
We describe the protocol in two parts.

B.1 Reducing Covert-adversary 2-Party SFE to Covert-adversary Certified-OT

We shall use an intermediate 2-party functionality Fcov-cOT, for “covert-adversary certified-OT.”

Covert-adversary Certified-OT Functionality. Parameters of Fcov-cOT include a function C,
the number of pairs of strings that are being transferred, m, the length of these strings, and a
“deterrence probability” ε.

1. Fcov-cOT takes from the sender input Γ = ((s1
0, s

1
1), . . . , (s

m
0 , sm

1 );w) that is m pairs of strings
and a “witness” w. It takes from the receiver inputs c1, . . . , cm.
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2. If the sender is corrupt, it allows the sender to send a command cheat also. In this case, with
probability ε, Fcov-cOT will produce the message corrupted as output to both the parties and
terminates, and with probability 1− ε, will (a) give c1, . . . , cm to the sender and (b) allow the
sender to specify an output for the receiver.

3. If the sender does not include the cheat command in the input, then the receiver gets
(s1

c1 , . . . , s
m
cm

;C(Γ)).

Given a decomposable randomized encoding h for a function g, it is fairly straight forward to
use a simple generalization of Yao’s protocol for secure 2-party evaluation of g in the certified-OT-
hybrid model. In the Fcov-cOT-hybrid model, this protcol is a secure realization of covert-adversary
SFE of g.

Let g’s input be in two parts: A’s input a and B’s input b. Recall that a decomposable
randomized encoding of g can be written as h(x, r) = {hi(xi, r)}|x|i=1, where x is the input to g.
Since x = (a, b), we will rewrite this as h(a, b, r) = {hA

i (ai, r)}|a|i=1 ◦ {hB
i (bi, r)}|b|i=1.

The function C associated with Fcov-cOT is defined as

C({(si
0, s

i
1)}

|b|
i=1; (a, r)) = ({hA

i (ai, r)}|a|i=1;R({(si
0, s

i
1)}

|b|
i=1, r)),

where R is a predicate which checks that {(si
0, s

i
1)}

|b|
i=1 = {(hB

i (0, r), hB
i (1, r))}|b|i=1.

1. A picks a random string r (for the randomized encoding of g) and prepares the following input
for Fcov-cOT (with the associated function C described above): ({(hB

i (0, r), hB
i (1, r))}|b|i=1; (a, r)).

2. B inputs (b1, . . . , b|b|) to Fcov-cOT, and obtains ({hB
i (bi, r)}|b|i=1; {hA

i (ai, r)}|a|i=1; z). B aborts if
z 6= 1.

3. B computes g(a, b) from h(a, b, r) = {hA
i (ai, r)}|a|i=1 ◦ {hB

i (bi, r)}|b|i=1, and outputs it.

Proof of Security. If A is corrupt, the simulation is straight forward: the simulator obtains her
inputs to Fcov-cOT, computes C and checks if the predicate R evaluates to 1 on this input. If so, it
sends a to Fcov-g. If A sends a cheat command to Fcov-cOT, then the simulator also sends a cheat
command to Fcov-g. If Fcov-g responds with the inputs of B, then the simulator sends these to A as
the response from Fcov-cOT. Further, in this case, A sets the outputs of Fcov-cOT, which are received
by the simulator, who uses it to carry out the rest of the protocol of B; the simulator will then
instruct Fcov-g to output whatever this simulated B outputs. It is easily seen that this is a perfect
simulation if Fcov-g has the same deterrence probability as Fcov-cOT.

If B is corrupt, then also there is a simple simulation, which depends on the privacy property
of the randomized encoding. The simulator obtains the bits of B’s input from Fcov-cOT, sends it
to Fcov-g and obtains the output for B. It then constructs a random encoding consistent with this
output value and B’s inputs. This is used to prepare a simulated output from Fcov-cOT.

(Note that Fcov-cOT does not allow B to send a cheat message.)

B.2 Reducing Covert-adversary Certified-OT to OT

In this section we give a two-party protocol cOTOT in the OT-hybrid model, which achieves the
“covert-adversary” Certified-OT functionality Fcov-cOT. Our protocol is built by compiling an MPC
protocol, η (involving more than two parties, with a certain level of information theoretic security
against passive corruption) into a two-party protocol in the OT-hybrid model.

38



Protocol η. First we describe the requisite properties of the protocol η.

• Participants: There are 2 input clients, q servers and 2Lm+1 output clients for some L > 1.
(Here q will be a constant, set to 3 or 5, for instance. m is the number of pairs of strings that
the sender wants to send in the certified OT functionality provided by the compiled protocol.
L can be set to 2 to get a deterrence value of 1/2, or if a higher deterrence value is needed, a
higher constant.) We denote the 2 input clients by I0 and I1; we denote the 2Lm + 1 output
clients by Zi

`0 and Zi
`1, (for i = 1, . . . ,m and ` = 1, . . . , L) and Z0.

• Functionality: We define the following functionality H. Let x0 and x1 denote the inputs of
I0 and I1. H parses x0 ⊕ x1 as m pairs of strings ((s1

0, s
1
1), . . . , (s

m
0 , sm

1 )) and a “witness” w.

Z0 is given the function C((s1
0, s

1
1), . . . , (s

m
0 , sm

1 );w). For each i, Zi
`0 and Zi

`1 (` = 1, . . . , L)
receive random strings zi

`0 and zi
`1 subject to the constraint that

⊕
` zi

`r`
= siL

` r`
for all

r ∈ {0, 1}L. That is, zi
`b are random such that

⊕
` zi

`0 = si
0 and zi

`1 = zi
`0 ⊕ si

0 ⊕ si
1.

• Security: η must be t0-private, for some t0 ≥ 2. More precisely, it securely realizes the
functionality H against passive (honest-but-curious), adversaries who can corrupt up to t0
servers, and any number of input and output clients. The security is perfect.

• Structure of the protocol: We will require that the input clients talk only to the servers
and that output clients only receive messages and never send messages. We can allow η to
be in the OT-hybrid model.

• Complexity: We require the communication complexity of the protocol to be linear in the
circuit size of C.

Standard MPC protocols from the literature can be easily adapted to obtain a protocol η that
fits the above requirements. So, for instance, for 2-security (i.e., t0 = 2), we can let q = 3 and
use the (semi-honest) GMW protocol [25] in an OT-hybrid model, or let q = 5 and use the BGW
protocol [5] (or a simpler protocol due to Maurer [39]).

Protocol φ. Similar to η we also need a (simpler) protocol for an “equality check,” with a similar
protocol structure and security guarantee. φ has 4 input clients and one output client, and q servers
without input or output. φ (stand-alone) securely realizes the following functionality E , against
t0 ≥ 2 passive server corruptions. The security is perfect.

Let the input clients be I0, I1, I ′0 and I ′1, with inputs x0, x1, x′0 and x′1, respectively. Then E
outputs 1 to the output client if and only if x0 ⊕ x1 = x′0 ⊕ x′1.

Protocol cOTOT. The certified-OT protocol cOTOT proceeds as follows in the OT-hybrid model.
Let κ be a statistical security parameter. (Later we will set κ to be a constant, independent of the
final security parameter, m and the final circuit size.)

• Run “MPC in the head”: The sender prepares κ total views of the execution of the protocol
η and

(
κ
2

)
total views of the execution of the protocol φ. We will refer to the κ executions of

η as ηj (j = 1, . . . , κ) and the
(
κ
2

)
executions of φ as φjj′ (for 1 ≤ j < j′ ≤ κ). The servers

are distinct in all these executions (thus there are q(κ +
(
κ
2

)
) servers in all), but the input

and output clients in these different executions are identified as follows. There are 2κ input
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clients Ij0 and Ij1 with inputs xj0 and xj1 respectively for j = 1, . . . , κ; ηj has (Ij0, Ij1) as its
two input clients; φjj′ has (Ij0, Ij1, Ij′0, Ij′1) as its four clients. There are Lm + 1 clients Zi

`0

and Zi
`1, (for i = 1, . . . ,m and ` = 1, . . . , L) and Z0, which serve as the output clients in all

κ instances of η. Further Z0 will serve as the output client in all the
(
κ
2

)
instances of φ.

In these executions the inputs (xj0, xj1) are set independently for each j as a random additive
sharing of the input to cOTOT, Γ; i.e., xj0 ⊕ xj1 = Γ for each j.

• Cut and choose: Using a single round of multiple (1-out-of-N) OTs, the sender and the
receiver do the following:

– For each j, the sender sends views of the pair of input clients (Ij0, Ij1) via a 1-out-of-2
OT channel, and the receiver picks one view at random.

– In each of the κ executions of η and each of the
(
κ
2

)
executions of φ, the sender makes

two lists of the q server views, and sends each list via a 1-out-of-q OT channel. From
each list, the receiver selects independently at random one server’s view.

– For each i = 1, . . . ,m, the sender sends the views of (Zi
`0, Z

i
`1) for ` = 1, . . . , L through

L 1-out-of-2 OT channels. The receiver picks the views Zi
`r`

for a random r ∈ {0, 1}L
such that

⊕
` r` = ci.

In addition, the sender sends the view of the Z0 directly (i.e., without using OT).

• The receiver checks for consistency in the input it received:

1. The input clients: Views of all the exposed input clients are locally correct, i.e., each
input client’s view is according to its program given its initial input and random tapes
(In particular each of them feeds the same input to the instance of η as well as to the
κ− 1 instances of φ that it participates in.)

2. The servers and the “edges”:

– The views of the exposed servers are locally correct (given the incoming messages
and the random tapes).

– The views of the exposed servers are consistent with the incoming messages reported
in the views of the exposed output clients and the outgoing messages implicit in the
views of the exposed input clients.

– The views of the exposed servers are consistent with each other (in particular, if the
same server was exposed twice, the two views are identical).

3. The output clients:

– In all executions φjj′ , (1 ≤ j < j′ ≤ κ), Z0 outputs 1. Also, in all executions ηj ,
(1 ≤ j ≤ κ), Z0 produces the same output (say γ).

– The views of (i.e., outputs produced by) all the exposed output clients (including
Z0) are correct given the incoming messages.

– Let zi
j`b denote the output of the output client Zi

`b in the ηj . Then, for each i,⊕
zi
j`r`

evaluates to the same value (say s̃i) for all j.

If all the verifications succeed, then the receiver outputs (s̃i, . . . , s̃i; γ). Else it aborts the
protocol by sending abort to the sender.
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Lemma 1 Given a protocol η satisfying the conditions above, cOTOT defined above is a UC-secure
realization of the certified OT functionality Fcov-cOT. The simulation is perfect.

Proof overview: The interesting cases are when exactly one of the sender or the receiver is
corrupted.
Corrupt Receiver. In this case, the security easily follows from the privacy of the protocol η.
Consider a simulator in the ideal world interacting with Fcov-cOT as the receiver, and simulating
the protocol to the corrupt receiver. Note that the only things a receiver can do in the protocol is to
select which server views it obtains, and which input client’s view it gets to see. First the simulator
extracts (c1, . . . , cm) from observing which output clients’ views the receiver requests via the OT
functionality (using default values if necessary). Then it sends these to Fcov-cOT and obtains the
outputs for the receiver. Observe that the views that the receiver can obtain in each execution of
η or φ are of up to 2 servers, input clients (with only one share of an additive sharing of Γ) and
some output clients. By the security guarantee on η and φ, this view can be perfectly simulated
given just the outputs that these output clients receive. Since these outputs are available to the
simulator, it can carry out a perfect simulation.
Corrupt Sender. This case is the more interesting one.

Consider the graph on the parties in the protocol with an edge between two parties who can
exchange a message in the protocol. (That is, there are edges between the input clients and the
servers, among the q servers, and between the servers and the output clients.)

Let δ be the minimum probability of detecting an “internally” inconsistent execution of φ or of
η. Note that δ ≥ 1/q2.

The simulator obtains the entire collection of views that the sender submits as inputs to the
OT executions. It examines these views and first prepares an “input consistency graph” as follows:
For each j (j = 1, . . . , κ), such that both Ij0 and Ij1 are locally consistent, add a node to the graph.
For each pair (j, j′) such that the entire execution of φjj′ is correct (given the randomness of the
servers), add an edge between the corresponding nodes (if present) in the graph. Note that for
any connected component in this graph, there is a unique input value Γ such that for all j in the
connected component, xj0 ⊕ xj1 = Γ and the input clients of ηj use this input.

Now the simulator proceeds as follows:

• The simulator sends the cheat command to Fcov-cOT if any of the following conditions hold.

1. The input consistency graph has no connected component of more than κ/2 nodes.

2. ηj was internally consistent only for κ/2 or fewer values of j.

3. For some i, for all ` (` = 1, . . . , L), output client Zi
`0 or Zi

`1 was locally incorrect.

Then, with probability ε, Fcov-cOT will send corrupted to both parties; in this case the simulator
aborts the simulated protocol. With probability 1 − ε, Fcov-cOT will allow the simulator to
cheat: the simulator obtains the inputs of the receiver and calculates the probability p that the
simulator would have aborted the protocol. We shall see that p > ε. Then with probability
(p− ε)/(1− ε) the simulator will abort the simulated protocol (so that total probability of the
simulated protocol being aborted is exactly p) and send corrupted to Fcov-cOT; with probability
(1− p)/(1− ε) it will continue the simulation conditioned on the receiver not aborting, derive
the output that the receiver obtains, and send this to Fcov-cOT as the output for the receiver.
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• If the above conditions do not hold (and so the simulator does not send cheat to Fcov-cOT),
then

1. The simulator can derive an input Γ, which is the input defined by the majority of the
nodes in the input consistency graph.

2. Also, since more than κ/2 executions of η were internally consistent, there is some j such
that ηj was internally consistent and used inputs xj0 and xj1 such that xj0 ⊕ xj1 = Γ.

3. Further, for each i, for at least one ` (` can depend on i), both Zi
`0 and Zi

`1 were locally
correct (for all κ execution of η).

In this case the simulator proceeds to give a perfect simulation as follows. Note that the
only information the sender learns is whether the receiver aborts the protocol or not. The
simulator carries out all the checks like the receiver, except for the last step. For the last
check, the receiver would pick, for each i, r ∈ {0, 1}L such that

⊕
` r` = ci. But the simulator

(who does not know ci), simply picks a random string r. However, this is equivalent to picking
r′ where the `-th bit of r is flipped. This is because both the views Zi

`0 and Zi
`1 are locally

correct. Thus the simulated protocol is a perfect simulation of the real protocol so far.

If the simulated protocol does not abort, then the simulator sends Γ to Fcov-cOT. Otherwise
it sends corrupted to Fcov-cOT. By the correctness of ηj for some j, we know that the output
of the receiver in the real protocol is perfectly simulated by the output Fcov-cOT delivers in
the ideal world, on input Γ.

To complete the argument we need to argue that the probability p of the real protocol aborting
in the three cases where the simulator would send cheat to Fcov-cOT is indeep at least ε. We consider
the three cases below.

1. If the input consistency graph has no more than κ/2 nodes in a single connected component,
then there must be either Ω(κ) missing nodes (i.e., j for which the node was not added to
the graph), or Ω(κ2) missing edges (i.e., edges (j, j′) that were not added to the graph).

• For each missing node j, one of the two input clients Ij0 and Ij1 is locally incorrect
(sending different inputs to executions of η and φ). If there are d such missing nodes,
the probability of the real protocol aborting is at least 1− 2−d, because for each j there
is an independent probability of at least half of exposing an incorrect view.

• For each missing edge (j, j′) (between nodes which are present in the input consistency
graph), the probability of the protocol aborting is δ if φjj′ is internally inconsistent, or
is 1, if Z0 is either locally incorrect or produces an output 0 in φjj′ . If there are d such
missing edges, the probability of the protocol aborting is at least 1− (1− δ)−d (as these
events are independent of each other).

In any of these cases, the real protocol execution would abort with probability at least p1 =
1− (1− δ)Ω(κ).

2. If ηj was internally consistent only for κ/2 or fewer values of j, then the protocol will abort
with probability at least p2 = 1− (1− δ)κ/2.

3. If for some i, for all ` (` = 1, . . . , L), at least one of the output clients Zi
`0 and Zi

`1 was locally
incorrect, then the protocol would abort with probability at least p3 = 1− 2−(L−1).
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To ensure that these abort probabilities are at least ε, we set ε :=min(p1, p2, p3). Note that with
L = 2, and a large enough κ, we can get ε = 1

2 . By choosing L = Ω(κ), we get ε = 1− 2−Ω(κ). C

43


	Introduction
	Our Results
	Techniques

	Preliminaries
	Protocol Compiler
	The Outer Protocol 
	The Inner Functionality G and the Inner Protocol OT 
	The Compiled Protocol
	Setting up the Watchlist Broadcast Channels

	Extensions to the Compiler
	On Adaptive Security
	Removing restrictions on 
	Using Inner Protocol With Only Static Passive Security


	Instantiating the Building Blocks
	Applications
	Constant-Rate Secure Computation in the OT-Hybrid Model
	Black-Box Constructions for Constant-Round MPC with no Honest Majority
	OT Extension in the Malicious Model
	OT Combiners

	A Constant-Rate Outer MPC Protocol
	Building Blocks
	The Protocol

	Non-Interactive 2-Party SFE
	Reducing Covert-adversary 2-Party SFE to Covert-adversary Certified-OT
	Reducing Covert-adversary Certified-OT to OT


