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Abstract

Secure multi-party computation (MPC, for short) is a powerful cryptographic concept
which lets mutually distrusting parties collaborate without compromising their private
information (beyond what is required by the functionality for which they collaborate).
The functionality allowed in such a collaboration is so general that MPC subsumes virtu-
ally all other cryptographic tasks. Much of the two and a half decades of cryptographic
research can be seen as striving towards the Holy Grail of realizing secure MPC in the
most challenging scenario in which the parties carry out multiple tasks concurrently, the
entire communication is adversarially controlled and there are no universally trusted en-
tities.

In this thesis, for the first time we show how to realize secure MPC in such a general
setting. Our contribution can be considered three-fold:

• Definition of Security. We present a new framework — called Los Angeles Network-
aware security — for defining security of MPC protocols. This builds on Canetti’s
Universally Composable security framework, under which it was known that very
few distributed tasks can be carried out securely (unless globally trusted entities
were used by the protocol).

• Protocols and Proofs. We build a new protocol for multi-party computation which
uses no globally trusted entities, and prove that it is secure in the Los Angeles
Network-aware security framework, under certain complexity theoretic assump-
tions. The high-level structure of the protocol and proof of security resembles that
in previous works on multi-party computation, but we employ novel approaches
in designing the lower level elements of our protocol.

• Complexity Theoretic Assumptions. We introduce new complexity theoretic as-
sumptions, and show their use in proving the security of our protocols. The as-
sumptions we make are somewhat different from those used in previous works.
We informally argue why our assumptions are reasonable.

Also, we introduce an extension to the Los Angeles Network-aware security frame-
work — called monitored security — to obtain a greater security-efficiency trade off.
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We show how Network-aware security guarantees, albeit weak, can be given under this
framework for much more efficient and simpler protocols.
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Preface

The contents of this thesis are primarily derived from the two papers [PS04] and
[PS05]. In addition, it includes many unpublished extensions and a new presentation
of the model. We briefly point out some of the highlights of this thesis, which the readers
who are familiar with the prior works in this area (in particular [Can01, Can05]) may find
useful.

• A Fresh Presentation of the Model. We provide a fresh presentation of the model
for computation and communication, with the aim of making it fit the real-life sce-
nario easier. In particular, we use high-level descriptions of programs (using their
input-output behavior) eschewing the formulation of a Network as a system of
Interactive Turing Machines; we avoid explicit sequentialization of concurrent pro-
grams, instead using an abstraction which facilitates working directly with con-
current executions; we provide an alternate way to impose polynomial time re-
strictions on computations; we use a more general notion of program scheduling,
to take into account the possibility that scheduling of programs may provide side-
channels leaking secret information. This is especially useful in extending the model
to allow the notion of clock-time and timing-attacks.

• Extended Universal Composition Theorem. We present an extended version of
the Universal Composition theorem, which addresses the following enhancements
to the regular Universal Composition theorem: it allows nested subroutines, joint-
state subroutines, security given with respect to different angels and multiple si-
multaneous protocol sessions invoked by the “environment.” While some of these
enhancements have appeared in earlier literature, it is for the first time that they are
all presented together to obtain the big picture of Universal Composition.

• Proofs Regarding the use of “Locked States” with Monitors. Chapter 6 consists
mostly of results from [PS05]. However it also contains a detailed exposition to the
notion of “locked states” which was only outlined in [PS05].

• Detailed Proofs. The proofs of security in Chapters 5 and 6 are given in substan-
tially more detail and rigor compared to previous presentations of these results.
Since the proofs typically involve many constructions interspersed with reasoning
about their properties, for ease of following, we have marked out the larger con-
structions in the text.

• New Devices. For clarity we have introduced some new devices into the descrip-
tion. Firstly, we use a shorthand (comb(· · · )) for expressing combination of multi-
ple elements in a Network. This replaces the typical convention used in previous
works of explaining the mechanics of constructions by enumerating how various
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messages are handled. Our new convention prevents the essence of the construc-
tions from being obfuscated. Secondly, for clarity we introduce a new device called
a transvisor for describing simulators (Section 3.3.4).

• New Terminology. The terms Network-aware security and Los Angeles Network-aware
security are new. In [PS04, PS05] they were termed Environmental Security and Gen-
eralized Environmental Security, respectively.

• Notes for the nuanced reader. Several comments and elaborations are included as
endnotes in each chapter. Many of these are meant for the expert reader, and may
be skipped by the first time reader.

As is inevitable in the first published version of any work of this length and technical
detail, we expect that there may be some minor errors and inaccuracies. Our precaution
against introducing any serious flaws has been the level of detail at which arguments
are presented. However, theoretical cryptography lacks a comprehensive language to
formally capture all arguments that any non-trivial work like this requires. Thus the
proofs employ a mix of plain English and some abuse of notation along side rigorous
mathematical derivations. By generously introducing mathematical notation we have
tried to avoid the pitfalls of intuitive reasoning.

We hope that this exposition to the state of the art in what is a fast evolving frontier
of cryptography will be useful for new students as well as the experts in the field.
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Chapter 1

Introduction

With the revolutions in Information and Communication Technology, and the availabil-
ity of enormous computational resources, the nature of “information” changed for ever.
Among other things, it has reshaped the concept of information security. This thesis fits
into – and indeed, contributes to defining – these evolving notions of security.

There are two aspects in the modern understanding of information security which
which gets highlighted in this thesis.

• Nature of tasks for which security is required. Traditionally information security
was confined to security of information transmission (encryption and authentica-
tion). However, increasingly it has come to include security of information that is
the input for, or the output from, a variety of distributed computational tasks. Ex-
ample scenarios would include electronic commerce, online voting, private infor-
mation retrieval or privacy preserving datamining. All such computational tasks
are collectively referred to as multi-party computation (MPC).

• Nature of the environment in which we must operate. Internet has defined the
standard computational and communication environment where the distributed
tasks are carried out. Each agent typically takes part in multiple tasks simultane-
ously, and shares information among its different tasks. There is little or no trust
among the different agents; the communication channels are unreliable, and open
to sniffing and spoofing by adversarial agents. We refer to this environment in-
volving all the agents, their computations and communications, as well as all the
adversarial agents, collectively as the Network. Any guarantee of information secu-
rity has to be cognizant that the activities take place in such a Network.

Recent advances in cryptography take into account both of the above aspects of in-
formation security. The most advanced notion of security developed in theoretical cryp-
tography, which in this thesis we call Network-aware security, is specifically designed to
address these issues, something which the earlier notions of security did not address.
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The central contribution of this thesis is in showing that protocols for multi-party
computation can be designed which are secure in the sense of Network-aware security.
This answers perhaps the most pressing question at the center of more than two decades
of modern cryptography which had set secure multi-party computation as its primary
goal. Our results build on top of the rich collection of tools, techniques and concepts that
this thread of research has forged. And in doing so, we improve on previous attempts
which either did not address the issue of Network-awareness, used trusted setups or
imposed non-standard restrictions.

1.1 Three Elements of Modern Cryptography

Before we proceed further, it will be useful to present an overall outlook on the central
elements in this thesis. Instead of considering this as a monolithic result for securely
realizing multi-party computation, we consider three important aspects of cryptography
and how this thesis makes important contributions to all of them.

Modern cryptography can be viewed as built on the two pillars of security definitions
and complexity theoretic primitives. Resting on these pillars (and indeed bridging them, in
a technical sense) is what forms the expansive edifice of cryptography: the cryptographic
protocols and their proofs of security. On our way to secure MPC we shall make contribu-
tions to all these three segments.

1.1.1 Definition of Security

The first hurdle in the challenging route to secure multi-party computation is defining
security. The single most important contribution of this thesis would be the new defini-
tional framework that we develop. For the first time, we believe we have achieved the
delicate balance between a rigorous mathematical definition and a pragmatic definition
which allows us to construct protocols (without trusted setups or non-standard restric-
tions) for secure MPC.

The first satisfactory definition of Network-aware security was introduced by Canetti
in 2001 [Can01, Can05] under the name of UC Security (for Universally Composable
Security), and independently by Pfitzmann and Waidner [PW01]. However it was shown
that very few distributed tasks can be securely carried out under these definitions (except
with trusted setups or non-standard restrictions). In this work we provide an alternate
notion, called Los Angeles Network-aware security. (We shall explain the colorful name
shortly.) Our definition builds on the original Network-aware security definition. Like
them, our definition also satisfactorily captures security notions for general multi-party
computation in the context of a Network. Further, it also satisfies the so called “Universal
Composition” property: it refers to the guarantee that secure protocols remain collectively
secure when deployed together; it also allows one to build complex protocols in a modular
way by composing simpler protocols.
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The name Los Angeles security derives from the new conceptual tool we add to the
definition, namely an angel.1 The angel is a critical tool which enables us to define and
prove the security of the protocols in this thesis. However, the protocols themselves make
no direct use of the angel.

Security using Monitors. We also introduce an interesting variant to Los Angeles se-
curity called monitorable security. It uses yet another new concept, called monitors. The
typical the use of this definition would be to provide weaker security guarantees com-
pared to the normal Los Angeles Network-aware security definition. The advantage of
this definition is that it can be used to provide Network-aware security guarantees (albeit
weak) to even some extremely simple (and relatively efficient) protocols.

1.1.2 Complexity Theoretic Primitives

Modern cryptography crucially relies on Computational Complexity Theory to prove the
security of protocols. We introduce new complexity theoretic primitives, and show their
use in proving the security of our protocols. It is well known that even for the simplest
tasks, proving security of any protocol, under any reasonable definition of security, re-
quires complexity theoretic results, which are way beyond what is currently provable.
Hence the proofs of security always make a few well-stated basic assumptions about hard-
ness of certain computational problems. We too make such assumptions regarding our
primitives.

Our assumptions are somewhat different from those used in previous works. This is
a drawback, because the new assumptions are not as well studied as the more conven-
tional ones. On the other hand, using new assumptions comes with its own advantages,
both for the theoretical studies and practical implementations. The practical advantage is
that new assumptions can often provide a trade-off between security and efficiency. To-
day, most of the protocols from theoretical cryptography are unimplemented, thanks to
their high complexity: computational complexity, communication complexity and con-
ceptual complexity. The protocols in this work are still too complex and inefficient to be
considered acceptable by the practitioner today. However our protocols are significantly
more efficient and simpler than previous comparable protocols which sought to provide
Network-aware security. This simplicity is facilitated in part by our complexity theoretic
assumptions.

As we shall see, our definitional framework is very general and holds promise for
introducing even further trade-offs between complexity assumptions and efficiency. This
might make it easier for theoretical cryptography to make its way more and more into
practice.

A more fundamental benefit to theory, however, is in the form of the challenge to
understand the new assumptions: how they relate to other complexity theoretic assump-
tions, and whether there is anything fundamentally different in the nature of these as-
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sumptions that separates it from previous ones. The application to cryptography strength-
ens this pursuit by providing fundamental connections and directions. It also makes it
more than of academic interest.

Like in other works in foundational cryptography, our assumption is a “general as-
sumption,” as opposed to assumptions about any specific number-theoretic or algebraic
problem. This allows the possibility that even if a specific assumption required in an
implementation of our protocol turns out to be incorrect, an alternate implementation
based on another assumption may be available. We shall informally argue why our new
assumptions are reasonable, and point to recent progress by other researchers in instan-
tiating our general assumptions using number theoretic primitives.

1.1.3 Protocols and Proofs

The foundational contributions apart, the central concrete result of this thesis, is a new
protocol for multi-party computation, which is provably secure under our definition of
Network-aware security, under the new complexity theoretic assumptions. The high-
level structure of the protocol and proof of security resembles that in previous works
on multi-party computation. Especially, it draws from the work of Canetti, Lindell, Os-
trovsky and Sahai [CLOS02] (which provided secure MPC under Canetti’s definition of
Network-aware security, but depended on a non-standard setup called common ran-
dom string), which in turn was based on the work of Goldreich, Micali and Wigder-
son [GMW87] (which provided secure MPC under a “stand-alone” security definition).
However, we will need to employ some novel approaches in designing the lower level
elements of our protocol.

This protocol could be considered as an illustration of the viability of our new security
definition. When seeking improved efficiency, the protocol, and the complexity theoretic
assumptions used to prove its security, may be changed.

The protocols in the monitorable security framework (Chapter 6) are fairly simple and
resemble the conventional protocols. However the proofs are quite non-trivial, especially
when the security guarantee is enhanced by using “locked states” (Section 6.5.2).

1.2 A Brief History

Over the last two decades, there has been tremendous success in placing cryptography
on a sound theoretical foundation, and building an amazingly successful theory out of
it. The single most important driving force behind the development of this theory was
the goal of achieving secure multi-party computation. This thread of research led to ro-
bust security definitions, tools and techniques for building and analyzing cryptographic
schemes, and numerous results in trying to understand the connections between various
complexity theoretic assumptions used through out cryptography.
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1.2.1 Security Definitions

Original notions of cryptographic security were centered around encryption. Mathemat-
ical notions of security of encryption was pioneered by Shannon [Sha49], who defined
security in information theoretic terms. Decades later, the utility of encryption was revo-
lutionized by the concept of public-key encryption [DH76], initiating “modern cryptog-
raphy.” However adequate definitions were introduced only much later, in the seminal
work of Goldwasser and Micali [GM84]. After Shannon’s remarkable feat of mathemati-
cally formulating the concept of information, this marked the next major advance by cap-
turing the notion of “knowledge” (in a manner relevant to cryptography). This work laid
down the basic pattern for future definitions of security in modern cryptography going
beyond encryption, and has been epitomized in the definition of the “zero-knowledge”
property of protocols [GMR85].

These definitions in the earlier part of 1980’s formed the basis for defining security
of general multi-party computations. Yao [Yao82a] introduced the concept of security
for multi-party computation in intuitive terms through the famous “millionaire’s prob-
lem.” But, even after protocols for general multi-party computation were developed
[Yao86, GMW87], it was over a decade that a mature definition of security for multi-party
computation slowly evolved [GL90, MR91, Bea91a, Bea91b, Can95, Can00].

The evolution of definitions not only addressed more applications (going from en-
cryption to general multi-party computation), but also started addressing applicabil-
ity to more and more realistic situations. Initial definitions were framed in a “stand-
alone” setting and provided no security guarantees for “composition,” when instances
of one protocol were to be used as subroutines within a larger protocol. Neither were
these definitions applicable to a Network setting. The composition issues were identi-
fied first with respect to basic primitives like commitments and zero-knowledge proofs
[GK96, DDN00, DNS98]. These works also presented security definitions which ad-
dressed the specific composability issues that they examined. In the larger context of
multi-party computation, security definitions addressing composability were first devel-
oped with several restrictions [Can00, DM00, PSW00, PW00], before general frameworks
for Network-aware security, appeared [Can01, PW01, BPW04]. These last works present
definitions which are essentially equivalent, and constitute the notion of Network-aware
security, as we intend in this work. We refer the reader to [Can05] for a brief survey on
this thread of development.

UC Security. As mentioned above [Can01] (with refinements in [Can05]) introduced
one of the first satisfactory definitions of Network-aware security, under the name UC
security (which stands for Universally Composable security). We shall briefly mention
the salient features of this framework, as they are relevant to our definitions.

The basic underlying notion of Network-aware security in the UC model and its pre-
decessors is based on simulation. An “ideal” world is described, where all requisite tasks
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get accomplished securely, as if by magic. The goal of the protocol designer is to find a
way to accomplish these tasks in the “real” world (where magic is hard to come by) so
that no malicious adversary can take advantage of this substitution of ideal magic by real
protocols. To formalize this, we say that for every malicious adversaryA that tries to take
advantage of the real world, there is an adversary S that can achieve essentially the same
results in the ideal world. The “results” are reflected in the behavior of an environment. In
Chapter 3 we further elaborate on the definition and its implications.

Universal Composition. The advantage of UC secure protocols, as shown in [Can01,
Can05], is that they are “Universally Composable.” Roughly this means the following:
one can build a protocol using idealized components and prove its security; then, if the
idealized components are replaced by protocols which securely realize these components
(according to the UC security definition), then the security of the larger protocol contin-
ues to hold. One key aspect here is that multiple instances of the smaller components
may be concurrently invoked by the larger protocol. Security should continue to hold
even in this case. Canetti [Can01, Can05] shows that this is indeed the case if the UC
security definition is employed. Interestingly, in [Can01, Can05] the security definition
itself is named after this key property, though the UC property does not immediately
follow from the definition.

Impossibility Results. Unfortunately, UC security as introduced in [Can01, Can05]
turns out to be too strong to be achievable in standard settings. It has been shown that
much of the interesting cryptographic tasks (including e.g. commitment, non-trivial zero
knowledge proofs and secure multi-party computation) cannot be secure by this defini-
tion when the adversary can control at least half the parties in a protocol [Can01, CF01,
CKL03, Lin03b]. On the other hand, under a trusted setup assumption (of question-
able applicability in many situations) — that there is a public reference string chosen
by a completely trusted party — it is known how to build protocols for secure multi-
party computation (even with dishonest majority) satisfying the UC security definition.
Also it was known how to achieve this when the majority of the parties are honest
[Can01, Can05, BGW88, CCD88].

New Notions of Security. Prior to the results described here, even for simple multi-
party computation tasks cryptography could offer only an unsatisfactory choice of com-
promises: either choose to use protocols which have no provable guarantee in a Network
setting or use trusted setups like common reference string to implement provably secure
protocols.

In [PS04], we introduced the notion of Los Angeles Network-aware security2 to which
the impossibility results above no more applied. Further, this enabled us for the first time
to give protocols for general multi-party computation, which are provable secure (against



9

“static adversaries”) under a satisfactory definition of Network-aware security. This defi-
nition is presented in Chapters 2 and 3. (The protocols and proofs of security are given in
Chapter 5). In [PS05] we modified the security definition of [PS04] to capture weaker no-
tions of Network-aware security, in an attempt to allow greater security-efficiency trade-
offs. This definition, called “monitored security” is presented in Chapter 6.

1.2.2 Constructions and Techniques

It is remarkable that the promise of theoretical investigation — that an in-depth study of
specific and simplified problems in idealized settings can eventually lead to sophisticated
solutions for the more general and complex problem in realistic settings — is indeed
borne out by modern cryptography. Starting with fundamental techniques developed
very early on [Yao82b, GM84], a wealth of constructions and methods of analysis that
were devised for very specific problems, directly feeds into the development of protocols
for secure multi-party computation. While it is beyond the scope of our work to enumer-
ate all such contributions, a few important tools that need to be mentioned are oblivious
transfer schemes [Rab81, EGL85, GMW87], commitment schemes, secure coin-flipping [Blu82],
zero-knowledge proofs of membership (for languages in NP) [GMR85, GMW91], and the first
two-party and multi-party computation protocols [Yao86, GMW87]. A subsequent line of
work on multi-party computation, initiated by [BGW88, CCD88, RBO89], restricted it-
self to the case of “honest majority” (wherein a majority, or sometimes two-third, of the
participants are guaranteed to be honest), in order to avoid complexity theoretic assump-
tions, using verifiable secret sharing [CGMA85] as a central tool.

All the above mentioned works were developed in the simplified “stand-alone” set-
ting. Network-aware secure protocols for multi-party computation were known only
with the trusted setup of common reference string (CRS) [CF01, CLOS02], or for the
“honest majority” restriction [BGW88, CCD88, RBO89, GRR98, Can01]. We point out
that the ones based on the CRS setup in turn followed the protocol framework devel-
oped in [GMW87]. Protocols for multi-party computation in [PS04, PS05] (presented in
Chapters 5 and 6) also heavily rely on this framework. One of our protocols in Chapter 5
also derives from construction techniques used in [BL02].

Recently, in an attempt to achieve highly composable multi-party computation using
the conventional notion of PPT simulation (i.e., not using angels), and without setup as-
sumptions, we gave a protocol in which the parties in the Network have access to local
clocks [KLP05] (with reasonable assumptions on bounds in clock-drifts). The complex-
ity theoretic assumptions there are more standard than the ones here. However, though
formulated in a Network environment, the security guarantees there fall short of unre-
stricted Network-aware security, and the composition property is weaker as well.3 In-
deed there we argue that some such weakening is inevitable, even when making use
of the clocks of the parties. More recently Barak and Sahai [BS05] gave a secure multi-
party computation protocol in the Los Angeles Network-aware security framework (see
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Endnote 7 of Chapter 5), which while much more complicated, uses a different set of
complexity assumptions which are arguably more standard. Their protocol also falls into
the framework initiated by [GMW87].

Weaker composability of protocols were investigated mainly by considering restricted
Networks with limitations on how the multiple sessions of a protocol could be executed.
This includes the research on concurrent zero-knowledge [DNS98, RK99, KPR98, KP01,
CKPR01, PRS02], (with a heavy focus on simulation by “rewinding” making it proba-
bly less relevant in the context of Network-aware security), and on bounded concurrent
zero-knowledge proofs and multi-party computation [Bar01, Lin03a, PR03, Pas04, PR05]
(techniques from which have found use in [BS05]). In contrast, the results presented
in Chapter 6 offer strong Network-awareness and composability properties, but offer
weaker security guarantees to begin with. The results are limited in applicability and do
not by themselves yield sufficiently secure protocols for general multi-party computa-
tion tasks. Instead this must be looked up on as a promising direction for carrying out
the trade-off between efficiency and security. These results appeared in [PS05] but the
proofs of Section 6.5.2 are mostly new.

We remark that security definitions based on super-PPT simulators have been consid-
ered before, in the context of zero-knowledge proofs, but in much more restricted settings
[Oka91, Pas03]. Also, alternate weaker definitions were explored within the Network-
aware security framework in the context of simpler tasks: the use of “non-information
oracles” in [CK02] is somewhat similar to the use of semi-functionalities in this work.

1.3 Overcoming the Impossibility

An interesting aspect of the results presented here is that they achieve something which
was widely considered to have been ruled out by the strong impossibility results proven
earlier. In fact, virtually all research on Network-aware security was being focused on
using the trusted setup of common reference string. We briefly point out what is in-
volved in avoiding the impossibility results. A more illuminating discussion is deferred
to Section 5.10.2.

Our starting point for overcoming the impossibility of secure MPC in the plain-model
(i.e., without trusted setups) is the observation that in the UC model, even if the adver-
sary has unlimited computational powers, the “ideal world” model — where the func-
tionality is achieved through idealized components — still captures the notion of a se-
cure process in practically all cases of interest. (See Chapter 3 for a detailed discussion.)
Accordingly, we generalize the UC model, by providing the ideal adversary (or “simula-
tor”) with super-PPT computational resources.

However, if composability needs to be retained, we should provide the environment
also with similar computational powers, which will lead us back to the strong impossi-
bility results of [Can01, CF01, CKL03, Lin03b]. If composability were to be abandoned,
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then it is not clear how to build and prove security of protocols for complex tasks, nor
is it clear if multiple secure protocols remain simultaneously secure in any sense when de-
ployed together. Thus, on the face of it, we still cannot attain (in the plain model) a useful
Network-aware security notion.

We break out of this conundrum by allowing the adversary and the environment care-
fully regulated access to super-PPT computational resources. This regulated access is pro-
vided by the (imaginary) entity that we call the angel. The angel has super-PPT computa-
tional resources, and it bases its behavior on the state of the Network. 4 Roughly, the way
we use the angel is as follows: it acts as an oracle providing collisions in a collision resis-
tant hash function used in the protocol. However, it provides only such collisions as cannot
be used to break the security of the honest parties (but can be used by the simulator to “cheat”
an internal copy of the adversary). In Section 3.2 we define what an angel is. In Sec-
tion 5.3.2 we present the specific angel that we use. In Section 5.10.2 we shall describe in
further detail how the introduction of the angel helped us avoid the impossibility results.

1.4 On Trusted Setups

Our primary motivation can be seen as removing the need to have globally trusted ele-
ments in the Network for realizing secure MPC (as was needed before our work). In fact,
the entire task of designing secure MPC protocols can be regarded as removing the need
for global trust: if a globally trusted party were available in the Network, secure MPC can
be almost trivially realized, by using this party to act as the ideal functionality.5 Using
secure MPC protocols in the common reference string model, this trust requirement is
significantly reduced: the trusted entity has to only pick a reference string and distribute
it to all parties at the beginning of the computation. It need not be available as the com-
putation proceeds, and indeed if the state of this trusted entity is destroyed then it need
not remain trusted after that. Nevertheless, it is crucial for the security that initially when
the common reference string is being chosen, it is done honestly. Otherwise the adver-
sary could build a trapdoor into this string and in all schemes which make use of the CRS
this leads to a complete break-down of security.

The ultimate goal of reducing the trust setup is to have each party trust nothing else
but its local execution.6 The contribution of this thesis is to reach this goal, without
sacrificing the generality of the security definition, or of the model of the Network and
adversary.

1.5 Organization of the Thesis

In Chapter 2 we describe the model of computation and communication under which
our results are stated. Chapter 3 gives the main security definition we develop, and
Chapter 4 states and proves the Universal Composition theorem and its extension. The
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construction and proof of security of our protocol for secure MPC, along with complexity
assumptions and the specification of the angel used in the security statement, appear in
Chapter 5. Chapter 6 presents the framework of monitored security, along with simple
protocols for limited tasks in that model. We conclude with possible directions of further
investigation, in Chapter 6. For ease of reference, an index of notation is provided at the
end. Endnotes appear at the end of each chapter.
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Notes
1We assure the reader that it is only incidental that this thesis was written in the city of Los Angeles.
2In [PS04], Network-aware security is called “environmental security.” [Gol04] also uses this term. Los

Angeles Network-aware security is termed “generalized environmental security” in [PS04]. The term “gen-
eralized” refers to the fact that using different angels, one gets different (incomparable) notions of security,
and in particular, using a “null-angel” gives the security definition from [Can01].

3Using the vocabulary of Network-aware security, protocols in [KLP05] are secure only when the adver-
sary reads all communication from the environment with a delay. (This ensures that the messages from the
environment are available to a transvisor a little in advance, giving it a limited ability to “rewind.”) The
composition property is also slightly weaker: it requires modifying a protocol while substituting one of its
subroutines with a subroutine as secure as the first. The modification involves delaying the messages sent
by the protocol.

4If Γ behaves as an oracle to a fixed function (which does not depend on the state of the Network at all),
results of [Can01, CF01, CKL03, Lin03b] will still imply impossibility of securely realizing the functionalities
even with respect to classes of environment, adversary and simulator which have access to Γ.

5Even if a trusted party is used to directly implement the ideal functionality, one still requires that mes-
sages be transmitted securely to the trusted party. Network-aware secure encryption schemes (see Sec-
tion 5.8) can be used for this.

6The local execution that can be trusted includes all the programs started by the party. Also the local
“operating system” can be trusted to protect the internals of the programs from direct access by other entities
(this will be required by our model of the Network). If these trust assumptions are violated, we consider the
party to be corrupted.
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Chapter 2

Modeling the Network

2.1 Introduction

The security guarantees are only as good as the models in which they are proven. Though
it is impossible to precisely model all scenarios of communication and computation, and
take into account all possible avenues of attack (the so-called side-channel attacks), it is im-
portant to have a general model which addresses all major concerns in a typical scenario.
In this chapter we detail the models of computation, communication and adversarial be-
havior underlying the results of the thesis. We also point out a few possible variations,
where relevant.

2.2 The Concrete Model

Our attempt is to use an abstract model that can accommodate a typical internet-like
scenario, while not being tied too closely to any particular technology in use today. We
start by highlighting the features of a concrete model that we shall accommodate in our
abstraction.

2.2.1 The Network

In the typical internet setting, the overall system consists of multiple computers (or other
computing devices), connected through communication channels. The communication
medium itself is effected through many computing devices (routers, switches etc.), but
as we shall see, we will be able to ignore the details of this. Each computer has multiple
programs running in it, which communicate with other programs in the same computer
or across the network. All the computers and all the programs running in them, the com-
munication channels, the user inputs and outputs are all together termed as the Network.
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2.2.2 The Adversarial Elements

The security guarantees will be available only to parties which follow the prescribed
protocols correctly, and whose internal states are not accessible to other parties. Parties
which deviate from the protocol, or whose internals become accessible to others (any
more than allowed by the protocol) are considered corrupt. Corrupt parties may collude
with each other and share their information. The messages sent out on the communi-
cation channels are prone to eavesdropping (by the corrupt parties). Messages may be
altered (by corrupt routers, for instance), delivered out of order, or never delivered. Fur-
ther a priori there is no mechanism to identify the point of origin of a message that is
delivered.

2.2.3 The Tasks

The tasks that we want to securely realize are beyond what is typically found in an in-
ternet setting today.1 Traditionally information security was confined to security of in-
formation transmission (encryption and authentication). However, in theoretical cryp-
tography it is standard to consider security of information that is the input for, or the
output from, a variety of distributed computational tasks. Applications of such tasks
would include electronic commerce, online voting, private information retrieval or pri-
vacy preserving datamining. All such computational tasks are collectively referred to as
multi-party computation (MPC). We shall see below how to define these tasks and their
security requirements.

2.3 The Abstract Model

Now we present the abstraction used to model the situation described in the previous
section. As it will be clear, this abstraction is minimal and independent of much of the
specifics of the concrete model.

Our model. while building on the models in [Can01, Can05], differs from them sig-
nificantly in details. The main points of difference are

• we avoid the use of Interactive Turing Machines (ITMs) or any specific model of
computation to describe the Network,2

• we avoid explicit sequentialization of the parallel computations in the system,

• we allow arbitrary scheduling of the computations by the environment (instead
of restricting it to be computable by a “controller function” which does not have
access to the internals of the environment), and

• we differ in the way polynomial time bounds are imposed on the Network.

The current presentation is more general and, we believe, simpler.
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2.3.1 The Network: System of Networked Computers

Recall that by the Network, we refer to the entire system of computation and communi-
cation.

The computation itself can be modeled in standard ways: say as a Turing Machine,
or at a higher level as just a computable function which is specified by its observable be-
havior (without specifying the implementation; however, the computational complexity
of this function will be relevant to us).

The behavior of the communication medium is non-trivial and may involve compu-
tational effects: message delivery is unreliable, there may be long delays, and the order
and even the contents of the delivered messages may be adversarially controlled. To al-
low for such generality, we model the communication channels by a computing entity,
with which all parties can directly communicate. This entity receives messages to be de-
livered, and delivers (possibly entirely different) messages to the other parties. We expect
the system to function only when there are some minimum guarantees on message de-
livery from the this channel. But, the security properties must be preserved no matter how this
channel behaves.

Now we proceed to describe the system more formally. First we shall present it with
no reference to the complexity of the computations involved, and later specify the com-
plexity restrictions. The model consists of the following entities, which either closely
model easily recognizable real-life entities, or are “virtual entities” which either abstract
out the behavior of various components in a real-life setting (as is the case with the adver-
sary), or are useful in conceptualizing the security obtained by a protocol (as with ideal
functionalities and the angel).

• The parties (loosely) correspond to the various computers in the Network. They
participate in protocol sessions, by running program instances.

• The adversary, a virtual entity which controls all the corrupted programs as well as
the communication medium, will be denoted by A .

• Other virtual entities – functionalities and the angel – used to define security will
be described later.

• The rest of the Network is abstracted out as the environment Z .

Protocols, Programs, Parties.

A protocol is simply a program specification (instructions or code) to be followed by a set
of participants to achieve some functionality. Formally we define a protocol as a com-
putable function which operates on its inputs (incoming messages) and internal state,
and produces outputs (outgoing messages) and a new modified state. We shall denote
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protocols by symbols like π, ρ, σ, φ etc. (Later we shall have named protocols like COM,
ZK etc.)

An instantiation of a protocol is termed a session. A particular session of a protocol
will have an associated session identifier (session ID or SID, for short). A session of a
protocol π with session ID sid will be denoted by Σπ,sid (possibly omitting either or both
of the symbols π and sid, when not required). We shall insist that if an environment starts
multiple sessions, then they should all have different session IDs.3

A protocol session Σπ consists of the program instances (or simply programs) of the
protocol π. (These correspond to the processes that run on different computers in the
concrete model of Network.) Since a single session consists multiple program instances,
we refer to each program instance by a program instance ID (denoted typically as pid;)4

We denote a program instance – with ID pid, and belonging to a session Σ – as ℘
Σ,pid.

When the session and ID are clear or irrelevant, we simply write ℘. For program instances
which are playing specific roles in explicit protocols (as those in Chapter 5), we refer
to them using symbols like ℘

C and ℘
R (for committer and receiver in a commitment

protocol), or ℘
P and ℘

V (for prover and verifier in a proof protocol).5

We clarify the differentiation between a program instance in a protocol session and
a party in the Network. The parties are entities which “own” the program instances.
A party has an identity (or more than one identity) and can own multiple program in-
stances. Loosely, a party corresponds to a computer (or a user in a computer) in the
Network, running multiple programs. A party is the “unit of corruption” in the Net-
work: if any one program belonging to a party is corrupted, all programs of the party
are automatically corrupted.6 A party can be any set of programs in the Network, with
the restriction that all subroutine programs of a program belong to the same party as the
parent program.7

Computations.

Formally a program ℘ is a collection of variables. This includes internal℘, which is the
“internal state” of the program (hidden from A, Z and other programs in the Network).
It communicates with Z , A and the other programs through input/output messages,
which are denoted by variables mesgZ→℘, mesg℘→A, mesg℘→℘′ etc. (See below for more
details on modeling communication.)

Behavior of a program ℘
π is determined by the protocol π and its inputs and internal

state. The execution of the program is modeled as applying the (computable) function
π to its input variables input℘ (which includes messages it receives, like mesgZ→℘ and
mesgA→℘) and internal state variables internal℘ (including the internal randomness). It
produces new values for the internal state variables internal℘ and for the output variables
output℘ (which includes messages it sends, like mesg℘→Z and mesg℘→A). We write it as
follows.

(internal℘, output℘)← π(input℘, internal℘).
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Since a program would typically read its inputs multiple times and produce output (or
communications) more than once, we allow the the above updating to be invoked multi-
ple times. As explained below, each of these invocations will be scheduled by the envi-
ronment as a two-step process.

Virtual Entities.

We already introduced the adversary A and the environment Z as virtual entities in our
model. Another set of virtual entities correspond to “ideal functionalities.”

Ideal functionalities, or functionalities for short, are modeled — like the program in-
stances — with internal, input and output variables, and a PPT function F . However,
the variables associated with an ideal functionality instance ℘F are not updated accord-
ing to the startrun and finisrun commands. Instead (being a virtual entity) on being sent
a message, ℘F will have its variables immediately updated by applying the associated
function. Ideal functionalities also differ from usual programs in that they are not asso-
ciated with any parties. Since a functionality models an ideal trusted party, we do not
allow the adversary to corrupt it.

Our final virtual entity is called the angel. We shall denote the angel typically by the
symbol Γ. The angel does not correspond to any physical entity in the real-life scenario,
but is a conceptual device to formulate security guarantees. The angel is similar to an
ideal functionality, but can be accessed by the environment as well.8 Further, we would
impose different computational restrictions on functionalities and the angel. In Chapter 3
we motivate the use of this entity and describe it in more detail in Section 3.2.

2.3.2 System Execution

The system is described by various variables corresponding to the internal states of the
various entities (programs, Z , A, functionalities and Γ), as well as by the “communica-
tion variables” (like mesgZ→℘). The execution of the system is specified by how these
variables get modified (and get created; new programs can be created, leading to new
variables).

In a real-life scenario, the timing of the input and output actions of a program depend
on a variety of factors9 (speed of the processor, cache hits and misses, load on the system,
computations in the protocol, the values being computed etc.). We model all this as
being determined by the environment (recall that the environment has access to everything
except the internal randomness and internal state of the program).10

The system execution is best described in terms of the environment’s actions: Z re-
peatedly reads its variables (the ones it is allowed to read) and updates its internal vari-
ables and communication variables (the ones it is allowed to update), until it terminates
with an output.11 In addition, at each step it can invoke the computation of a program
℘ (existing or new), by outputting one of the two “commands”: startrun℘, when the



20

(input℘, internal℘) are read in, and finisrun℘ when (internal℘, output℘) are updated (accord-
ing to the output of the function ℘ applied to the inputs read in the last time startrun℘

was issued). The duration between the two corresponds to the time the program runs.
For simplicity we restrict that at each step Z is allowed to issue at most one startrun or
finisrun command. However, to have the effect of parallel execution, Z can issue multiple
startrun commands (for different programs) before invoking the corresponding finisrun

commands.12

Unlike the protocol programs, the virtual entities are not explicitly scheduled by Z ,
but independently invoked as follows: whenever an entity outputs a message for a vir-
tual entity, the function corresponding to latter is applied immediately, and its outputs
and internal state are immediately updated with the results. (If there are messages to
more than one virtual entity in a single output, all of them are invoked simultaneously
and after that all their outputs and internal states are updated simultaneously.) 13

2.3.3 Communication

The model so far does not impose any restriction in the communication between dif-
ferent programs. However, we need to work with a pessimistic model which assumes
that all communication between different programs (but not between the programs and
the ideal functionalities) is through unreliable medium, and in fact may be adversarially
controlled. The virtual entity A is used to account for what faulty communication links
or the malicious players can do, namely, not only delay or block messages, but also ac-
tively inject spurious messages into the network. This can be modeled as follows: for ℘

to send a message msg to a program ℘′ (say, running in another computer), it has to send
it via A: i.e., it can set mesg℘→A to (To:℘′,msg), and hope that Awill later set mesg′A→℘ to
(From:℘,msg). It is up to Awhat it does with this message. Similarly, when a program ℘

receives a message of the form (From:℘′,msg) fromA (i.e., when the variable mesgA→℘ is
set to (From:℘′,msg)), it interprets it as a message sent by ℘′.

Note that the adversary can not only read all the messages, but also deliver arbitrary
messages. In particular it can cut off all communication between the honest players. This
is not a problem, since the protocols need to be functional only when the adversary is
“well-behaved.” Security guarantees, however, need to be provided for this strongly
pessimistic model of communication. For this, on top of this model, first we shall build
authentication mechanisms (discussed below), which we shall then use in all our proto-
cols.

Programs run by the same party can communicate with each other privately, without
using the communication medium. In particular, the communication between a program
and a subroutine of its internal to this program, and is not visible to A (or Z).14

Communication with Ideal Functionalities. As we remarked above, a program ℘ can
communicate directly with an ideal functionality ℘F (using message variables mesg℘→℘F
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and mesg℘F→℘). However, the adversary schedules when these variables actually get updated.
More formally, the adversary A can not only update its own variables (internalA and
outputA), but also variables of the form mesg℘F→℘. However, this updating is done
blindly, using the following provision in the system execution: the functionality ℘F can-
not directly set the variable mesg℘F→℘; instead when it wants to send a message to ℘, it
sets a variable mesg′℘F→℘, and informs the adversary of this (through mesg℘F→A). When-
ever the adversary sets a boolean variable msgrls℘F→℘ to 1, then the current value of
mesg′℘F→℘ gets copied to mesg℘F→℘.

The rationale behind modeling the communication with the ideal functionality in this
way is that with a pessimistic adversarial model as ours, we must settle for the possibil-
ity that the adversary can prevent some or all (honest) parties from obtaining the outputs
from a functionality, or delay it indefinitely.15 However, we point out that it is possible,
and sometimes desirable,16 to have a simpler model where the messages from functional-
ities are directly delivered to the programs. However since this complicates the definition
of the specific functionalities we are interested in, we avoid this convention.17

2.3.4 Corruption of Programs

Any program instance may at any point of the execution become corrupt. This may be
because the program deviates from the prescribed protocol (say because of a bug in the
program code, in which case we could consider it corrupt from the very beginning), or be-
cause the adversary has gained access into the program’s internal state. When a program
℘ is corrupted, all the programs belonging to the party owning ℘ are also corrupted. We
use this convention because when a subroutine is corrupted the adversary gets access to
the inputs the subroutine passed by the calling program (thereby gaining access to its in-
ternal state), and also gets to change the outputs from the subroutine which will be used
by the calling program (thereby making it deviate from the protocol).18 In our model,
corruption is determined explicitly by the adversary: to corrupt a party, the adversary
adds the identity of that party to a variable corruptlist (to which it can only add identi-
ties; the environment, all the functionalities and the angel will have read access to this
variable.19 ). Then on all the variables associated with that program (internal state, as
well as communication variables) are read and written by the adversary.

Static Corruption. The protocols in this work are secure with respective to a class of ad-
versaries denoted by AΓ

static. The restriction onA ∈ AΓ
static is that a party can be corrupted

only at the beginning of the Network execution (or at the beginning of the first session
in which the party participates). This is called static corruption, as opposed to dynamic or
adaptive corruption, wherein the adversary can make a decision to corrupt a party at any
time of the execution.
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2.3.5 Identities and Authenticated Communication.

The protocols we present later on in this work depend on being able to differentiate gen-
uine messages from an honest party from spurious messages injected by the adversary.
The solution involves using signatures. However, establishing “meaningful” identities
of parties, is impossible, with no prior setups. Nevertheless, identities can be assigned
to parties by using their signature verification keys as their identities. In Section 5.9 we
shall explain how such a scheme can be abstracted and incorporated into our model.

For now, we shall assume the following: at the beginning of any protocol the parties
involved establish a session with an authenticated message delivery functionality FAMD.
In an initialization phase, FAMD sends all players a consistent numbering for themselves
and for the other players (numbered 1, 2, etc.). To send a message msg to player i, a party
with numbering j sends a message (To:i,msg) to FAMD (all interactions with FAMD being
in the same session as in the initialization phase), which in turn sends this message to
A; later if A asks FAMD to deliver this message, then FAMD sends a message (From:j, msg)
to the party with identity i.20 The full functionality that we will discuss later is more
general, and allows each party to use “local views” of the identities of other parties con-
sistently across multiple unrelated sessions.

2.4 Computational Considerations and Classes of Environment
and Adversary

To be able to construct secure protocols for any non-trivial multi-party computation, we
will need to rely on the fact the adversary (and other elements of the Network) are com-
putationally bounded. We shall insist, loosely speaking, that all computations in the
Network are Probabilistic Polynomial Time (PPT), except for the angel.21 We proceed to
specify these restrictions in detail.

The computing entities in a Network can be grouped as follows:

• The environment and program instances created by it. This also includes subrou-
tines started by these programs.

• The adversary.

• The functionalities.

• The angel.

We shall require that the first three of these be representable as functions which can be
implemented using non-uniform computations which are PPT in the security parameter
k. However, there are many subtleties to be taken care of. We proceed by first reviewing
the modeling of computation as functions.
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Recall that execution of the Network was defined as a series of invocations of the
functions on various variables standing for the internal state and the communication to
and from an entity. The domain and range of these functions are merely strings (over
a binary alphabet, say). To add computational restriction to such a function we will
require the following. Firstly, when a program is invoked directly by the environment,
or as a subroutine, it receives the security parameter k as input. A program which does
not receive the correct security parameter is considered corrupt. Further we require that
each program is PPT in the following sense.

Definition 2.1. A program ℘
π is said to be a Probabilistic Polynomial Time (or PPT) program

if there are polynomials p and q (determined by π) such that,

• when invoked with security parameter k, it updates its variables as follows:

(internal℘, output℘)← π(input℘|p(k), internal℘|p(k)),

where the restriction to p(k) indicates that the variable is truncated to a string of length
at most p(k), and

• when the input variables are of length at most p(k), the function π can be implemented by
a (probabilistic) Turing Machine with a time bound q(k).22

With this convention, to ensure that the environment and all the programs run in
polynomial time, it is enough to require the following:

• We shall require that all the programs are invoked by the environment are PPT.
Here we use a convention regarding subroutines which needs to be highlighted. A
subroutine is not invoked by the environment, but is considered a part of the pro-
gram invoking it. If a protocol π involves invoking subroutines, they are also part
of the Turing Machine referred to above. (Correspondingly, the variables internal℘π ,
input℘π

and output℘π
as used above also include the corresponding variables for all

the subroutines invoked by ℘
π.) Thus the time bound q(k) includes the time taken

by all subroutine programs that ℘
π may invoke directly or indirectly.

• Recall that Z repeatedly updates its variables, until it terminates with an output.
We shall require that Z is PPT (in the above sense, with truncated inputs): that is
the update function can be implemented by a PPT Turing Machine.23 Further, we
shall require a polynomial bound (in k) on the number of applications of the update
function before Z terminates.

• We shall require the adversary and each functionality program also to be PPT in the
above sense. In particular, the number of invocations is bounded by a polynomial
in k.

• We do not impose any computational restrictions on the angel.
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Truncating the inputs is an important technical convention we use.24 Note that since
the adversary communicates with the environment and the programs, it may choose to
set the variables to strings longer than the running time of the environment and the pro-
grams. The above convention makes it clear that the extra amount of input will simply be
ignored. But there is another subtle issue which is settled by this convention. This relates
to the security definition and will be discussed in Section 3.3.4 (see proof of Lemma 3.2).

Classes of Environment and Adversary. The above restrictions on the environment
and adversary are incorporated into the specification of the environment and adversary
classes with respect to which security statements will be made. We shall use the following
symbols to indicate the various classes we shall consider:

• Class ZΓ of PPT environments which access the angel Γ. These environments will
invoke a single session of a given protocol.

• Class ZΓ
∗ . These environments are like environments in ZΓ, but may invoke multi-

ple sessions of a given protocol (or of protocols from a given collection).

• Class AΓ of PPT adversaries which access the angel Γ. We do not specify any re-
strictions on the corruption pattern. When we want to specify that the adversary
is restricted to static corruption (i.e., corrupting the parties only at the beginning of
the execution of the Network), we denote the class by AΓ

static.

• Class Å. These are “nice” adversaries which do not corrupt any party, and do not
communicate with the environment at all. Further they deliver all messages im-
mediately. (This class of adversaries is used to specify when a protocol should be
functional. Note that security will be required against AΓ or AΓ

static.)

• Class AΓ
SH and AΓ

SH-static. These are “semi-honest” adversaries which do not alter
the behavior of the parties they corrupt. They are also called “honest-but-curious”
adversaries. They can try and obtain information by observing the internals of a
corrupted party. AΓ

SH-static is restricted to static corruption.

• Adversary classes SΓ, SΓ
static, S̊, SΓ

SH and SΓ
SH-static are the same as AΓ, AΓ

static, Å, AΓ
SH

and AΓ
SH-static respectively. We use these extra symbols for notational clarity when

the adversary in question is a “simulator” used in a security definition (see Defini-
tion 3.1.)

• Classes Z, Astatic, ASH-static, Sstatic, SSH-static are classes as above, but without access
to any angel.
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2.5 Preliminaries

Here we collect some of the standard definitions and conventions regarding PPT compu-
tation that we will need in defining and proving security in the following chapters. We
assume the reader is familiar with most of these.

An ensemble {DISTk}∞k=1 is a sequence of probability distributions DISTk parameter-
ized by k (which for us will invariably be the security parameter). Each distribution
DISTk in this ensemble is over {0, 1}`k for some function `. Often we shall refer to the
ensemble {DISTk}∞k=1 by just referring to the distribution DISTk (for a general value of
k). We say two distributions DISTk and DIST′k are indistinguishable for a distinguisher M

(either uniform, i.e., a Turing Machine, or more often, non-uniform, i.e., a circuit family),
if the difference

δk = |Prx←DISTk
[M(x) = 1]−Prx←DIST′k

[M(x) = 1]|

is negligible. That is, for any polynomial p, there exists some value k0 such that for k > k0,
δk ≤ 1/p(k). We denote this as

DISTk
M
≈ DIST′k.

If `(k) = 1 (which is a special case of interest to us), indistinguishability by PPT distin-
guishers is the same as statistical indistinguishability. Then we write

DISTk ≈ DIST′k

to mean that |Prx←DISTk
[x = 0]−Prx←DIST′k

[x = 0]| is negligible.

2.5.1 Some Notation

In our analysis of the Network, often we will consider multiple entities together as a
single entity. For instance, one could consider two parties as a combined single party
(which uses multiple identities), or the environment and a party as a larger environment.
Formally, this amounts to defining a Network with the two entities replaced by a new
entity whose internal state is a combination of the internal states of those two parties
and the variables used for (direct) communication between the two parties. This new
Network behaves in exactly the same way as the old one: the combination of entities is
just a syntactic modification. We refer to the new entity obtained this way by combining
entities E1, . . . , E` by comb(E1, . . . , E`).

2.5.2 Protocol Conventions

Most of the conventions we use regarding protocol specifications are standard in related
literature (though often implicit). We highlight a few of them below.



26

• Actions specified for each party is taken only if the previous step in the protocol is
successfully completed.

• If a party receives messages which cannot be interpreted as required by the pro-
tocol, then the party aborts the execution. Also, all the messages in a protocol are
numbered serially. If a party receives a message out of order, then that party aborts
the protocol.

• When we write that a party P1 sends a message to P2, we imply that the message is
sent to the instance of authenticated message delivery functionality, ℘FAMD , used for
establishing the identities.

• Same variable names are used at the end of different participants. For instance
when the protocol says “℘

C sends c, ℘
R receives c,” the two values of c need not be

the same (though the protocol intends them to be). Later in the protocol when we
refer to the same variable name c for the program ℘

C it means the value it sent at
that point; similarly when we use the variable name c for the program ℘

R it refers
to the value it received there.

• A functionality F is always accessed through a protocol 〈F〉. Thus when specifying
the behavior of ℘F , we shall also (implicitly or explicitly) specify the ideal proto-
col 〈F〉. (In our case, except in the case of “semi-functionalities,” 〈F〉 is always
a dummy ideal functionality, which transparently interfaces between the environ-
ment and 〈F〉. See Section 3.3.3.)

2.6 Conclusion

The model of communication and computation presented in this chapter seeks to capture
the complexities of a real life Network in an abstract way. So far we have not introduced
any notions of security, though the model — endowed with an adversary, and incorpo-
rating restrictions on computation and access to the internals of various components — is
geared towards including such notions. In the next chapter we shall see our main notion
of security.
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Notes
1Some practical implementations of secure function evaluation and other multi-party computation tasks

are in vogue. However, while the functionality behind the tasks are well defined, these implementations
severely lack in well defined security notions.

2In that we avoid low-level description of computation based on ITMs, our model resembles IO automata
[SL94, Lyn96] and the model used in [PW01]. However in other respects, our model is closer to that in
[Can01, Can05].

3 We provide security guarantees only when the environment ensures that different sessions protocol
sessions have unique session IDs. This is a reasonable requirement, because the local environments (the
operating system or a wrapper protocol, for instance) of honest parties can ensure this. For instance a simple
protocol wrapper in which each party provides a k-bit random string, and the choosing the session ID to be
the concatenation of these strings can create such unique session IDs (with high probability).

4 The program instance ID may include the session ID and an identifier for the participant in the session.
For instance in a two party protocol with participants numbered 1 and 2, the IDs of program instances of a
session with session ID sid can simply be (1, sid) and (2, sid).

5Though the different program instances participating in a protocol session would typically play different
roles, for notational convenience we shall consider the protocol to be specified as a single function, which
will behave differently depending on the input. The alternate option of defining a protocol as a collection
of functions, one for each participant, is more cumbersome when considering general protocols, especially
when the number of participants can be variable.

6In our framework where a party is the unit of corruption, it may be useful to have multiple parties
within a single computer, so that even if some program is corrupted (possibly because of a bug in the code),
only the party to which it belongs is corrupted.

7Note that though the honest parties are well-defined entities in a Network, each party in the Network
may have a different view of the various parties in the Network, as the adversary can send messages claim-
ing to come from parties with various identities. In our model (in which we do not use any prior setups),
identity strings of the parties do not have any meanings, but is only used to identify different messages as
belonging to the same party. As described later, this identification mechanism is abstracted as the Authen-
ticated Message Delivery functionality FAMD, and can be implemented using a signature scheme (where in
the identity strings correspond to signing keys).

8For the protocols in our work, the honest parties do not access the angel. However, the model allows
this, and the composition theorems hold regardless.

9Our focus is in the internals of the environment, as our notion of security can be defined solely based on
the behavior of the environment. As such, for the programs we will be concerned about accurately modeling
only their input-output behavior, and not the internals. In our model, during the evolution of the system,
the internals of the programs are not updated until they become visible to external entities.

10Modeling environment as scheduling the actions of a program – as opposed to previous formulations
where scheduling was done by an external “controller function” which does not have access to the local
inputs and outputs to the program – allows the model to be more widely applicable. Even so, since the envi-
ronment does not have access to the internals of the program, the implicit assumption is that the scheduling
of a program does not depend on the randomness used internally by the program. One way to impose such
a condition in a real-world operating system, is to have a wrapper (as part of the individual programs or
the operating system) that standardizes (deterministically or probabilistically) the scheduling of the input-
output behavior, so that for the rest of the system, it appears independent of the internal randomness.

11For the purpose of defining security, we can consider the final output from the environment to be a
single bit. See Section 3.3.2 for details.

12In previous models that appeared in the literature, the executions of the programs were explicitly se-
quentialized. In our vocabulary, this translates to the restricting that after a program ℘ is started by issuing
a scheduling directive startrun℘, the next scheduling directive must be finisrun℘. That is to say, the same
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program ℘ must be finished before another program can be started. Clearly, the new approach here models
the real-life scenario more directly, by allowing different program runs to overlap with each other.

13The immediate invocation of virtual entities has the effect that two or more virtual entities – say A and
a functionality – might go into an infinite loop of invoking each other, without ever letting the environment
to continue. This scenario will not occur in the system, once we introduce restrictions on the total number
of invocations for each virtual entity.

14In our protocols, we would use direct communication, without using the communication medium,
mostly only between a program and its subroutines. But the model does allow any two programs within
a party to indirectly communicate privately with each other via their ancestors. We make use of this when
using multi-instance sessions, wherein within a party, programs belonging to multiple sessions will commu-
nicate with a single program (which is part of the multi-instance session) run by that party.

15As we have modeled it, the adversary can selectively discard some of the messages from a functional-
ity. However, we could further insist that the adversary cannot deliver a message from a program, before
delivering all previous messages from the functionality to that program. Our results in later chapters will
continue to hold, by using an (implicit) convention that in all protocols communications from each party (or
functionality) to every other party (or functionality) is numbered serially, and the protocols abort if any mes-
sage is delivered out of order. (For messages between parties, it is crucial that the numbering is an integral
part of the message as it is delivered to FAMD.)

16When capturing the notion of “fairness” — namely, one party can obtain the outputs from a functionality
if any other party can — within the framework of Network-aware security, it is important that the “ideal
world” is fair, and does not allow the adversary to block messages from the ideal functionality to any honest
party. This is the convention used in [GMPY05].

17[Can05] advocates this simplified framework where the functionalities directly communicate with the
honest parties. Therein, one can require that the functionalities explicitly request the adversary for permis-
sion before delivering the messages to each honest program. Then all our results carry over to such a model.
However it complicates the specification of the functionalities, and the statement of our main result.

18If one would like to use unreliable subroutines within a program (so that its corruption does not affect
the rest of the parties), the former should be modeled as being executed by a separate party. In this case
however, the communication between these two parties remains hidden from the adversary if both parties
are honest. This communication can be modeled as being carried out through a private communication
functionality which does not leak any information to the adversary.

19We insist that the environment knows about all corruptions, but it is free to ignore this information.
Letting the environment know the set of corrupt parties ensures that when an adversary is replaced by a
simulator, the simulator cannot corrupt any more parties than the original adversary would have corrupted.
Further in the adaptive case it ensures that the corruption pattern also is indistinguishable.

Allowing the functionalities access to corruptlist allows the convenience of using (intermediate) func-
tionalities which use this information. However a functionality using this information is termed unnatural.
See section 5.2.

20Note that the guarantee of authenticated message delivery by FAMD is significant only as long as the
sender and receiver are uncorrupted. In the case the sender is corrupted after it sends a message msg to
FAMD (but before FAMD delivers it), though we do not explicitly allow A to change the delivered message, A
can choose to block the message msg, and send any message msg′ to FAMD which may then be delivered to
the receiver.

21We remark that though we shall impose all computational restrictions in terms of PPT Turing Machines
(with or without non-uniform advice), it is possible to use other restrictions, by appropriately modifying
the requirement that these functions be implementable using PPT Turing Machines. However, for our com-
position results to hold we will require that multiple entities in the Network could be combined in various
ways, and still obtain an admissible entity. (For instance we would redefine the environment in a Network
by combining the original environment and some of the programs, or the adversary.) If the class of environ-
ments and adversaries, and the functionalities and programs considered are such that such combinations do



29

yield admissible entities, then these results will continue to hold. Our results on protocols for multi-party
computation are based on complexity theoretic assumptions regarding PPT computations. These results
will continue to hold if on replacing PPT computations by another class of computations (in a way such that
the composition results hold), we also change the computational assumptions appropriately. However PPT
computations is by far the most useful and accepted model, and we will restrict ourselves to that.

22Though the Turing Machines we consider are randomized, we shall require all time bounds to be exact,
and not expected.

23The environment (or adversary) accesses the angel through input/output, by sending a message to the
angel and getting a response. As such a Turing Machine implementing the environment (or adversary) need
not itself have access to the angel, but only need be able to produce queries for the angel and process the
responses from the angel. Hence we can require it to be PPT.

24A similar convention was used in [PW01].
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Chapter 3

Los Angeles Network-Aware Security

Los Angeles Network-aware security is the name for the new security framework in this the-
sis. As the name suggests, it is a variant — in fact a generalization — of the previous
Network-aware security notions. We have already seen the abstract model of communi-
cation and computation on which this framework rests. In this chapter we present the
security definitions, describe why these security guarantees are meaningful and satisfac-
tory, and state and prove the Universal Composition theorem and an extension thereof.

3.1 A Philosophical Discussion on Defining Security

We start with a high-level philosophical discussion on the nature of security definitions
developed for cryptographic protocols.

3.1.1 Relativistic Definition of Security

In modern cryptography the most robust notions of security are “relativistic.” That is,
instead of providing an absolute notion of security for a cryptographic construction, it
is shown to be as secure as some other (idealized) situation. Here, the idealized scheme
would typically employ idealized resources (like uncorruptable trusted parties) which
are not available for a real life protocol. This “relativistic approach” immediately raises
a couple of questions. First, how being “as secure as” some other scheme is defined.
Second, why showing that one scheme is as secure as some other scheme is sufficient or
even useful. In answering both these questions there is a leap of faith involved, moving
from well-defined mathematical notions to intuitive notions of security.

“As Secure As”: The Simulation Paradigm. Informally, the basic structure of the defi-
nition of “as secure as” is the following: if it is the case that whatever effect an adversary
could produce when scheme 1 is employed, the same effects an adversary could produce
when scheme 2 is employed, then scheme 1 is as secure as scheme 2. In other words,
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for every adversary dealing with scheme 1, there is another adversary — a simulator —
which when dealing with scheme 2 can produce (or simulate, as we shall say) the same
effects as the former. Ignoring the (important) details involved in defining “the same ef-
fects” for now, we point out another important aspect of this paradigm, namely, the class
of adversaries and the class of simulators with respect to which the simulation is defined.
Note that naturally we will be concerned about a class of adversaries and not a particular
adversary; correspondingly we will use a class of simulators rather than a single simula-
tor.1 What these classes should be directly relates to the next question we address below,
regarding the usefulness of the “as secure as” relation. Briefly, the golden rule here is that
the class of adversaries should include all adversaries which may be considered realistic
threats to our deployment of scheme 1, and the class of simulators should include all
adversaries which we are willing to tolerate as harmless in a deployment of scheme 2.

Significance and Meaningfulness of Relative Security. If scheme 2 is (in the intuitive
sense) insecure, then the assurance that scheme 1 is as secure as scheme 2 is of little use.
Then, one may wonder, how setting up this seemingly cyclic notion of relative security
can be useful. The answer is that scheme 2 would be such that it would represent (intu-
itively) the most secure scheme for a particular functionality. Then, showing that scheme
1 is as secure as scheme 2 is the best possible security we can hope to have for scheme 1.
Still, this might seem superfluous: why would we require the best possible security and
not just a few security guarantees that would be sufficient for an application at hand?
The reason — and this is perhaps the most compelling reason to use relative security no-
tions — is that in a complex Network scenario it is often difficult to anticipate all possible
attacks on a protocol and as such it is difficult to ensure whether a list of a few specific
information security guarantees will be satisfactory or not. Indeed, history of cryptogra-
phy has time and again witnessed definitions based on such specific guarantees failing
to meet the challenges of complex interactions which were not anticipated while creating
the definition.

Further, envisaging the most secure protocol (in an idealized situation) also serves
the purpose of defining the functionality required of the protocol. Security then becomes
a part of the functionality specification: what functionality is provided by the protocol in
the presence of an adversary. Indeed, such a functionality specification (as opposed to the
specification for only when there is no adversary in the Network) is desirable before
deploying a protocol in a general Network.

3.1.2 Appropriate Classes for Adversaries and Simulators

We now return to the question of appropriate classes for adversaries and for simulators.
Clearly the definition gets stronger when the class of adversaries grows or the class of
simulators shrinks. But clearly, if we push these classes to their extremes, the definition
becomes unsatisfiably strong. Thus we would like to have a definition strong enough to



33

be satisfactory, but weak enough to be satisfiable (with as simple complexity assumptions
as possible). Early on, two conventions emerged regarding this: firstly, the class of ad-
versaries was required to be (non-uniform) PPT machines and no larger. This is because
on the one hand, in theory we model feasible computation as PPT machines (or rather
super-PPT computation as the smallest robust class of infeasible computation) requiring
the adversary class to be at least that big, and on the other hand, complexity theoretic
assumptions of hardness against PPT adversaries are weaker and more widely studied
than those against super-PPT adversaries, prompting one not to attempt providing se-
curity guarantees against larger adversary classes. The second convention is to set the
class of simulators to be the same as that of the adversaries. In general, this is the best
we could hope for, because irrespective of the security of the schemes under question, if
the simulators must be able to simulate all the “effects” that the adversaries can produce,
then they have to be at least as equipped as the adversaries.

Well-motivated and long-standing as these conventions are, in this thesis we deviate
from them, and for good reason. The results of [Can01, CF01, CKL03, Lin03b] rule out the
possibility of having protocols (in the standard model, without setups) that can securely
realize any interesting non-trivial multi-party computation functionality.2 Hence for us
to even get started we should discard these restriction.

Security with respect to super-PPT classes. The ideal world formulation used to de-
fine a secure situation is the guarantee an end-user receives. As such, it is (typically)
independent of any references to restrictions on the adversary’s computational powers.
It is also independent of any complexity theoretic assumptions. That is, the security is
information theoretic in the ideal world. Thus, in this ideal world, providing the adversary
with super-PPT resources does not affect the intuitive security guarantee provided. The
implicit assumption here is that the only concern a user has regarding an adversary’s
computational power is whether it will help it attack the cryptographic constructs. Then,
since in the ideal world all the cryptographic schemes will be replaced by idealized ones
(using trusted entities) extra computational power to the adversary is no more of concern.

Simply allowing super-PPT classes in the security definition is not sufficient to obtain
our results. If we weaken the security requirement by allowing the simulator class to be
super-PPT (keeping the adversary class PPT), the impossibility results do not hold any-
more, but the security definition loses the composition property. So we might consider
restrengthening the definition by requiring security to hold with respect to super-PPT
environment (and adversary) classes as well.3 However a straight forward attempt at
this will cause the impossibility results to return: the impossibility results from [Can01,
CF01, CKL03, Lin03b] hold as long as the environment class is as powerful as the simu-
lator class (say, both are exponential time).

The new tool which lets us define the adversary and simulator classes in such a way
that composition holds and at the same time the impossibility results do not survive, is the
angel, described below in Section 3.2. The angel, as we shall see provides the simulator,
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the adversary, and the environment with a carefully regulated access to super-PPT resources.

Jumping ahead we mention that for the protocols in Chapters 5 and 6, the angel used
provides (in a restricted way) collisions in a hash function. Note that it is plausible that
having access to such collisions may not at all be useful to an adversary, outside of attack-
ing the cryptographic schemes using it. Thus the security guarantees we provide using
this angel are very close to that obtained by restricting to a PPT simulator class.

3.2 The Angel

The angel is simply an oracle with super-PPT computational powers that the adversary,
simulator or environment can query and get a response from.4 However, the angel’s
behavior depends on (certain very limited aspects of) the Network’s state. This leads
to the the unusual feature that the computational power available to the environment,
adversary and simulator is dependent on the rest of the Network.

The purpose of allowing the simulator access to the angel is to facilitate the simulation
by providing super-PPT computational power.5 However for composition it is necessary
that the environment also has access to the angel.6 Typically we shall consider the “as
secure as” relation with respect to classes of the form (ZΓ,AΓ, SΓ), which signifies that the
environment, adversary and simulator all have access to the same angel Γ.7 However, in
stating the extended Universal Composition theorem (Theorem 4.2) we will find it useful
to relax this convention.

The minimum features that we require of the angel (to fit the use of the angel in the
following chapters) are as follows:

• The angel need not be PPT, and

• The angel keeps track of which identities in the Network are corrupted. (More gen-
erally, we could allow angels to have access to all the information that the adversary
has access to.)

Looking ahead, in Chapter 5 we introduce the angel Ψ. The way Ψ depends on the
state of the Network is that it refuses to answer certain queries if the query contains an
identity that is not one of the corrupted identities. That is, before answering a query the
angel applies a safety filter8 to ensure that answering this query does not affect the secu-
rity of the uncorrupted parties. (It is this considerate behavior, combined with its extra
computational powers and the magical effect it has in overcoming the impossibilities,
that gets this entity its name.)
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3.3 Los Angeles Network-Aware Security

3.3.1 Ideal Functionalities and Ideal Protocols

To define security of a protocol, first we define a scenario which is considered secure,
for comparison. This ideal or secure-by-definition world would be the “best possible”
scenario for achieving the functionality we have in mind. Typically this ideal situation
involves a trusted party with which the individual parties can communicate privately.
Further such a trusted party releases to each party the minimum information required by
the functionality: for instance, in a secure function evaluation functionality, the trusted
party collects the inputs from all parties, and then sends each party only the outcome
of the evaluation. (However, it might let the adversary specify that the output be not
delivered to some of the parties.) This trusted party is the virtual entity called an ideal
functionality.

To complete the specification of the ideal scenario, one needs to also specify how
the parties interact with the ideal functionality: i.e., the ideal protocol. A typical ideal
protocol is a simple protocol which when invoked with a session ID sid establishes a
session with the ideal functionality using session ID sid, and subsequently hands (in this
session) every input it receives from the environment to the functionality, and outputs
every message it gets from the functionality to the environment. However we point out
that it is possible, and indeed useful, to allow ideal protocols which do more than just
mediate between the environment and an ideal functionality.9

3.3.2 A Protocol As Secure As Another

Recall that we would like to say that a protocol π is as secure as ρ if for every adversary
dealing with π, there is another adversary — a simulator — which when dealing with
ρ can produce the same effects as the former. The “effect” produced is defined as the
behavior of the environment. We will say that the protocols have the same effect if no en-
vironment can distinguish between using π and using ρ.10 Thus, without loss of generality,11

the environment can be considered an experiment which outputs a single bit trying to
distinguish one protocol from another.

We define the random variable EXECπ,Z,A to stand for this one bit of output from the
environment Z in a Network in which it invokes at most one session of the protocol π

and interacts with an adversary A. Using this notation we define the relation “as secure
as.”

Definition 3.1. We say that a protocol π is as secure as ρ with respect to (ZΓ,AΓ, SΓ) if and only
if ∀A ∈ AΓ, ∃S ∈ SΓ such that ∀Z ∈ ZΓ, we have EXECπ,Z,A ≈ EXECρ,Z,S .

We point out that the simulator S can depend only on A and not on Z . This ensures
that S does not “know” any secrets that Z may hold.12
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Significance of Considering All Environments. We point out that one of the main fea-
tures of Network-aware security which makes it stand apart from previous definitions, is
the requirement that security holds with respect to all environments (from a given com-
plexity class). In contrast, the very first security definitions in cryptography used specific
experiments to define security. This can be considered as requiring security with respect
to a single environment.13 This difference — between using specific environments and
using general environments — is somewhat reminiscent of the difference between the
older definitions of pseudorandomness in computation, which specified a battery of sta-
tistical tests for randomness, and the modern cryptographic (or complexity theoretic)
definition, which considers all tests (of certain complexity). Significantly, this general
approach makes the definition far more applicable, so that it continues to give security
guarantees even when employed in arbitrary Networks. Further it is this generality that
results in the Universal Composition property.14

Transitivity of “As Secure As” Relation. We point out that the “as secure as” relation is
a partial ordering with a bounded transitivity property. Below is a more precise statement.

Lemma 3.1. For any constant t (i.e, t independent of k), if we have protocols {πi}ti=1, such that
πi is as secure as πi+1 with respect to (Zi,Ai, Si) (for i = 1, . . . , t − 1) and Si ⊆ Ai+1, (for
i = 1, . . . , t− 2), then π1 is as secure as πt with respect to (Z,A1, St), where Z = ∩t

i=1Zt.

PROOF: This is a consequence of the transitivity of the indistinguishability relationship
used in defining “as secure as.”

For i = 1, . . . , t, for any Ai ∈ Ai there exists Si ∈ Si such that for all Z ∈ Z we
have EXECπi,Z,Ai ≈ EXECπi+1,Z,Si . Further for i = 1, . . . , t − 1 since Si ⊆ Ai+1 we have
Si ∈ Ai+1. Letting Ai+1 = Si, given A1 ∈ A1 we can define {Ai}ti=1 such that,

EXECπi,Z,Ai ≈ EXECπi+1,Z,Ai+1 for i = 1, . . . , t− 2

EXECπt−1,Z,At−1 ≈ EXECπt,Z,St−1 .

Since t is constant,15 we can combine all these indistinguishabilities to get that for ev-
ery A1 ∈ A1 there exists St−1 ∈ St−1 such that for all Z ∈ Z we have EXECπ1,Z,A1 ≈
EXECπt,Z,St−1 . �

3.3.3 Secure Realization of a Functionality

To define a functionality completely, along with the ideal functionality F , one must spec-
ify a (dummy) protocol 〈F〉 to be followed by the parties in interacting with an instance
℘F of the functionality. The dummy protocol 〈F〉 typically involves just relaying to ℘F
all the inputs received, and outputting the messages received from ℘F . Then, a secure
protocol for a functionality F is one which is as secure as ℘F .
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However this does not guarantee that such a protocol will be functional: since we
allow the class of adversaries to partially or completely block the communication in the
protocol, we must allow the same for the class of simulators. However, with respect
to such a simulator class, a trivial protocol which simply does nothing would also be
a secure realization of any functionality: in the “ideal world” we can simply use the
simulator S which blocks all messages, so that it is identical to the “real” execution. Note
that even though the adversary Amight not block any messages in the real execution, S
is allowed to do so in the ideal world.

So we would like to have a notion of a protocol being useful. Interestingly, this can
be done within the framework of the “as secure as” definition. For this consider a class
of adversaries Å under which functionality should be available when using the protocol
π. Also consider a class of simulators S̊ under which the functionality is available when
using the ideal protocol 〈F〉. Then, requiring that π is as secure as 〈F〉 with respect to
(ZΓ, Å, S̊) ensures that withA ∈ Å the protocol remains as functional as 〈F〉 is with some
S ∈ S̊ (because if there is a difference in functionality, Z can notice it).

Å corresponds to the conditions under which functionality must be guaranteed. We
shall restrict ourselves to giving this guarantee only when this class of adversaries are
“nice,” i.e., they do not corrupt any parties or block any messages and do not commu-
nicate with environment.16 Further it behaves nicely with all ideal functionalities in the
Network, delivering all their messages promptly (and also for functionalities which re-
quire an explicit permission from the adversary before carrying out a task,17granting
such permission promptly). S̊ corresponds to the extent to which functionality guarantee
is made. We shall set S̊ = Å.

Definition 3.2. We say that a protocol π is a useful realization of a functionality F if π is as
secure as 〈F〉 with respect to (ZΓ, Å, S̊).

We combine the properties of security and usefulness into a single definition of se-
curely realization.18

Definition 3.3. We say that a protocol πsecurely realizes F with respect to (ZΓ,AΓ, SΓ) if

• π is as secure as ℘F with respect to (ZΓ,AΓ, SΓ), and

• π is a useful realization of F . That is, π is as secure as 〈F〉 with respect to (ZΓ, Å, S̊).

We remark that the idea of requiring simultaneous security with respect to multiple
adversary and simulator classes can be further used to refine the security and function-
ality guarantees. 19

3.3.4 Alternate Characterization of Security

Transvisor. The simulator required in Definition 3.1 is allowed to be very different from
the adversary A. However typically one builds such a simulator by using A in a “black-
box” fashion. Indeed, as we shall see shortly, it will be the case that the definition in
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fact implies the existence of a “black-box simulator.” We formalize the notion of black-
box simulation using an entity we call a transvisor.20 Informally, a transvisor is an entity
which translates the view of the adversary in one scenario to that in another. The transla-
tion is done in an online fashion. The transvisor mediates all communication of the parties
and the functionalities with A, but does not interfere in the direct communication between A
and Z , or that between A and the angel.21 We shall denote the class of PPT transvisors with
access to the angel Γ by TΓ.

Lemma 3.2. A protocol π is as secure as ρ with respect to ZΓ, AΓ and SΓ if and only if, there
exists a transvisor T ρ→π ∈ TΓ such that ∀Z ∈ ZΓ and ∀A ∈ AΓ, the two random variables
EXECπ,Z,A and EXECρ,Z,S are indistinguishable where S is comb(T ρ→π,A) and S ∈ SΓ.

PROOF: The “if” part follows from the observation that since A ∈ AΓ and T ρ→π ∈ TΓ,
we have S = comb(A, T ρ→π) ∈ SΓ. The requirement on S (that EXECπ,Z,A ≈ EXECρ,Z,S)
is the same as what the definition of T ρ→π guarantees.

To prove the “only if” part we describe how a transvisor T is constructed, and then
show that it indeed is a transvisor T ρ→π.

Construction 3.1: T = T ρ→π

ConsiderA as split into two: a “dummy” adversaryAdummy through which the rest
of the adversary (which we continue to denote as A) communicates with all the
honest parties and with all functionalities. In case of adaptive corruption, Adummy

mediates in the corruption process too: corrupting parties as directed by A, and
providing A with the the internal state of the corrupted party. That is, we insert
a dummy entity to copy back and forth the communication between A and the
parties and functionalities, and then consider comb(A,Adummy) as the adversary.
Now, consider redefining the Network, with environment Z ′ = comb(Z,A) and
adversary A′ = Adummy.
Also note that Z ′ ∈ ZΓ and A′ ∈ AΓ. So, to this new Network, we can apply the
security guarantee on π, to obtain a simulator S ′ such that

EXECπ,Z′,A′ ≈ EXECρ,Z′,S′ . (3.1)

We define T as S ′.

First we note that T is independent ofA. To see this, recall that the security guarantee
ensures that T depends only on A′ and not on Z ′. Further A′ = Adummy is independent
of A. This is true because of our convention that the programs and functionalities with
which A communicates truncate their inputs to pre-specified polynomial lengths; then,
A′ also can use pre-specified polynomial bounds on input length depending only on
the protocol specification, independent of the complexity of Z ′, and in particular inde-
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pendent of how much input it may receive from A. Thus A′ is indeed fully specified
independent of Z ′.

Next, note that the Network defined above using Z ′ andA′ is identical to the original
one using Z and A, as we merely redefined the boundaries of the environment and ad-
versary, without changing their behavior. (Recall that the angel’s behavior is insensitive
to such a change.) That is

EXECπ,Z,A = EXECπ,Z′,A′ . (3.2)

Now consider redefining the boundaries in the Network corresponding to EXECρ,Z′,T
so that Z ′ is split back into Z and A; then let Z be the environment and S = comb(T ,A)
be the adversary. Again, this redefinition of the boundaries has no effect on the outcome
of the execution. That is

EXECρ,Z′,T = EXECρ,Z,S . (3.3)

Combining equations (3.1)-(3.3) we obtain that T is such that for any A, with S =
comb(A, T ) we have EXECπ,Z,A ≈ EXECρ,Z,S . Hence we conclude that T is indeed a
transvisor T ρ→π. �

3.4 Conclusion

In this chapter we presented our new definition of security. The essential difference from
previous similar definitions is the use of angels in our model. We argued why this defi-
nition is meaningful and satisfactory for all practical purposes.

Before we can make full use of this definition we need to show that it enjoys the pow-
erful universal composition property. While the security guarantees of the definition are
just as meaningful without the universal composition property, composability enables us
to design and analyse complex protocols. In the next chapter we shall state and prove
this property, which will then be used in the subsequent chapters.
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Notes
1Instead of simply requiring the adversary and simulator to fall into pre-defined classes, one could re-

quire that for every adversary the corresponding simulator is somehow related (in complexity) to the adver-
sary. But this can be formulated as requiring security with respect to multiple pairs of fine-grain adversary
and simulator classes. Such requirements provide a refined a notion of security, which requires that what-
ever adversary can do dealing with scheme 1, a simulator can do dealing with scheme 2 without spending too
much extra resources.

2Informally, a non-trivial MPC functionality is one in which any one party getting the inputs of all other
parties is not allowed. In this sense, encryption is an example — a “complete” one at that — of a trivial MPC.
Indeed encryption is possible under the UC definition [Can01, Can05] with PPT adversary and simulator
classes.

3As we shall see, for composition, we crucially depend on the fact that the environment class subsumes
the adversary and simulator classes.

4Though we do not require in our use of the angel, one could allow angels to maintain internal state
from answering one query to the next, or even establish sessions with the environment, adversary or the
simulator.

5 The explicit purpose of the angel is to help in simulation. As such, one could consider the “mother of all
angels” which simply carries out the job of the transvisor for the various protocols in the Network. That is,
a transvisor will act as a dummy front for the angel, which carries out the actual simulation. However, the
specification of the angel directly enters the security guarantee offered by the Los Angeles Network-aware
security framework (because the security is stated with respect to (ZΓ, AΓ, SΓ), and the angel Γ is part of the
specification of these classes). Thus the simpler the angel the better stated the security is.

6For composition the environment must be able to use the angel in the same way that an adversary or
simulator uses it (so that it can internally simulate the Network). For this, one could explicitly require that
the angel does not differentiate between whether it is the environment or the adversary that is communicat-
ing with it. Alternately, one could use the convention that all communication between the environment and
the angel is carried out via the adversary (or the simulator).

7It does not make much difference if we give the adversary access to the angel or not, because one could
always restrict to the dummy adversary Adummy.

8One could incorporate the filter into (ZΓ, AΓ, SΓ) instead of into Γ. That is, say S ∈ SΓ would query the
angel only with inputs to which Γ would provide answers. Our notation of indicating the access to angel as
part of the classes (ZΓ, AΓ, SΓ) is consistent with this convention.

9An ideal protocol for a “semi-functionality” would partly resemble a usual (non-ideal) protocol, and
partly a dummy protocol. For instance, for the functionality FC̃OM in Section 5.5, the ideal protocol 〈FC̃OM〉
prescribes the same actions as the protocol BCOM to the party C, where as it prescribes a dummy behavior
for the party R.

10According to our convention, the environment is oblivious to the actual code as well as the internal state
of the programs in the protocol sessions it invokes. It merely gets pointers to locations where copies of the
code of the protocols are kept. But note that the environment is allowed to “know” (i.e., depend on) the code
of the various the protocols that we may substitute for the protocol it is invoking (though it does not know
which of these protocols is actually used).

11The difference in effect of two protocols may be reflected only in the internals of an environment Z .
But since we consider all environments, there will be another environment Z ′ which behaves exactly like
Z , but will base its output on any difference (it can detect) in the internal state of Z that the protocols may
cause. Thus it is enough to consider the final output of the environment. Also, allowing the environment to
output more than one bit to an outside distinguisher does not make a difference because such an external
distinguisher can be incorporated into the environment itself.

12The order of quantifiers in the security definition has drawn some attention in the literature. The stan-
dard order is ∀A∃S∀Z . A weaker security definition is obtained by changing the order as ∀A∀Z∃S. How-
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ever, the security guarantee thus obtained is unsatisfactory because S is allowed to depend on any “secrets”
that Z may hold. The composition theorem nevertheless continues to hold if the complexity of the simula-
tor is bounded independent of that of Z . [Can05] introduced a variant of the model, wherein Z accepts an
input, and the security definition requires the simulation to work for all inputs to Z . In this case even if S
can depend on Z , since it cannot depend on the input to Z , the altered order of quantifiers offers the same
security guarantee as the standard one.

13This view raises the following intriguing question of whether, for checking if a protocol is as secure as
a particular given protocol (say 〈FCOM〉), it is enough to consider a single “complete” environment instead
of all environments. Indeed results relating older definitions of stand-alone security and newer Network-
aware security definitions for tasks like encryption [Can01, Can05] and authentication [CK02] can be viewed
as attempts at showing that the specific experiments described in the standalone definitions are complete
environments for these tasks.

14Though Universal Composition is almost a direct consequence of Network-aware security, we stress that
a few more technical requirements are required for it to hold: in particular, the class of environments should
subsume the class of simulators.

15The transitivity of the indistinguishability relation holds even if t = t(k) is a polynomial in k. How-
ever, if t varies with k, then the final simulator St is not well-defined anymore; instead it is a collection of
simulators one for each value of k. Then, even if St(k) is well-defined (say if all Si are the same), the new
non-uniform simulator so defined may not lie in it. For instance, if t = k and if all circuits in the family Si

are of size 2i (independent of k, and hence constant sized circuits), the simulator defined as above is a circuit
family which is of exponential size.

16 Another good formulation of a nice adversary allows it to communicate with environment. In particular
it can report all the messages that it sees, to the environment. This corresponds to an honest but curious setting.
In this case, the simulation is non-trivial. In the protocols we present, it will be clear that the simulation used
to prove security with respect to AΓ will yield nice simulators in this sense when the adversary is nice in
this sense.

17 To be formal we should define a custom regarding how functionalities seek permission, or receive in-
structions, from the adversary. One could let functionalities specify an expected response from the adversary
in all interactions. Then a nice adversary is defined to simply echo back this expected response.

18Our terminology is slightly different from that appearing elsewhere. The term “securely realizes” was
used for a definition which made no reference to being functional. Instead a protocol was called “non-trivial”
if it satisfied the security requirement with respect to (ZΓ, Å, S̊) also.

19When the adversary is restricted in certain ways, we may expect to get more guarantees on the protocol,
i.e., we would require the simulator also to be restricted. Here we consider only two extreme cases: when
the adversarial model is very pessimistic (AΓ) and when the adversary is ideally harmless (Å). However,
adversary (and simulator) classes for intermediate cases can be modeled similarly. For instance one could
consider somewhat nice adversaries which alter the messages only by using a noisy channel, and nice simu-
lators as before. Often our protocols can be modified so that they are secure for these classes too (in addition
to being secure with respect to the standard classes). For instance, in the above example of a noisy channel
adversary, a protocol could be made secure using error correcting codes to encode the communication.

20We avoid the name blackbox simulator because of the connotations attached to the term from the study
of stand-alone security (especially of zero-knowledge proofs). There a blackbox simulator is allowed to set
the randomness of A as well as “rewind” it. A transvisor implies a more restrictive blackbox simulator
which can neither rewind nor set the randomness of the blackbox. Further a transvisor does not interfere in
the communication between A and Z , nor in the communication of Awith the angel.

21 A more general definition of transvisor would require that all communication betweenA and the angel
also passes through the transvisor. This has the benefit that while carrying out compositions only the ad-
versary needs to directly access the angel. Then we can remove the restriction that the angel’s behavior is
independent of whether it is interacting with the adversary or with the environment.
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Chapter 4

Universal Composition

4.1 Introduction

One would like to have the guarantee that if a component in a system is replaced by
another component which is as secure as the original one, then the new system would
be as secure as the original system. Universal Composability of secure protocols refers to
this simple, but powerful guarantee.

However, from the definition of security of protocols, no such guarantee can be imme-
diately inferred. This is because the security of a larger system is not always implied by
the security of individual components.1 While Network-awareness guarantees security
of a single session of the protocol in a general Network, Universal Composability also en-
sures simultaneous security of multiple sessions (of multiple protocols) interacting with
each other. Nevertheless, in this chapter we shall see that our definition of security does
offer this most remarkable property.

4.2 Composition

A simple form of protocol composition is when multiple protocol sessions (of possi-
bly different protocols) run concurrently, but independently (except possibly for input-
output interaction). A more general notion of composition also allows one protocol to
use one or more other protocol sessions as subroutines. First we develop some conven-
tions and notation to refer to composition of protocols, before stating and proving the
composition theorems.

Program Invocation. A program ℘ is invoked (either by the environment or by another
program) with initialization inputs (σ, sid, pid) where σ is the protocol (code) that speci-
fies the actions of the program, sid is the session ID of the session to which the program
belongs, and pid is a program ID, unique among all the programs in the session. Our con-
vention regarding specifying the protocol (here σ) to the program is that, it is not the code
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of σ itself that is passed, but rather a pointer to this code. The code itself is not read by
(unreadable to) the environment (or another program invoking ℘ as a subroutine). The
reason behind this convention is to ensure that the environment (or the calling program)
does not immediately become aware if the protocol σ is substituted by another protocol
φ.

Once invoked, a program will be given inputs and it will return outputs. If the envi-
ronment Z starts the program, the input-output interaction is between the program and
Z .

Subroutines. Consider two program instances that belong to the same party: ℘ = ℘
Σπ

and ℘′ = ℘
Σσ . That is ℘ belongs to a session Σπ and ℘′ to Σσ. If program ℘ invokes ℘′,

then the input-output interactions of ℘′ are with ℘. If all the programs in the session Σσ

are invoked by programs in the session Σπ, then we say that the session Σσ is a subroutine
of the session Σπ.

If in a session of protocol π, the participants may invoke one or more sessions of σ as
subroutines (as instructed in the code of π) then we say the protocol π uses σ as a subroutine
protocol.

Typically, when a protocol π uses a subroutine protocol σ, the latter will be formulated
as an ideal protocol (interacting with an ideal functionality). Later, this subroutine may
be instantiated by plugging in a real protocol φ (which in turn may use subroutines). We
formulate this in terms of “protocol substitution.”

Protocol Substitution. Suppose a protocol π uses another protocol σ as a subroutine.
Then the protocol πφ/σ (i.e., π using φ instead of σ.) is defined as the protocol obtained by
changing invocations of each session of σ to a session of the protocol φ. Recall that invok-
ing a subroutine session involves the programs passing the set of arguments (σ, sid, pid)
to a subprogram, wherein the first argument is merely a pointer to a piece of code. Substi-
tution involves replacing the code of σ at this location by that of φ. Here we use the term
pointer in the sense of a formal object, and not necessarily a physical memory address.2

We also use the notion of protocol substitution when it is not another protocol, but the
environment, which directly invokes σ. Our notation however will be implicit: EXECφ,Z,A
can be considered the result of substituting the protocol σ by φ in the Network for
EXECσ,Z,A.

4.3 Universal Composition: Basic Form

Before presenting the full-fledged form of the Universal Composition theorem, first we
present a basic form.

Theorem 4.1. If σ is as secure as φ with respect to (ZΓ,AΓ, SΓ), then πσ/φ is as secure as π with
respect to (ZΓ,AΓ, SΓ).
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PROOF: We need to show that ∃S∗ ∈ SΓ such that ∀Z ∈ ZΓ, ∀A ∈ AΓ, we have

EXECπσ/φ,Z,A ≈ EXECπ,Z,S∗ (4.1)

Equivalently, by Lemma 3.2, we need to show that there exists a transvisor T ∗ = T π→πσ/φ

such that ∀Z ∈ ZΓ and ∀A ∈ AΓ, we have S∗ = comb(A, T ∗) which satisfies equa-
tion (4.1).

Recall that the environments we are considering, Z ∈ ZΓ, start exactly one session of
the protocol (π or πσ/φ). However, a single session of π (resp. πσ/φ) may start multiple
sessions of its subroutine φ ( resp. σ). So, loosely speaking, the proof involves showing
that if a single of session of σ is no less secure than one session of φ (this is the guarantee
that the protocol σ is as secure as φ), then all the multiple sessions of σ are simultaneously
no less secure than that many sessions of φ. This is achieved through a hybrid argument,
as described below.

Let m be an upperbound on the number of φ sessions started by π, in the execution
EXECπ,Z,S . We shall refer to them as Σj

φ, j = 1, . . . ,m. (The numbering of the sessions
is simply by the order in which they are invoked, and is not tied to the session IDs.)
Similarly we shall refer to the sessions of σ in EXECπσ/φ,Z,A as Σj

σ, j = 1, . . . ,m.
Incrementally, we shall construct environments Zi for i = 1, . . . ,m, such that

EXECσ,Z1,A = EXECπσ/φ,Z,A (4.2)

EXECφ,Zm,Sm = EXECπ,Z,S∗ (4.3)

EXECφ,Zi,Si
= EXECσ,Zi+1,A for i = 1, . . . ,m− 1 (4.4)

where Si and S∗ are as described below.

Construction 4.1: Environment Zi, Transvisor T ∗ and Simulator S∗

The construction ofZi is illustrated in Figure 4.1. The construction is incrementally
defined. Zi internally contains sessions Σj

φ for j < i and sessions Σj
σ for j > i, and

will externally start a single session of σ corresponding to Σi
σ. Sessions Σj

φ, j < i,

are accompanied by a copy of the transvisor T φ→σ, denoted by T φ→σ
j . We define

Sj = comb(A, T φ→σ
j ).

More precisely,

Zi = comb(Z,Σπ\φ, {Σj
σ}m≥j>i, {Σj

φ}0<j<i, {T φ→σ
j }0<j<i),

where Σπ\φ stands for the collection of programs in Σπ with their φ subroutine
programs omitted. We write Σj

φ or Σj
σ with understanding that it is instantiated

only if Σπ\φ invokes the j-th subroutine session.
Finally, we set T ∗ = comb({T φ→σ

i }i=1,...,m), and S∗ = comb(A, T ∗).



46

execσ,Zi,A ≈ execφ,Zi,Si
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Figure 4.1: Networks corresponding to the executions EXECσ,Zi,A and EXECφ,Zi,Si . Zi is shown within
dotted lines. The circles indicate the sessions (which consist of the protocol programs of the honest parties),
as labeled. The thin lines indicate the view of A. Si (not indicated in the figure) is comb(A, T φ→σ

i ). Output
is produced by Z . This output will be indistinguishable between the two Networks.

We mention that the numbering in T φ→σ
j is only to indicate which session of Σj

φ

it is associated with (i.e., which session it communicates with). All T φ→σ
j are in-

stances of the same transvisor T φ→σ. In the same way, for all j, Sj is simply comb

(A,T φ→σ), but the numbering is used to keep track of which session of φ it com-
municates with.

Firstly, note that T φ→σ ∈ TΓ, and so Zi ∈ ZΓ and S∗ ∈ SΓ. Below we point out
why this construction satisfies the equalities mentioned above. (Also see Figure 4.1.)
To see why equation (4.2) holds, consider the Network defining the random variable
EXECσ,Z1,A. Note that Z1 does not contain any sessions Σj

φ or copies of T φ→σ
j (because

Zi has Σj
φ and T φ→σ

j only for 0 < j < i). It internally contains all sessions Σj
σ except

for j = 1, which is started externally in the execution EXECA,Z,1 σ. Using loose (but
self-explanatory) notation, this Network (excluding A) can be written as

comb(Z1,Σ1
σ) = comb(Z,Σπ\φ, {Σj

σ}m≥j>1,Σ1
σ)

= comb(Z,Σπ\φ, {Σj
σ}m≥j≥1)

= comb(Z,Σπσ/φ)

which is the same as the Network (excluding A) defining the variable EXECπσ/φ,Z,A.

Similarly, equation (4.3) can be verified by observing that the Network in the execu-
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tion EXECφ,Zm,Sm can be written as

comb(Zm,Σm
φ ,Sm) = comb(Z,Σπ\σ, {Σj

φ}0<j<m, {T φ→σ
i }0<j<m,Σm

φ ,Sm)

= comb(Z,Σπ\σ, {Σj
σ}0<j≤m, {T φ→σ

i }0<j<m,Sm)

= comb(Z,Σπ,S∗)

which is the same as the Network (excluding A) in the execution EXECπ,Z,S∗ . Here we
used the fact that Sm is in fact comb(A, T φ→σ

m ) and S∗ = comb(A, {T φ→σ
i }i=1,...,m).

Equation (4.4) can be verified by observing that the Network on the right-hand side
can be written as

comb(Zi+1,Σi+1
σ ,A)

= comb(Z,Σπ\σ, {Σj
σ}m≥j>i+1, {Σj

φ}0<j<i+1, {T φ→σ
i }0<j<i+1,Σi+1

σ ,A)

= comb(Z,Σπ\σ, {Σj
σ}m≥j>i, {Σj

φ}0<j<i, {T φ→σ
i }0<j<i,Σi

φ, T φ→σ
i ,A)

= comb(Zi,Σi
φ,Si)

which is the same as the Network on the left-hand side.
Finally, we shall relate EXECσ,Zi,A and EXECφ,Zi,S to complete the chain of compar-

isons we need to establish equation (4.1). Recall that Zi ∈ ZΓ,A ∈ AΓ and then T φ→σ
i ∈

TΓ was defined, using the guarantee that σ is as secure as φ, as a copy of T φ→σ such that

EXECσ,Zi,A ≈ EXECφ,Zi,Si
for i = 1, . . . ,m (4.5)

Combining the chain of comparisons given by equation (4.4) and equation (4.5) we
obtain that, for any polynomial m = m(k), EXECσ,Z1,A ≈ EXECφ,Zm,Sm . Then using equa-
tion (4.2) and equation (4.3), we obtain equation (4.1), as we set out to show. �

4.4 Universal Composition: Extended Form

Now we show that Los Angeles Network-aware Security is preserved under a much
more general composition operation. There are various aspects in which we generalize
the composition.

• Simultaneous security of multiple protocol sessions invoked by the environment:
one can extend the security to hold for environments Z ∈ ZΓ

∗ .

• Dealing with different ZΓ and AΓ: one can compose protocols which may be secure
with respect to different classes (ZΓ,AΓ, SΓ). (See below for details on what ways
they can be different.)

• Nested subroutines: one can allow subroutines to be nested, up to any polynomial
depth of nesting.
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• Joint-state subroutines: one can allow a subroutine session to be shared among
multiple protocol sessions which invoke it.

We elaborate on each of these informally, before proceeding to give a formal state-
ment and proof of the extended Universal Composition theorem. Recall that the purpose
of such a composition theorem is to reason about the security of a complex system of pro-
tocols, and compare them to an idealized system. Our modus operandi will be to start from
the idealized system, which uses idealized components, use the composition or substitu-
tion operation to replace them with more realistic components, until no more idealized
components remain in the system. Finally we would like to argue that the final realistic
system obtained in this way is as secure as the original idealized system we started with.

Simultaneous Security of Multiple Sessions. In defining security of a protocol we con-
sidered environments which start a single session of that protocol. But in a general Net-
work, we would like to analyze the security of multiple sessions of the same or different
protocols. It is easy to extend our security definition to such a setting, by considering (a)
“protocol collections” (instead of protocols) and (b) a class of environments which may
start multiple sessions of protocols in a protocol collection. Informally, we want a Uni-
versal Composition theorem by which the security guarantees of the individual protocols
in the collection imply security by this extended definition.

First, we need to redefine the notion of “as secure as” to accommodate the fact that
in a multi-session execution, the simulator’s running time will depend on the number of
sessions, which in turn depends on the specific environment in the Network. (Recall that
originally we require the simulator — and in particular its running time — to be indepen-
dent of the environment.) For this first we define the relation “as multi-session secure as.”
There are two changes involved: first, of course, we allow environments to start multiple
sessions of the different protocols from a protocol collection; this class of environments
is denoted by ZΓ

∗ . Secondly, we allow the simulator to be PPT in input length as well as
k. That is, the simulator does not truncate its input to a polynomial fixed a priori.3 We
denote this class of simulators by SΓ

iPPT. The random variable EXECΠ,Z,A stands for the
output of the environment when it uses protocols from the protocol collection Π, in a
Network with adversary A.

Definition 4.1. A protocol collection Π is said to be as multi-session secure as Π′, with respect
to (ZΓ

∗ ,A
Γ, SΓ

iPPT) if and only if ∀A ∈ AΓ, ∃S ∈ SΓ
iPPT such that ∀Z ∈ ZΓ

∗ , we have EXECΠ,Z,A ≈
EXECΠ′,Z,S .

Nested Subroutines. One could apply the Basic UC theorem repeatedly to show that
security is preserved if multiple protocols are substituted one after the other. This is
useful if the protocols are nested, and one substitution introduces another protocol as
a subroutine. However, repeated application of the UC theorem is possible only if the
number of such applications is a constant (independent of the security parameter k): this
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is because the transitivity of the “as secure as” relation holds only for a constant number
of applications.4 This is not satisfactory if the number of substitutions required is related
to k. (Such a scenario would occur if we wish to handle recursive subroutine calls; sub-
routines invoked at different depths of recursion will be considered different protocols.)
The extended UC theorem below shows that the security of repeated substitutions can be
argued directly.

Multi-Instance Join of a Protocol. For any protocol ρ, we define the “multi-instance
join” of ρ as a new protocol ρ̂, such that a single session Σρ̂ emulates multiple sessions of ρ

using internally simulated subsessions. Since there is only one session of ρ̂ in the Network,
it can use a fixed session ID sid0.5 The messages to and from this single ρ̂ session will
be tagged by a subsession ID to indicate which of the internally simulated sessions of ρ

they corresponds to. We also define a dummy protocol 〈ρ̂〉, each session of which interfaces
with Σρ̂: it simply forwards inputs it receives to Σρ̂, after adding its own session ID as the
subsession ID, and outputs messages it receives from Σρ̂ after stripping the subsession
ID tag.

We observe that substituting ρ by 〈ρ̂〉 is essentially just a syntactic change. More
formally, 〈ρ̂〉 is as secure as ρ, as long as AΓ ⊆ SΓ, because the external behavior of the
programs do not change at all by this substitution. Then, in the extended UC theorem
stated below, we need not make any extra provision for handling the substitution of ρ by
〈ρ̂〉.6

Different Classes of Environment and Adversary. There are two purposes served by
allowing different environment and adversary classes. Firstly, some “lower level” proto-
cols (for instance a protocol π = AMD for the functionality F = FAMD) may be secure only
with a restricted class of environments and adversaries (which do not access the angel or
accesses a “weaker” angel only, for instance), compared to the rest of the protocols in the
Network. Then, before substituting 〈F〉 by π (after having substituted the higher level
functionalities by protocols), we need to restrict ourselves to these smaller classes.7 The
second application of using a different class is that one might want to present the secu-
rity guarantees with respect to an easy to understand triple (ZΓ,AΓ, SΓ). For instance, one
might want to state the final security guarantee of a protocol collection using a simulator
class with access to an “upgraded” angel (as it may be easier to define). Then we would
like to be able to compose it with protocols whose security is with respect to “weaker”
angels. In particular we might want to state the security guarantee with respect to simu-
lators accessing exponential time angels, where as our protocols are typically not secure
against environments with access to such an angel.

In applications of interest to us, it is only the angel that we will be different in the
security of the different protocols. Hence, for simplicity, we restrict ourselves to compos-
ing protocols whose security guarantees are provided with respect to different angels.
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However, if necessary, it is not hard to generalize the conditions on the environment, ad-
versary and simulator classes in our composition result to the extent to which our proof
of the composition theorem still holds.

We remark that there is a severe restriction on how different the angels can be for
secure composition to hold: the security of a protocol substituted later (“lower level”)
must use a weaker angel compared to the angel used for “higher level protocols. By a
weaker angel, we mean that it should be simulatable by an environment which has access
to the stronger angel. We say that the weaker angel is subsumed by the stronger angel.

Extended Substitution Operation. To formally describe the composition operation, we
define a t-extended substitution operation (t = t(k) typically being a polynomial in k). It
is specified by a sequence of up to t tuples {(φi, σi,Γi)}i, where angels Γ1,. . . ,Γt (which
may or may not be different) are such that

• Γi subsumes Γi+1 for all i, and

• protocol σi is as secure as φi with respect to (ZΓi ,AΓi , SΓi).

Applying this t-extended substitution to a protocol collection Π0 involves applying
the sequence of t substitutions Πσi/φi

i in sequence to obtain new protocol collections
Π1, . . . ,Πt.8 The extended UC theorem will guarantee us that Πt is as secure as Π0 with
respect to (ZΓt

∗ ,AΓt , SΓ1
iPPT).

Theorem 4.2. Extended UC Theorem. Let t = t(k) be bounded by a polynomial in k. Suppose
the protocol collection Πt is obtained by applying a t-extended substitution {(φi, σi,Γi)}i to a
protocol collection Π0. Then, Πt is as multi-session secure as Π0 with respect to (ZΓt

∗ ,AΓt , SΓ1
iPPT).

PROOF: The proof is quite similar to the proof of Theorem 4.1, but we need to accommo-
date the extensions into the proof. We need to show that ∃S∗ ∈ SΓ1

iPPT such that ∀Z ∈ ZΓt
∗ ,

∀A ∈ AΓt ,

EXECΠt,Z,A ≈ EXECΠ0,Z,S∗ (4.6)

We shall show that there exists a transvisor T Π0→Πt such that ∀Z ∈ ZΓt
∗ and ∀A ∈ AΓt ,

we have S∗ = comb(A, T Π0→Πt) ∈ SΓ1
iPPT which satisfies equation (4.6).

The proof proceeds along a series of hybrid arguments: an outer hybrid sequence for
the t protocol substitutions, and for each of the t substitutions a sequence of m hybrids
to substitute the sessions of that protocol in a Network execution. Here m = m(k) is an
upperbound (dependent on Z) on the number of sessions of any protocol in Πi, for all i.
Note that since Z is polynomial time in k, and all the protocols are polynomial time as
well, m is bounded by a polynomial in k.

As in the proof of Theorem 4.1, we describe environments which will be used to argue
the security of composition. However, corresponding to the two levels of hybrids, now
we have doubly indexed environments Zi,j .
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Construction 4.2: Environment Zi,j , Transvisor T Π0→Πt and Simulator S∗

Zi,j internally simulates the following:

• the original environment Z

• all m sessions of protocols φ`, for 0 < ` < i,

• all m sessions of protocols σ`, for t ≥ ` > i,

• the first j − 1 sessions of φi and all but the first j sessions of σi.

• transvisors T`,l = T φ`→σ` accompanying the sessions of φ` for ` ≤ i (the sec-
ond index l in T`,l merely indicates which session of φ` the transvisor com-
municates with).

Zi,j externally starts one session of φi, which is connected to the internally simu-
lated Network as the j-th session of φi.
We define S`,l = comb(A, T`,l).
Finally, we set T Π0→Πt = comb({Ti,j}i=1,...,t;j=1,...,m), and S∗ = comb(A, T Π0→Πt).

Similar to the Equations 4.2-4.5, we set up a chain of relations to prove equation (4.6).
However now we have more relations corresponding to the longer sequence of hybrids
used. For ease of reading we use the following shorthands: we denote EXECσi,Zi,j ,A by
EXECi,j and EXECφi,Zi,j ,Si,j

by EXEC′i,j . From the construction of Zi,j , one can verify the
following equalities, which are all obtained by observing that the left and right-hand
sides describe the same execution (in the same way we derived the Equalities 4.2-4.4).

EXECt,1 = EXECΠt,Z,A (4.7)

EXEC′1,m = EXECΠ0,Z,S∗ (4.8)

EXECi,j = EXEC′i,j+1 1 ≤ i ≤ t, 1 ≤ j < m (4.9)

EXECi,m = EXEC′i−1,1 1 < i ≤ t (4.10)

Further, from the security guarantee that σi is as secure as φi, by definition of Si,j , we
have

EXECi,j ≈ EXEC′i,j 1 ≤ i ≤ t, 1 ≤ j ≤ m (4.11)

For this, we need to verify that the environments we constructed and the adversary are
indeed in the respective classes as the security guarantee requires. Note that Zi,j needs
to internally contain transvisors T φ`→σ` for ` ≥ i, and the original environment Z . These
transvisors access angels Γ`, ` ≥ i, and Z ∈ ZΓt

∗ accesses Γt, where as Zi,j must access
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only Γi. But since we imposed the condition that for ` ≥ i, Γ` must be subsumed by Γi,
this is not a problem: Zi,j can indeed simulate access to Γ` even thoughZi,j ∈ SΓi . Finally
note that A ∈ AΓt can be considered to be in AΓ` for all ` ≤ t (formally by replacing A by
an adversary which internally runsA and simulates access to Γt using access to Γ`). Thus
indeed the transvisors Ti,j and hence Si,j are well-defined and equation (4.11) holds.

Combining this chain of relations we obtain equation (4.6). To complete the proof we
need only verify that S∗ ∈ SΓ1

iPPT and that S∗ depends only on A (and not on Z). The
first of these follows because T Π0→Πt is a combination of at most mt transvisors each of
which is PPT and accesses an angel Γi which is subsumed by Γ1. Note that m = m(k) is a
polynomial which depends not only on the specification of the protocols involved in the
extended substitution, but also the environment. However since Z must communicate
withA (and hence S∗) for each session it starts, and since S∗ can polynomially depend on
its input size, it can charge the running time of each internal Ti,j against a communication
from Z (multiplied by polynomial factors determined by the protocols). Thus indeed
S∗ ∈ SΓ1

iPPT. Finally, note that the specification of S∗ involves only A and {T φ`→σ`}t`=1,
which are all independent of Z . �

4.5 Conclusion

Universal Composition theorems we have proved for Los Angeles Network-aware secu-
rity closely follows the proof for the same result in the UC framework of [Can01, Can05].
Presence of the angel does not present any serious complications as the original proofs
relativize with respect to the angel. Among the extensions we considered above, polyno-
mial nesting was considered in [Can01, Can05] and multi-instance joins in [CR03].

In the following chapters, we shall use the basic composition theorem (Theorem 4.1)
to prove security of complex protocols built through many substitutions. The extended
composition theorem can be used to argue security of complex systems in which multiple
protocols (i.e., a protocol collection) are deployed, by using a suitable extended substi-
tution sequence. The composition theorems allow a “user” to think of a protocol as an
idealized one (which it is as secure as), and assure that in virtually all situations that does
not lead to hiding any security holes.
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Notes
1This depends on the definition of security of the larger system. If it is defined as the security of all

individual components, then clearly the composability property is trivial. However, the natural definition
of simultaneous security of multiple protocols is a straight forward extension of defining security of a single
protocol: one defines a single ideal world offering all the ideal functionalities, and requires that the real world
be as secure as this ideal world.

2An important point regarding modeling the protocol substitution operation is that the environment
need not be aware of the substitution. Indeed, we would require that the environment should not have any
means to realize when a protocol substitution is carried out, except through the input-output behavior of the
adversary and the programs. For the sake of being concrete one could consider a simple way of achieving
this: a table for translating the protocol pointers to locations where the actual code of the protocol is kept.
The environment does not get (direct) access to this table or the memory where the code is kept. Substitution
of σ by φ simply involves altering the contents of the translation table so that the entry for σ is made to point
to a location containing the code of φ (possibly adding this code to that location if it does not already exist).
The location of code is kept unreadable only so that we can substitute with a protocol φ which may be “new”
(i.e., fixed after fixing the environment and the unsubstituted codes).

3The convention of truncating the input was important only for the programs of the protocols and the
functionalities. For simplicity we had imposed the condition on all entities (other than the angel). However,
this convention is not suitable for simulation in the multi-session case, and hence we remove this restriction
from the simulator. We could remove the restriction from the adversary as well.

4See Lemma 3.1 and the endnote in its proof.
5A fixed value of sid0 can be used if all parties in the Network shall use a single session of ρ̂. For instance,

in the case of FAMD, it is enough to have one multi-instance session. However, if multiple sessions of ρ̂ (with
disjoint states) is desired, then the protocol should specify a way for choosing a unique session ID. See
Endnote 3 of Chapter 2 on choosing unique session IDs.

6Our formulation of the multi-instance protocol with an accompanying dummy protocol allows us to
treat the case of “Joint UC” in the same way as regular protocol substitutions. In other words, this highlights
that the essence of the Joint-UC theorem from [CR03] is the fact that 〈ρ̂〉 is as secure as ρ, and the composition
itself follows then from the basic UC theorem.

7In proving the composition theorem, it may be more natural to think in terms of substituting real proto-
cols by ideal protocols (rather than the opposite, and usual, direction in which we use substitutions). Then
the “lower level” protocols (for functionalities like FAMD) are substituted first, before introducing non-trivial
angels into the Network. Then, it is easier to see intuitively that for us to move from the “real world” to
the “ideal world” through a chain of “as secure as” relations, these lower level protocols need not be secure
against environments and adversaries having access to a non-trivial angel.

8Consider a protocol collection Π of n protocols, and an ideal protocol collection Π′ in which each protocol
of Π has an idealized protocol (which it is as secure as). Protocols in Π may use protocols in Π′ as subroutines.
Typically our aim would be to start with Π and replace the Π′ subroutines with protocols from Π (which are
as secure as them). Each substitution can introduce further protocols from Π′ into the collection. If there are
no cycles (i.e., if the relation “as secure as a subroutine used by” defines a directed acyclic graph), then in a
finite number of substitutions we can remove all protocols of Π′ from the collection. When recursive calls
are involved, cycles can be avoided by using a bound on the depth of recursion, and defining a new protocol
for each depth of recursion.
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Chapter 5

Network-Aware Secure Multi-Party
Computation

5.1 Introduction

In this chapter we present the central result of this thesis, namely, a protocol for general
multi-party computation, which will be proven to be secure under our framework of
security. The protocol uses no trust setups, and allows arbitrary corruption of parties
(but statically).

In our construction we use a few basic results from previous works on multi-party
computations [GMW87, CLOS02, Gol04] (whose protocols where either secure only with-
out a general Network, or required trust on a common reference string). We use new
complexity theoretic primitives, which we describe in Section 5.3. In Section 5.4 we give
an overview of the entire construction before going into the details of the new component
protocols and proofs relating their security to the new assumptions.

5.2 Natural Functionalities and Realistic Protocols

Our aim is to construct secure protocols for all (PPT) ideal functionalities. However,
the formulation of ideal functionalities allows some “unnatural” functionalities as well,
which are impossible to securely realize. In particular, the model allows the ideal func-
tionality to read the list of corrupted parties; so a functionality which tells the honest
parties which parties are corrupt is admissible. On the other hand, such a functionality is
impossible to securely realize (with a useful protocol) if the corrupt parties are allowed
to behave (semi) honestly. We classify all functionalities F which require ℘F to access
corruptlist , as unnatural. More generally, we say F is a natural functionality if and only if
℘F is PPT and uses only inputs received from the participants in that session (including
the adversary).1 We shall restrict ourselves to the goal of securely realizing all natural
functionalities.
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The model allows not only unnatural functionalities, but also unrealistic protocols.
An unrealistic protocol is one which communicates with an ideal functionality (possibly
through one of its subroutines). Unless a trust setup is used, it is not possible to directly
implement an unrealistic protocol. We shall call a protocol realistic if it accesses no ideal
functionality (directly or though its subroutines). Our goal is to provide realistic proto-
cols that securely realize all natural functionalities.

5.3 Complexity Assumptions and the Angel Used

Our complexity theoretic assumptions involve an (abstract) hash function. As we shall
describe below, it is required to have a collision resistance property, along with some
important enhancements. The angel involved in the security statement of our protocols
relates to finding collisions in this hash function.

5.3.1 Non-Self-Reducible Collision-Resistant Hash Function

We denote our hash function byH. For each value of security parameter k, it maps {0, 1}k

to {0, 1}`(k). The k-bit input toH is considered to be an element (µ, r, x, b) ∈ Ik×{0, 1}k1×
{0, 1}k2 × {0, 1}, where Ik is the set of IDs used for the parties2 (which is parameterized
by k, and contains exponentially many valid IDs); k1, k2, ` are all polynomially related
to k. H should be PPT computable, either uniformly or non-uniformly (accordingly our
protocols will be uniform or non-uniform). Our assumptions onH are as follows.

A1 (Collisions and Indistinguishability): For every3 µ ∈ Ik and r ∈ {0, 1}k1 , there is a
distribution Dµ

r over {(x, y, z)|H(µ, r, x, 0) = H(µ, r, y, 1) = z} 6= φ, such that for all
non-uniform PPT distinguishers M

{(x, z)|(x, y, z)← Dµ
r }

M
≈ {(x, z)|x← {0, 1}k2 , z = H(µ, r, x, 0)}

{(y, z)|(x, y, z)← Dµ
r }

M
≈ {(y, z)|y ← {0, 1}k2 , z = H(µ, r, y, 1)}.

Further, even if the distinguisher is given sampling access to the set of distributions
{Dµ′

r′ |µ
′ ∈ Ik, r

′ ∈ {0, 1}k1}, these distributions still remain indistinguishable.

A2 (Difficult to find collisions with matching prefix): For all PPT circuits M and every
ID4 µ ∈ Ik, for a random r ← {0, 1}k1 , probability that M(r) outputs (x, y) such that
H(µ, r, x, 0) = H(µ, r, y, 1) is negligible. This remains true even when M is given
sampling access to the set of distributions {Dµ′

r′ |µ
′ 6= µ, r′ ∈ {0, 1}k1}.

The first assumption simply states that there are collisions in the hash function, which are
indistinguishable from a random hash of 0 or 1. Note that this assumption implies that
for every µ ∈ Ik and every r ∈ {0, 1}k1 H(µ, r, {0, 1}k2 , 0) and H(µ, r, {0, 1}k2 , 1) are in-
distinguishable (because they are indistinguishable from {z|(x, y, z)← Dµ

r }). The second
assumption is an augmented collision resistance property: the augmentation requires a
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non-self-reducibility property, which requires that finding collisions with one prefix (iden-
tity) cannot be reduced to finding collisions with other prefixes. However requiring that
a pair of colliding values have a matching prefix makes the assumption weaker.

We term such a hash function a “non-self-reducible collision-resistant hash function.”

5.3.2 The angel Ψ

Suppose X is the set of corrupted parties. (Since we are dealing with static adversaries,
this is a fixed set). On query (µ, r) the angel Ψ checks if µ ∈ X, i.e., if the party with ID µ

is corrupted or not. If it is, Ψ draws a sample fromDµ
r described above and returns it; else

it returns ⊥. All the results in this chapter use Ψ as the angel; i.e., the security guarantees
are with respect to (ZΨ,AΨ

static, S
Ψ
static).

For convenience we introduce the following related notations. Ψ∗ is similar to Ψ
except that it answers all queries (µ, r) with a sample from Dµ

r , irrespective of X. Ψ\µ is
exactly like Ψ∗, except that only for queries (µ′, r), µ′ 6= µ does it provide a sample from
Dµ′

r (otherwise returning ⊥). Then in Assumption A1 the adversary in question can be
denoted by MΨ∗

, and the one in Assumption A2 by MΨ\µ .

5.3.3 Trapdoor Permutations

We make one more cryptographic assumption for our constructions, informally stated
below:

A3 There exists a collection of trapdoor permutations T, which remains secure even if
the adversary has sampling access to Dµ

r for all µ and r.

More formally, we assume that there exists a PPT algorithm T which, on input 1k,
outputs a pair of deterministic polynomial sized (in k) circuits (f, f−1) such that f :
{0, 1}k → {0, 1}k is a permutation and f−1 is its inverse.5 (In notation, we denote this as
(f, f−1) ← T(1k) or (f, f−1) = T(1k; r) where r is the randomness used by T to sample
(f, f−1).) Also we assume there is an associated boolean function B. The hardness as-
sumption regarding T and B is that, for any PPT machine MΨ∗

(with sampling access to
Dµ

r for all µ and r), the following quantities are negligible:

Pr(f,f−1)←T(1k),x←{0,1}k
[
MΨ∗

(f, x) = f−1(x)
]

Pr(f,f−1)←T(1k),x←{0,1}k
[
MΨ∗

(f, x) = B(f−1(x))
]
− 1

2
In fact, it is enough to assume that there is a collection of trapdoor permutations T′ which
satisfies the first of the above two conditions. The existence of T with an associated hard-
core predicate B follows from it. For instance, the Goldreich-Levin construction [GL89]
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(which takes T′ and yields T and B) works even when the adversary MΨ∗
is given sam-

pling access to Dµ
r . This is easy to see because the proof in [GL89] uses MΨ∗

as a black-
box.

Also, we need a perfectly binding (non-interactive) commitment scheme C, whose
hiding property (in a stand-alone setting) holds against PPT adversaries MΨ∗

with access
to the distributions Dµ

r for all µ and r. More formally, we assume that there is a PPT
algorithm C such that for all strings a, a′, r, r′, if a 6= a′ then C(a; r) 6= C(a′; r′). Also,
for any PPT machine MΨ∗

(with sampling access to Dµ
r for all µ and r), the following

quantity is negligible:

|Pra←{0,1}k,c←C(a)

[
MΨ∗

(c, a) = 1
]
−Pra,a′←{0,1}k,c←C(a′)

[
MΨ∗

(c, a) = 1
]
|.

Here we write C(a; r) to denote the commitment to the string a using randomness r, and
C(a) stands for C(a; r) with a random r. Such a scheme C can be readily constructed
from T and B (see for instance [Gol01, Sec. 4.4.1.2]).

5.3.4 Remarks on the Assumptions

To begin with, it will be useful to point out how our assumptions relate to the conven-
tion of modeling hash functions as “random oracles.” The random oracle model, as put
forth in [BR93], has become an extremely popular way to build efficient “secure” proto-
cols in practice. If our hash functionH were to be replaced by access to a random oracle,
then Assumption A1 and Assumption A2 become unconditionally true; Assumption A3
reduces to the standard assumption on trapdoor permutations. However, an increas-
ing body of work [CGH98, GT03, BBP04] points out the fundamental problems in the
random oracle model. These problems stem from the fact that computation using a ran-
dom oracle offers many properties which a computation in the standard model does not
have. Our assumptions on the other hand are concrete complexity theoretic assumptions
which fit the standard model just like all other complexity theoretic assumptions used
in cryptography. Thus — and this has been one motivation in proposing them — these
assumptions capture some of the intuition behind modeling hash functions as random
oracle, while staying fully within the standard model of assumptions. We list below in
intuitive terms the properties ofH suggested by our assumptions.

• Collisions and Indistinguishability. A length reducing hash function (say ` = k/2) will
typically have exponentially many pre-images for each point in the range. Then it is
plausible that collisions can be sampled such that each of the two pre-images seems
to be distributed as if it was sampled “naturally.” Note that this sampling process
is allowed to be inefficient.

• Collision Resistance. Collision resistance by itself is a natural assumption on hash
functions. What makes our assumption non-standard is that even when the ad-
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versary has access to samples of collisions, it should be infeasible for it to find new
collisions with a given random r. In fact, our assumption is weaker: we require the
collisions to have the same “prefix” (the first argument to H, namely µ), and the
adversary gets only collisions with other prefixes. The intuition here is that once
the prefix is changed, the hash function behaves entirely differently, and collisions
with another prefix give no significant advantage to the adversary. We also point
out that the collision is required not only to match in the first two arguments (µ and
r, the latter being a random challenge to the adversary), but also should differ in
the last single-bit argument.6

• Trapdoor Permutation. Again, trapdoor permutation by itself is a standard assump-
tion. The intuition behind strengthening this assumption is that collision samples
from a hash function, which could have much less “structure” than a trapdoor func-
tion, and presumably based on very different mathematical objects, do not give
much advantage to an adversary in breaking the security of the trapdoor permu-
tation. Indeed, by appropriately choosing the security parameters associated with
the construction of H and of the trapdoor permutation, we can replace Assump-
tion A3 with a more standard assumption of trapdoor permutations secure against
super-polynomial (sub-exponential) adversaries. See Section 5.10 for details.

By way of plausibility of the assumptions we point out that in a recent work [MMY05],
it was shown that a hash function satisfying our assumptions can be instantiated based
on (non-standard) number theoretic assumptions (an enhanced version of the Discrete
Log Assumption).

Finally, we stress that our model of Los Angeles Network-aware security is useful in-
dependent of the specific assumptions we have made for the constructions in this chapter.
It is possible that alternate constructions (employing different assumptions and a differ-
ent angel) can yield the same results. Indeed, recently Barak and Sahai [BS05] showed
that based on collision resistant hash functions and trapdoor functions which are secure
against super-polynomial (sub-exponential) adversaries (with no reference to any angel),
Los Angeles Network-aware secure MPC protocols can be constructed.7

5.4 Overview of the Protocol

An overview of the construction of our Secure multi-party computation protocol is shown
in Table 5.4. The overall structure of our protocol follows the structure in [CLOS02],
which in turn follows that in [GMW87, Gol04]. But our construction differs from that
[CLOS02] in a very crucial manner: none of our protocols use a Common Random String.

The differences in our construction appear after the first three rows in Table 5.4. Cor-
respondingly, we present our construction in two parts: a protocol OMCP-REAL which
captures all the rows after the first three in Table 5.4, and a protocol for multi-party com-
putation which uses OMCP-REAL.
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π1 = GMW(F) π1 is as secure as 〈F〉with respect to
(ZΨ,AΨ

SH-static, S
Ψ
SH-static)

From [GMW87,
CLOS02, Gol04]
(Lemma 5.2)

π2 = π
OT/〈FOT〉
1 π2 is as secure as π1 with respect to

(ZΨ,AΨ
SH-static, S

Ψ
SH-static)

From [GMW87,
CLOS02, Gol04]
(Lemma 5.3)

π3 = COMPILER(π2) π3 is as secure as π2 with respect to
(ZΨ,AΨ

static, S
Ψ
SH-static)

From [GMW87,
CLOS02, Gol04]
(Lemma 5.4)

π4 = π
OMCP/〈F1:M

CP 〉
3 π4 is as secure as π3 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

Lemma 5.14.
Also [CLOS02]

π5 = π
(〈BC〉,〈ZK〉)/(FBC,FZK)
4 π5 is as secure as π4 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

From
[GL02, CF01]

π6 = π
COM/〈FCOM〉
5 π6 is as secure as π5 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

Lemma 5.11

π7 = π
BZK/〈FfZK〉
6 π7 is as secure as π6 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

Lemma 5.9

π8 = π
BMCOM/〈F

M̃COM
〉

7 π8 is as secure as π7 with respect to
(ZΨ,AΨ

static, S
Ψ
static)

Lemma 5.8

π9 = π
BCOM/〈FC̃OM〉
8 π9 is as secure as π8 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

Lemma 5.5

π10 = π
ENC/〈FENC〉
9 π10 is as secure as π9 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

From
[DDN00, Sah99,
Lin03c, Can01]
(Lemma 5.16)

π11 = π
AMD/〈FAMD〉
10 π11 is as secure as π10 with respect to

(ZΨ,AΨ
static, S

Ψ
static)

Lemma 5.18

Table 5.1: Overview of the construction of a secure protocol for a functionality F . π11 does not use any
subroutines. Here SΨ

static = AΨ
static, and SΨ

SH-static = AΨ
SH-static. Combining these relations we get π11 is as secure

as 〈F〉with respect to (ZΨ, AΨ
static, S

Ψ
SH-static).

5.4.1 One-to-many Commit-and-prove

We construct a realistic protocol OMCP-REAL which securely realizes F1:M
CP with respect

to (ZΨ,AΨ
static, S

Ψ
static), where F1:M

CP is the “One-to-Many Commit-and-Prove” functionality
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shown in Figure 5.11 (see Section 5.7). The main components used in this construction
are built in Sections 5.5 and 5.6. In Section 5.7 we use them to complete the construction
of OMCP-REAL. There we prove the following lemma, which encapsulates all the major
new components in our protocol.

Lemma 5.1. Under assumptions A1, A2 and A3, there is a realistic protocol OMCP-REAL which
securely realizes F1:M

CP with respect to (ZΨ,AΨ
static, S

Ψ
static).

5.4.2 MPC from Commit-and-prove

Given Lemma 5.1, the rest of the construction closely follows that in [CLOS02]. First,
using results from [GMW87, CLOS02], we begin with a protocol which securely realizes
F with respect to (ZΨ,AΨ

SH-static, S
Ψ
SH-static). AΨ

SH-static (resp., SΨ
SH-static) is the class of semi-

honest adversaries (resp., simulators) which do not alter the behavior of the parties they
corrupt. Then we construct a protocol compiler which can take a protocol secure against
semi-honest (static) adversaries and generate a protocol secure against general (static)
adversaries, thereby completing the proof. These two steps are further elaborated below.

MPC for Semi-Honest Parties. In general, the proofs for the semi-honest case from
[CLOS02] are mostly information-theoretic, and immediately imply their analogs that
we use.

For any multi-party functionalityF , Goldreich, Micali and Wigderson [GMW87] gave
a protocol construction for securely realizing F against semi-honest adversaries. Canetti
et. al. [CLOS02] formulate (an extension of) this protocol — which we shall call GMW(F)—
as a protocol accessing the Oblivious Transfer functionality (denoted by FOT), and show
that for any natural functionality F , the protocol GMW(F) securely realizes F with re-
spect to (ZΓ,AΓ

SH-static, S
Γ
SH-static). As observed there, the proof is information theoretic and

holds not just for PPT classes. In particular it holds with respect to (ZΨ,AΨ
SH-static, S

Ψ
SH-static).

We record this below.

Lemma 5.2. (Following [GMW87, CLOS02, Gol04]): For any multi-party functionality F ,
the protocol GMW(F) (which uses 〈FOT〉 as a subroutine) securely realizes F with respect to
(ZΨ,AΨ

SH-static, S
Ψ
SH-static).

[GMW87, CLOS02] show that there is a protocol which securely realizes FOT with
respect to (Z,ASH-static, SSH-static). We observe that in fact the same protocol securely re-
alizes FOT with respect to (ZΨ,AΨ

SH-static, S
Ψ
SH-static), if we use the trapdoor permutations

from Assumption A3 in that protocol. The reason for this is that the only computational
assumption used there is that of the security of trapdoor permutations. Using the trap-
door permutations from Assumption A3, the same security holds when all the entities
involved have access to Ψ. We record this observation below.

Lemma 5.3. (Following [GMW87, CLOS02]): Under Assumption A3, there is a protocol OT

which securely realizes FOT with respect to (ZΨ,AΨ
SH-static, S

Ψ
SH-static).
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Protocol Compiler As mentioned above, to complete the construction, we need to show
how to convert the above protocol for semi-honest parties into one secure against mali-
cious parties. Following [GMW87], [CLOS02] gives a “compiler” which carries out this
conversion, and produces a new protocol which uses 〈F1:M

CP 〉 as a subroutine. The proof
given in [CLOS02] that this compiled protocol is secure (given access to F1:M

CP ) is again
information-theoretic, and holds not just for PPT adversaries and environments, but also
when they have access to an angel. Hence we have the following.

Lemma 5.4. (Following [CLOS02]): There exists a protocol compiler COMPILER which takes a
multi-party protocol π, and outputs a protocol COMPILER(π) (which uses 〈F1:M

CP 〉 as a subroutine)
such that, for every protocol π, the compiled protocol COMPILER(π) is as secure as π with respect
to (ZΨ,AΨ

static, S
Ψ
SH-static).

Our main theorem readily follows from the above results, using the Universal Com-
position theorem (Theorem 4.1).

Theorem 5.1. Under assumptions A1, A2 and A3, for any natural multi-party functionality F ,
there is a realistic protocol which securely realizes F with respect to (ZΨ,AΨ

static, S
Ψ
static).

PROOF: Consider any natural multi-party functionality F . By Lemma 5.2 there is a
protocol π which securely realizes F with respect to (ZΨ,AΨ

SH-static, S
Ψ
SH-static). Applying

Lemma 5.4, we obtain a protocol π′ = COMPILER(π) which securely realizes F with re-
spect to (ZΨ,AΨ

static, S
Ψ
static) (i.e., secure against malicious adversaries as well). 〈F1:M

CP 〉 is the
only part of the protocol which accesses an ideal functionality. Finally using Lemma 5.1
and the composition theorem, we get that π′OMCP-REAL/F1:M

CP securely realizesF with respect
to (ZΨ,AΨ

static, S
Ψ
static). Observing that π′OMCP-REAL/F1:M

CP is realistic completes the proof. �

5.5 Basic Building Blocks

This section develops the basic tools we will need to securely realize the commitment func-
tionality (Section 5.6). Here we introduce a new modeling and proof technique based on
intermediate non-standard functionalities called semi-functionalities. Viewed as standard
functionalities these intermediate functionalities do not fully capture the security prop-
erties we need from our protocols for their later application. Hence we shall formulate
some of their security properties outside the security definition (“as secure as”) that we
have developed. (In Chapter 6 these proof techniques are extended to a full fledged def-
initional framework.)

5.5.1 Basic Commitment Protocol

In Figure 5.1 we give a protocol BCOM for commitment, which uses 〈FENC〉 as a subrou-
tine. FENC is the encryption functionality, which receives a message from a program and
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delivers it to the destination program (if instructed by the adversary), after publishing
only the length of the message to the adversary. (See Section 5.8.)

Protocol BCOM

The participants are a sender or committer ℘
C , and a receiver ℘

R. The security parameter
is k, and k1, k2 are two parameters such that k, k1 and k2 are polynomially related. The
sender ℘

C gets as input a bit b, which it must commit to.
COMMIT PHASE:

1. ℘
R picks r ← {0, 1}k1 and sends it to ℘

C .

2. ℘
C chooses r′ ← {0, 1}k2 and computes c = H(µR, r, r′, b). ℘

C and ℘
R start a sub-

routine session Σ〈FENC〉. Let ℘FENC
denote the instance of the FENC functionality. ℘

C

sends c to ℘
R via ℘FENC

.8

3. ℘
R receives c from ℘FENC

and accepts the commitment.

REVEAL PHASE:

1. ℘
C sends (b, r′) to ℘

R via ℘FENC
. The receiver ℘

R receives (b, r′).

2. ℘
R checks ifH(µR, r, r′, b) = c. If so it accepts b as revealed.

Figure 5.1: The Basic Commitment Protocol BCOM (which uses FENC).

Protocol 〈FC̃OM〉 and Functionality FC̃OM

A sender C and a receiver R run the protocol 〈FC̃OM〉 to interact with ℘F̃COM
. The adversary

is S. Input to ℘
C is a bit b to which it commits (and later an instruction to reveal the

commitment). The security parameter is k, and k1, k2 are two parameters such that k, k1

and k2 are polynomially related.
COMMIT PHASE:

1. ℘F̃COM
picks r ← {0, 1}k1 and sends it to ℘

C .

2. ℘
C chooses r′ ← {0, 1}k2 and computes c = H(µR, r, r′, b). ℘

C sends c to ℘F̃COM
.

3. On receiving c from ℘
C , ℘F̃COM

sends the message commit to ℘
R

REVEAL PHASE:

1. ℘F̃COM
receives (b, r′) from ℘

C

2. ℘F̃COM
checks ifH(µR, r, r′, b) = c. If so it sends the message (reveal , b) to ℘

R and the
adversary S.

Figure 5.2: A functionality realized by the protocol BCOM

We will use protocol BCOM as a component in later protocols. Thus we would like to
show some sort of composable security for this protocol. But this protocol cannot be a
secure protocol for the commitment functionality.9 So we introduce a novel technique to
formalize and analyze the security of this protocol. In Figure 5.2 we show a functionality
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FC̃OM specifically designed to capture the hiding property BCOM. It also retains any bind-
ing property that BCOM has. In the two following lemmas, we show that BCOM indeed is
as secure as the dummy protocol 〈FC̃OM〉 (which accesses a copy of FC̃OM), and also that
FC̃OM offers some binding guarantee.

Lemma 5.5. Protocol BCOM is as secure as 〈FC̃OM〉 with respect to (ZΨ,AΨ
static, S

Ψ
static), under

Assumption A1.

PROOF: For every adversary A ∈ AΨ
static we must demonstrate a PPT transvisor T ∈ TΨ

such that no environment Z ∈ ZΨ can distinguish between interacting with the parties
running BCOM andA (the “real” world) on the one hand, and interacting with the parties
running 〈FC̃OM〉 and S = comb(A, T ) (the “ideal” world) on the other. First, we describe
T .

Construction 5.1: Transvisor T = T 〈F̃COM
〉→BCOM

T simulates the honest participants internally. Below ℘̃
C stands for the program of

the sender simulated internally by T (if C is honest) and ℘̃
R for that of the receiver

(simulated if R is honest). Also it internally simulates ℘FENC (denoted by ℘̃FENC ). It
behaves as follows depending on which parties are corrupted.

Both C,R corrupt. If A corrupts both participants, T acts transparently. Then the
simulation is trivially perfect.

Both C,R honest. If A corrupts neither of the two participants C and R, then in
the “real world” all it sees are the random string r from ℘

R to ℘
C , and the message

from FENC giving the length of the commit and reveal messages from ℘
C . So using

the parameters k1, k2 and the lengths of the messages, T (i.e., ℘̃C , ℘̃R and ℘̃FENC ) can
perfectly simulate the protocol toA. (Encryption is used in the protocol specifically
to take care of this situation where the adversary corrupts neither participants.)

R honest, C corrupted. Suppose the adversary corrupts only the sender C. Note
that there is very little difference between what ℘

C sees in the real and ideal execu-
tions. In fact ℘̃

R will simply act as an intermediary, letting ℘
C directly talk to ℘FC̃OM

:
it will simply forward the messages from corrupt ℘

C (received through ℘̃FENC ) to
℘FC̃OM

and reports back to A the messages from ℘FC̃OM
. It is easily verified that this

is a perfect simulation.

C honest, R corrupted. Finally, suppose that the adversary corrupts the receiver
alone. When, on behalf of ℘

R, A sends out the first message r in the proto-
col, T intercepts it, and sends a query (µR, r) to the angel Ψ. Since R is cor-
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rupted, Ψ will respond with (x, y, z) ← DµR
r , where DµR

r is the distribution over
{(x, y, z)|H(µR, r, x, 0) = H(µR, r, y, 1) = z} as specified in Assumption A1. Then,
when ℘FC̃OM

gives the commit message, ℘̃
C sends z to A. Later if ℘FC̃OM

gives the
message (reveal , 0), then ℘̃

C sends (0, x) to A, and if ℘FC̃OM
gives the message

(reveal , 1), then ℘̃
C sends (1, y) to A.

Now we argue that Z cannot distinguish between the real execution and the simu-
lation: i.e., EXECBCOM,Z,A ≈ EXEC〈FC̃OM〉,Z,S where S = comb(A, T ). Suppose otherwise.
Then it must be the case that in this Network, with non-negligible probabilityA corrupts
R but not C (i.e., the last case considered above), because in all other cases the simula-
tion is perfect. Then we shall build non-uniform machines10 MΨ∗

0 and MΨ∗
1 such that at

least one of them provides a counter example to Assumption A1. We describe MΨ∗
0 now.

(MΨ∗
1 is built similarly, with 0 and 1 interchanged).

Construction 5.2: MΨ∗
0 to break Assumption A1.

MΨ∗
0 takes as input (x, z) such that either (x, y, z) ← Dµ

r or x ← {0, 1}k2 , z =
H(µ, r, x, 0). MΨ∗

0 internally simulates the entire Network corresponding to
EXEC〈FC̃OM〉,Z,S , with the following modifications:

• If the bit b provided by Z as input to ℘
C is 1 MΨ∗

0 bails out by outputting a
uniformly random bit.

• Otherwise it modifies T so that instead of using (x, z) obtained from Ψ in the
simulation it uses (x, z) obtained as input, and outputs what Z outputs.

Now, with µ = µR, if (x, z), the input to MΨ∗
0 , is such that (x, y, z) ← Dµ

r then MΨ∗
0

does a perfect simulation of the Network execution EXEC〈FC̃OM〉,Z,S , conditioned on Z
giving 0 as input to ℘

C . If on the other hand the input (x, z) is such that x← {0, 1}k2 , z =
H(µ, r, x, 0) then, conditioned on Z giving 0 as input to ℘

C , this is a perfect simulation of
the Network execution EXECBCOM,Z,A. Thus11

Pr(x,y,z)←Dµ
r

[
MΨ∗

0 (x, z) = 0
]
−Prx←{0,1}k2 ,z=H(µ,r,x,0)

[
MΨ∗

0 (x, z) = 0
]

= Pr(x,y,z)←Dµ
r

[
MΨ∗

0 (x, z) = 0 ∧ input℘
C

= 0
]

−Prx←{0,1}k2 ,z=H(µ,r,x,0)

[
MΨ∗

0 (x, z) = 0 ∧ input℘
C

= 0
]

= Pr
[

EXEC〈FC̃OM〉,Z,S = 0 ∧ input℘
C

= 0
]

−Pr
[

EXECBCOM,Z,A = 0 ∧ input℘
C

= 0
]
.
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Similarly,

Pr(x,y,z)←Dµ
r

[
MΨ∗

1 (x, z) = 0
]
−Prx←{0,1}k2 ,z=H(µ,r,x,0)

[
MΨ∗

1 (x, z) = 0
]

= Pr
[

EXEC〈FC̃OM〉,Z,S = 0 ∧ input℘
C

= 1
]
−Pr

[
EXECBCOM,Z,A = 0 ∧ input℘

C
= 1
]
.

Hence, if |Pr
[

EXEC〈FC̃OM〉,Z,S = 0
]
− Pr [EXECBCOM,Z,A = 0]| is non-negligible, then the

difference Pr(x,y,z)←Dµ
r

[
MΨ∗

b (x, z) = 0
]
−Prx←{0,1}k2 ,z=H(µ,r,x,0)

[
MΨ∗

b (x, z) = 0
]

is non-
negligible for either b = 0 or b = 1.12 Further note that MΨ∗

0 and MΨ∗
1 do little more

than simulate the Network and are hence PPT, with access to Ψ. But this contradicts
Assumption A1, leading us to conclude EXECBCOM,Z,A ≈ EXEC〈FC̃OM〉,Z,S . �

A priori the functionality FC̃OM does not offer any guarantee that the commitment
is binding on a corrupt sender. The following lemma formulates the binding property
outside the our security framework (i.e., we do not give a functionality reflecting the
binding property).

Lemma 5.6. Consider a session of 〈FC̃OM〉 in a Network with environment Z ∈ ZΨ
∗ , multiple

other sessions of the same or other protocols (which can all be w.l.o.g considered part of the en-
vironment), and adversary A ∈ SΨ

static. Then, if the receiver R is honest (the sender C may be
corrupt), after ℘FC̃OM

finishes the commit phase, there is a fixed bit b∗ (determined by the entire
Network state at that point, excluding as yet unsampled random bits), such that ℘

C can make
℘FC̃OM

accept a reveal to 1− b∗ with only negligible probability.

PROOF: We define the value of the commitment b∗ as follows: let α denote the state of
the Network at the end of the commitment phase. Define random variable pα

0 (respec-
tively, pα

1 ) as the probability that starting from the state α, ℘
C successfully reveals the

commitment as 0 (respectively, 1). Let b∗ = 0 if pα
0 ≥ pα

1 ; else let b∗ = 1. (Note that b∗ is a
function of α.)

We say that the binding is broken if the sender manages to reveal the commitment
to 1 − b∗. We shall demonstrate a (non-uniform) PPT machine MΨ\µ (where µ = µR)
which accepts r ← {0, 1}k and outputs (x, y) such that H(µ, r, x, 0) = H(µ, r, y, 1), with a
probability polynomially related to the probability of the sender breaking the binding.

Construction 5.3: MΨ\µ to output (x, y) such thatH(µ, r, x, 0) = H(µ, r, y, 1), on input r

MΨ\µ simulates the Network internally, starting at the point the session is initiated
(which is given to it non-uniformly). It uses access to Ψ\µ to simulate calls to Ψ
(note that µ = µR and R is honest in this Network; then Ψ\µ subsumes Ψ). The
Network is simulated with the following modifications:

• Recall that in the actual Network ℘FC̃OM
chooses a random string r ← {0, 1}k

and sends it to ℘
C , the (corrupted) sender. But while simulating the Network,
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MΨ\µ will accept r as an input and send that as the first message to ℘
C . (Note

that the simulation is perfect if this external input r is chosen randomly from
{0, 1}k.)

• On receiving the message r, ℘
C may respond with a string c. At this point

MΨ\µ makes two copies of the Network, and runs them with independent
randomness.

• If ℘
C eventually reveals the commitment as (x, 0) in the first run and as (y, 1)

in the second run, then MΨ\µ outputs (x, y) and succeeds. Else it fails and
terminates.

Then we have,
Pr
[
MΨ\µ succeeds

]
= E

α
[pα

0 pα
1 ]

because after forking two copies of the Network, MΨ\µ succeeds (i.e., it manages to out-
put (x, y) such that H(r, x, 0) = H(r, y, 1)) when in the first run the event with probabil-
ity pα

0 occurs and in the second the event with probability pα
1 . Here Eα [f(α)] stands for∑

α Pr [α]f(α). Note that the randomness involved in determining Pr [α] includes all the
randomness used by MΨ\µ to simulate the Network up to the point α, and the input r

that it receives (equivalently, it involves all the randomness in the actual Network). On
the other hand,

Pr [℘C reveals 1− b∗] = E
α

[min{pα
0 , pα

1 }] ≤ E
α

[√
pα
0 pα

1

]
≤
√

E
α

[pα
0 pα

1 ] =
√

Pr
[
MΨ\µ succeeds

]
.

(5.1)

Since the running time of MΨ\µ is linearly related to the running time of the entire
Network, MΨ\µ is a PPT machine, with access to Ψ\µ. Hence the probability that MΨ\µ

succeeds is negligible by Assumption A2. Hence, by (5.1), the probability that ℘
C reveals

1− b∗ (and makes ℘FC̃OM
accept it) is also negligible. �

5.5.2 Multi-bit Commitment with Selective Reveal.

We define a multi-bit version of the functionality FC̃OM, called F
M̃COM

given in Figure 5.3.
Informally, F

M̃COM
is equivalent to n parallel sessions of FC̃OM (where n is specified by the

sender ℘
C). ℘F

M̃COM
internally runs n copies of ℘FC̃OM

and interacts with the sender ℘
C ac-

cording to them. In the commit phase, it sends commit if all n parallel copies of ℘FC̃OM
out-

put COMMIT (as the message for ℘
R). In the reveal phase, the sender can choose to run the

reveal phase of any subset {i1, . . . , it} ⊆ [n] of parallel sessions. Then if in reveal phase of
each of the t chosen sessions, ℘FC̃OM

of that session outputs the reveal message (reveal , bj)
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(intended for the receiver), then ℘F
M̃COM

sends the message (reveal , (i1, b1), . . . , (it, bt)) to
℘

R.
When a protocol is started from within another protocol, the latter should specify how

the session ID of the sub-protocol is generated and agreed upon. We make explicit our
conventions regarding how this is done, by specifying the details for the functionality
F

M̃COM
and a protocol BMCOM for it, in Figure 5.3 and Figure 5.4. Similar schemes can be

employed for all other protocols in this work.

Functionality F
M̃COM

and Protocol 〈F
M̃COM

〉

A sender ℘
C and a receiver ℘

R run the protocol 〈F
M̃COM

〉 to interact with ℘FM̃COM
. The

adversary is S. Let the session ID (already agreed up on by ℘
C and ℘

R, on instantiating
this copy of ℘FM̃COM

) be sid. Let the input to ℘
C at the commit phase be (b1, . . . , bn), the bits

to which it wishes to commit, and that at the reveal phase be {i1, . . . , it} ⊆ [n], the set of
commitments which it wishes to reveal.
COMMIT PHASE:

1. ℘
C sends the number n to ℘FM̃COM

.

2. ℘FM̃COM
internally starts n copies of the program for ℘F̃COM

namely
℘F̃COM,sid1 , . . . , ℘F̃COM,sidn

, with ℘
C as the sender and using the ID of R as the

receiver-ID. (sidi could simply be sid ◦ i.)

3. ℘
C interacts with the t parallel sessions of ℘F̃COM

in the commit phase.

4. If all the n copies of ℘F̃COM
produce the commit message, then ℘FM̃COM

sends the mes-
sage commit to ℘

R and S.

REVEAL PHASE:

1. ℘FM̃COM
receives the set {i1, . . . , it} from ℘

C .

2. ℘FM̃COM
lets the t parallel sessions ℘F̃COM,sidi1

, . . . , ℘F̃COM,sidit
interact with ℘

C in the
reveal phase.

3. On receiving message (reveal, bi) from the session of ℘F̃COM
with session-ID (sidi),

for all i ∈ {i1, . . . , it}, ℘FM̃COM
sends (reveal, (i1, bi1), . . . , (it, bit)) to ℘

R and S.

Figure 5.3: Multi-bit Commitment With Selective Reveal Functionality.

Then it is easy to show the following lemmas.

Lemma 5.7. In a setting as in Lemma 5.6, after finishing the commit phase with ℘F
M̃COM

, there is
a fixed string b∗ ∈ {0, 1}n (where n is the number of bits as specified by ℘

C at the beginning of
the protocol) such that ℘

C can make ℘F
M̃COM

accept a (selective) reveal inconsistent with b∗ with
only negligible probability.

PROOF: Let b∗ = (b∗1, . . . , b
∗
n), where b∗i is the bit guaranteed by Lemma 5.6 for ℘FC̃OM,sidi

.
Then, if ℘F

M̃COM
accepts a selective reveal inconsistent with b∗, then for some i ℘FC̃OM,sidi
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Protocol BMCOM

The parties are sender C and receiver R. Let the session ID (already agreed up on by ℘
C

and ℘
R, on instantiating this copy of BMCOM) be sid. Let the input to ℘

C at the commit
phase be (b1, . . . , bn), the bits to which it wishes to commit, and that at the reveal phase be
{i1, . . . , it} ⊆ [n], the set of commitments which it wishes to reveal.
COMMIT PHASE:

1. ℘
C sends the number n to ℘

R.

2. ℘
C and ℘

R initiate n parallel sessions of ℘F̃COM
with session-IDs (sid1), . . . , (sidn).

3. ℘
C interacts (in parallel) with the n sessions of ℘F̃COM

to commit to the bits b1, . . . , bn.

4. On receiving commit message from all the n sessions, ℘
R accepts the commitment.

REVEAL PHASE:

1. ℘
C sends the set {i1, . . . , it} to ℘

R.

2. ℘
C interacts in parallel with the sessions of ℘F̃COM

with session-IDs (sidi1), . . . , (sidit
)

to reveal to the bits bi1 , . . . , bit .

3. On receiving message (reveal, bi) from the session with session-ID (sidi), for all i ∈
{i1, . . . , it}, ℘

R accepts (i1, bi1), . . . , (it, bit
) as the revealed information.

Figure 5.4: Protocol BMCOM (which uses FC̃OM).

must accept b 6= b∗i . By Lemma 5.6 and a the union bound, the probability of this happen-
ing is negligible in k, because n is polynomial in k. �

Lemma 5.8. Protocol BMCOM is as secure as 〈F
M̃COM

〉 with respect to (ZΨ,AΨ
static, S

Ψ
static).

We omit a detailed description of the transvisor T 〈FM̃COM
〉→BMCOM, as perfect simulation

is easily achieved. We also remark that F
M̃COM

could be considered as a multi-instance
join of FC̃OM.

5.5.3 Basic Zero Knowledge Proof

Consider a proto-typical 3-round Zero Knowledge Proof protocol (a Σ-protocol) for prov-
ing membership in an NP-complete language (like 3-colorability or Hamiltonicity), in
which the prover uses the basic commitment functionality FC̃OM from above, to carry out
the commitments (first round) and the reveals (last round). Let us denote this protocol
by BZK. Then, like we defined FC̃OM from BCOM, we can define a basic Zero Knowledge
Proof functionality FfZK from BZK. The description of the functionality is simple: ℘FfZK

interacts with the prover according to the protocol BZK, playing the verifiers role. If the
prover completes the proof according to the protocol, ℘FfZK

sends a message proven to
the verifier.

Figure 5.5 gives the protocol BZK, and Figure 5.6 gives the functionality FfZK (and the
corresponding ideal protocol 〈FfZK〉), for proving Hamiltonicity. Note that the protocol
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BZK uses 〈F
M̃COM

〉 as a subroutine. Correspondingly, the functionality program ℘FfZK
runs

℘F
M̃COM

as a subroutine.

Protocol BZK

The participants are prover P and verifier V . The common input is a graph G([n], E). In
addition, the prover ℘

P gets a witness WITNESS which is a Hamiltonian cycle in G. The
size of the graph n is polynomial in the security parameter k. t is a parameter which grows
as ω(log k) (say t(k) = log2 k).
℘

P verifies that WITNESS is a valid Hamiltonian cycle of G. (Else it aborts the protocol.)

1. Repeat the following t times in parallel:

(a) ℘
P picks a permutation φ of [n], uniformly at random. Let φ(G) be the graph

isometric to G obtained by permuting the labels on the vertices according to
φ. Let M1 be the adjacency matrix of φ(G). Let M2 be a bit representation of φ
(say as an n× n matrix).

(b) ℘
P interacts with ℘FM̃COM

to commit (M1,M2) to ℘
V .

(c) ℘
V picks a random bit b← {0, 1} and sends it to ℘

P .

(d) If b = 0 then ℘
P interacts with ℘FM̃COM

to reveal (M1,M2) to ℘
V . If b = 1 then ℘

P

interacts with ℘FM̃COM
to reveal M1|ζ to ℘

V , where ζ corresponds to the edges of
the cycle φ(WITNESS). ℘

V receives the reveal messages from ℘FM̃COM
.

2. ℘
V checks if in all n2t parallel repetitions:

b = 0 =⇒M2 represents a permutation φ, and M1 represents a graph
such that φ(G) = M1

b = 1 =⇒ ζ corresponds to the edges of a Hamiltonian cycle,
and ∀(i, j) ∈ ζ, M1ij = 1.

If so ℘
V accepts the proof and outputs proven .

Figure 5.5: Basic ZK Proof Protocol BZK (which uses FM̃COM).

Lemma 5.9. Protocol BZK is as secure as FfZK with respect to (ZΨ,AΨ
static, S

Ψ
static).

PROOF: For every adversaryA ∈ AΨ
static we demonstrate a PPT transvisor T = T 〈FfZK〉→BZK

such that no environment Z ∈ ZΨ can distinguish between interacting with the parties
running BZK and with A (the “real” world), and interacting with the parties running
〈FfZK〉 and with S = comb(A, T ) (the “ideal” world).

Construction 5.4: Transvisor T = T 〈FfZK〉→BZK

It behaves as follows depending on which parties are corrupted.
Both P, V corrupt: If A corrupts both participants, T acts transparently. Then the
simulation is trivially perfect.
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Functionality FfZK and Protocol 〈FfZK〉

A prover ℘
P and a verifier ℘

V run the protocol 〈FfZK〉 to interact with ℘FfZK
. The adversary

is S. The common input (to ℘
P , ℘

V and S) is a graph G([n], E). The size of the graph n
is polynomial in the security parameter k. t is a parameter which grows as ω(log k) (say
t(k) = log2 k).
℘FfZK

a simulates a verifier ℘̃
V and lets a subroutine ℘FM̃COM

interact with ℘
P and ℘̃

V , below.

1. Repeat the following n2t times in parallel:

(a) ℘
P picks a permutation φ of [n], uniformly at random. Let φ(G) be the graph

isometric to G obtained by permuting the labels on the vertices according to
φ. Let M1 be the adjacency matrix of φ(G). Let M2 be a bit representation of φ
(say as an n× n matrix).

(b) ℘
P interacts with the subroutine ℘FM̃COM

to commit (M1,M2).

(c) ℘̃
V picks a random bit b← {0, 1} and sends it to ℘

P .

(d) If b = 0 then ℘
P interacts with ℘FM̃COM

to reveal (M1,M2). If b = 1 then ℘
P

interacts with ℘FM̃COM
to reveal M1|ζ , where ζ corresponds to the edges of the

cycle φ(WITNESS). ℘̃
V receives the reveal messages from ℘FM̃COM

.

2. ℘̃
V checks if in all n2t parallel repetitions:

b = 0 =⇒M2 represents a permutation φ, and M1 represents a graph
such that φ(G) = M1

b = 1 =⇒ ζ corresponds to the edges of a Hamiltonian cycle,
and ∀(i, j) ∈ ζ, M1ij = 1.

If so ℘FfZK
sends proven to ℘

V and S.

Figure 5.6: A functionality FfZK realized by the BZK protocol

Both P, V honest: In this case T internally runs a simulation of ℘F
M̃COM

(denoted by
℘̃F

M̃COM
), and of the honest BZK program for V (denoted by ℘̃

V ).13 Note that in the
protocol BZK the only message sent by ℘

V are the random bits b, where as messages
sent by ℘

P are all to the functionality ℘F
M̃COM

(whose contents are hidden from A).
Apart from this all that A sees are the commit and reveal messages sent out by
℘F

M̃COM
, the latter, depending on the values b sent by ℘̃

V : in each of the parallel
repetitions, if b = 0, ℘̃F

M̃COM
picks a random permutation φ, sets M1 and M2 as

prescribed by the protocol (which does not require the knowledge of WITNESS) and
sends them in a reveal message; if b = 1, then ℘̃F

M̃COM
picks a random Hamiltonian

cycle of the complete graphs and sends a reveal message for all bits in the first
matrix along that Hamiltonian cycle, revealing them as one.

to either a random permutation and the graph permuted according to it, or to all
bits being one along a random Hamiltonian cycle in the complete graph. Clearly
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T (i.e., ℘̃F
M̃COM

and ℘̃
V ) can perfectly simulate all these messages.

V honest, P corrupted: In this case T acts transparently: it will simply forward the
messages from corrupt ℘

P to ℘FfZK
and reports back to ℘

P the messages from ℘FfZK
.

This is a perfect simulation because when V is honest, the only difference between
running the protocol BZK and 〈FfZK〉 is that in the latter the BZK program for V is
internally run by ℘FfZK

.
P honest, V corrupted: Finally, we consider the case when the adversary corrupts
the verifier alone. Recall that when P is honest, A does not see any messages from
P , but only the messages it receives from ℘F

M̃COM
. These messages are simulated by

℘̃F
M̃COM

: it sends commit messages to the corrupted ℘
V . Then if ℘

V responds with
b, ℘̃F

M̃COM
carries out the simulation exactly as in the case when both P and V are

honest: i.e., sending a reveal message for (M1,M2) or to all ones along a random
Hamiltonian cycle of the complete graph. Clearly this is a perfect simulation of an
interaction with the honest prover ℘

P and ℘F
M̃COM

.

Since the simulation is perfect in all four cases, we have EXECBZK,Z,A = EXEC〈FfZK〉,Z,S ,
where S = comb(A, T ). �

The functionality FfZK does not make any guarantees of soundness, a priori. But
as with FC̃OM, we shall demonstrate this property outside the Network-aware security
framework.

Lemma 5.10. Consider a session of 〈FfZK〉 in a Network with environment Z ∈ ZΨ
∗ , multiple

other sessions of the same or other protocols (which can all be w.l.o.g considered part of the en-
vironment), and adversary A ∈ SΨ

static. Then, if the verifier V is honest (the prover P may be
corrupt), then ℘FfZK

accepts the proof to a false statement with negligible probability.

PROOF: In each of the n2ω(log k) repetitions of the commitment in the interaction of
℘FfZK

with ℘
P , consider the point at which ℘F

M̃COM
sends the commit message to ℘FfZK

.
Then, by the binding property of ℘F

M̃COM
(Lemma 5.7), we know that there exist values

(b∗1, . . . , b
∗
n) such that the probability that ℘F

M̃COM
will send a reveal message with (i, bi) for

bi 6= b∗i is negligible.
For convenience, we define the following events: unsound is the event that ℘FfZK

ac-
cepts the proof of an incorrect statement; badcom is the event that ℘F

M̃COM
will send a

reveal message with (i, bi) where bi 6= b∗i ; ALLGOODQUERIES is the event that in each
of the n sessions, for the bit selected by V the bits b∗i define a valid answer (i.e., for the
challenge bit b = 0 the bits b∗i define M1 = φ(G),M2 = φ and for challenge b = 1 they
define a matrix M1 with Hamiltonian cycle. If any pair (M1,M2) defined by b∗i define a
valid answer for both b = 0 and b = 1, it implies that the graph is Hamiltonian; else we
call the pair (M1,M2) “bad.” Let allbadpairs be the event that in all the n sessions, bits
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recorded by the commitment monitors give bad pairs of matrices. Then

Pr [unsound] ≤ Pr
[
allbadpairs ∧ ℘FfZK

sends proven
]

≤ Pr [allbadpairs ∧ ( allgoodqueries ∨ badcom)]

≤ Pr [(allbadpairs ∧ allgoodqueries) ∨ (allbadpairs ∧ badcom)]

≤ Pr [(allbadpairs ∧ allgoodqueries) ∨ badcom]

≤ Pr [allbadpairs ∧ allgoodqueries] + Pr [badcom]

≤ Pr [ allgoodqueries|allbadpairs] + Pr [badcom].

If a pair is bad it can define a valid answer for at most one of the two possible queries.
That is, with probability at most 1

2 , ℘
V makes a good query on that pair. So,

Pr [ allgoodqueries|allbadpairs] ≤ 2−t.

As t = ω(k) this is negligible in k. Since Pr [badcom] is also negligible, we conclude that
Pr [unsound] is negligible. �

5.6 Commitment Functionality

The basic protocols and non-standard functionalities given in the previous section now
allow us to securely realize the “fully” ideal commitment functionality FCOM shown in
Figure 5.7. Since for the sake of simplicity in describing our protocols we allowed the
session IDs to be implicit, we do the same in specifying the functionality.

Functionality FCOM

The parties are a sender C and a receiver R, with adversary S. The input to ℘
C is a bit b.

COMMIT PHASE:
℘

C → ℘FCOM
: b

℘FCOM
→ ℘

R : commit
REVEAL PHASE:

℘
C → ℘FCOM

: reveal
℘FCOM

→ ℘
R,S : (reveal, b)

Figure 5.7: The Commitment Functionality

Let T stand for a collection of trapdoor-permutations, B a hardcore predicate for this
collection and C a perfectly binding commitment scheme, as described in Section 5.3.3.
Recall that these primitives are assumed to be secure against adversaries with access to
Ψ∗. The protocol BCOM in Figure 5.8 uses these primitives. It is based on the “commit-
with-extract” protocol from [BL02].

Lemma 5.11. Protocol COM is as secure as FCOM with respect to (ZΨ,AΨ
static, S

Ψ
static).
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Protocol COM

The parties are a sender C and a receiver R; adversary is S. The input to ℘
C is a bit b. k is

the security parameter.
COMMIT PHASE:

C1 ℘
R draws rR ← {0, 1}k and sends c = C(rR; r) where r is also drawn at random.

C2 ℘
C draws (f, f−1) ← T(1k) and sends f to ℘

R. ℘
C interacts with ℘FfZK

to prove to
℘

R that (∃r′, g : (f, g) = T(1k; r′)). ℘
R receives the message proven from ℘FfZK

.

C3 ℘
C draws rC ← {0, 1}k and sends it to ℘

R.

C4 ℘
R sends rR to ℘

C .

C5 ℘
R interacts with ℘FfZK

to prove to ℘
C that (∃r′ : c = C(rR; r′)) ℘

C receives the mes-
sage proven from ℘FfZK

.

C6 Let b be the bit ℘
C wants to commit to. ℘

C computes b′ = B(f−1(rR ⊕ rC))⊕ b and
sends b′ to ℘

R. ℘
R accepts the commitment.

REVEAL PHASE:

R1 ℘
C sends the bit b to ℘

R.

R2 ℘
C interacts with ℘FfZK

to prove to ℘
R that (∃t : f(t) = rR ⊕ rC

∧
b′ = B(t)⊕ b).

R3 Up on receiving the message proven from ℘FfZK
, ℘

R accepts b as the revealed bit.

Figure 5.8: Protocol COM

First we present an overview of the proof, before giving the formal arguments.

PROOF OVERVIEW: We need to construct a PPT transvisor T = T 〈FCOM〉→COM. As usual
when both C and R are corrupt T acts transparently. When both C and R are honest, T
simulates the protocol exactly until the step where the bit b is used (Step C6). At this step,
it simulates the sender sending out a random bit as b′. In the reveal phase T can easily
simulate a proof from ℘FfZK

, to open it either way. The hiding property of the hard-core
bit B can be used to show that the entire simulation is indistinguishable from an actual
execution. When R is corrupt and C is honest, the same simulator works, for the same
reasons. However the reduction to the security of B becomes slightly more involved in
this case.

When R is honest and C corrupt, T should be able to extract the committed bit. The
idea here is that T (playing the part of ℘

R in the protocol) will cheat in the proof using the
simulated ℘FfZK

in Step C5 (reveal phase of the coin-flipping part), and have rR⊕rC match
a random string r such that it knows B(rR ⊕ rC). This will allow it to extract the bit b.
Soundness of FfZK (Lemma 5.10) ensures that ℘

C cannot feasibly open to a bit other than
b. Also it ensures that f is a permutation. Then the hiding property of the commitment
C ensures that the simulation is indistinguishable from an actual execution. C
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PROOF: For every adversary A ∈ AΓ
static we demonstrate a PPT transvisor T such that

no environment Z ∈ ZΓ can distinguish between interacting with the parties running
COM and with A (the “real” world), and interacting with the parties running 〈FCOM〉
and with S = comb(A, T ) (the “ideal” world). First we present the construction for
T = T 〈FCOM〉→COM and then argue the indistinguishability.

Construction 5.5: Transvisor T = T 〈FCOM〉→COM

T simulates the honest participants internally, simulating one or both of ℘
C (if C

is honest) and ℘
R (if R is honest) as required. Also it internally simulates the other

functionality used in the protocol ℘FfZK
. We denote the simulated programs by ℘̃

C ,
℘̃

R and ℘̃FfZK
respectively. T behaves as follows depending on which parties are

corrupted.

Both C,R corrupt. If A corrupts both participants, T acts transparently. Then the
simulation is trivially perfect.

Both C, R honest.14 T internally runs simulations ℘̃
C , ℘̃

R and ℘̃FfZK
. The steps in

the protocol are simulated as follows:

• Recall that T does not have access to the input bit b that ℘
C receives from

Z . But in the commit phase, until the last message, b is not used. So ℘̃
C and

℘̃
R, can follow the protocol exactly until last step of the commitment phase,

Step C6.

• In Step C6, ℘̃
C sends out a random bit as b′.

• In the reveal phase, on receiving (reveal, b) from ℘FCOM , ℘̃
C sends b to ℘̃

R to
simulate Step R1.

• Then it must simulate the interaction between ℘
C , ℘FfZK

and ℘
R with the state-

ment ∃t : f(t) = rR ⊕ rC ∧ b′ = B(t)⊕ b as common input. Note that in this
interaction all that A sees is the message proven from ℘FfZK

. So T simulates
this step by having ℘̃FfZK

send that message to A.

R honest, C corrupted. In this case the idea is that T can extract the bit being com-
mitted to by the corrupted sender ℘

C . Here T runs the simulations ℘̃
R and ℘̃FfZK

.

• ℘̃
R starts off following the programs of the honest receiver and ℘̃FfZK

is also
simulated faithfully initially. But after receiving rC in Step C3, instead of
sending rR, the value to which c is a commitment, ℘̃

R picks a random string
u← {0, 1}k and sends r̃R = f(u)⊕ rC .
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• Then T simulates an interaction with ℘FfZK
, with the statement

(∃r′ : c = C(r̃R; r′)) as common input: for this ℘̃FfZK
simply sends the

message proven to ℘
C .

• When ℘
C sends back b′, T calculates b∗ = b′ ⊕ B(u) (this is the extracted com-

mitment). T then sends b∗ to ℘FCOM to commit that bit to ℘〈FCOM〉,R.

• Later, if ℘
C sends b as revealed, then ℘̃FfZK

interacts with ℘
C as it tries to prove

that (∃t : f(t) = r̃R ⊕ rC ∧ b′ = B(t)⊕ b). If ℘̃FfZK
accepts the proof, then T

will make ℘〈FCOM〉,R accept b too. For this T sends reveal instruction to ℘FCOM ,
which will send (reveal, b∗) to ℘〈FCOM〉,R (in which case, as we shall see, b∗ = b

with high probability).

C honest, R corrupted. In this case the transvisor behaves the same way as in the
case when both ℘

C and ℘
R are honest.

Now we argue that the above simulation is good: i.e.,

|Pr [EXECCOM,Z,A]−Pr
[

EXEC〈FCOM〉,Z,S
]
| (5.2)

is negligible, where S = comb(A, T ). Suppose otherwise. Then at least one of the follow-
ing is non-negligible.15

|Pr [EXECCOM,Z,A = 0 ∧ X = {C,R}]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {C,R}
]
| (5.3)

|Pr [EXECCOM,Z,A = 0 ∧ X = {}]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {}
]
| (5.4)

|Pr [EXECCOM,Z,A = 0 ∧ X = {C}]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {C}
]
| (5.5)

|Pr [EXECCOM,Z,A = 0 ∧ X = {R}]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {R}
]
| (5.6)

The first of these four expressions is in fact equal to 0, because when both C and R are
corrupted and T acts transparently, the simulation is perfect. Below we rule out each of
the other three possibilities.

Both C, R honest. Note that the only difference between the executions EXECCOM,Z,A and
EXEC〈FCOM〉,Z,S , is that B(f−1(rR ⊕ rC)) ⊕ b may not be equal to b′ in the latter (where as
it is always the case in the former). So if the environment Z can distinguish between
the two executions, it can be used to build a distinguisher MΨ∗

to distinguish between a
random bit and B(f−1(r)), for a randomly chosen f and r with non-negligible probability,
as follows.

Construction 5.6: MΨ∗
to distinguish between h← {0, 1} and h = B(f−1(r))

The distinguisher MΨ∗
takes (f, r, h) as input where f is randomly drawn from
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T(1k), r ← {0, 1}k and h is either a random bit (Experiment 1) or h = B(f−1(r))
(Experiment 2). It tries to distinguish between the two experiments as follows. On
receiving the inputs (f, r, h) it simply simulates the entire Network execution cor-
responding to EXEC〈FCOM〉,Z,S . If either party is corrupted by A, then MΨ∗

outputs
a uniformly random bit (thereby bailing out). Otherwise, it proceeds with simula-
tion, modifying it as follows:

• At Step C2, ℘̃
C sends f (received as input) to ℘̃

R (instead of picking
(f, f−1)← T(1k)).

• At Step C2, ℘̃FfZK
sends the message proven to ℘

R, without ℘̃
C having to

interact with it.

• At Step C3, ℘̃
C sends rC = r ⊕ rR instead of picking a random rC .

• At Step C6, ℘̃
C sends b′ = h⊕ b, instead of sending a random bit.

Finally MΨ∗
outputs the bit output by Z .

First we observe that in Experiment 1 (i.e., the inputs f and r are chosen randomly,
and h is a random bit), the output of MΨ∗

is identical to EXEC〈FCOM〉,Z,S (both conditioned
on X = {}). This is true because, when f, r and h are randomly picked, the modifications
above do not make any difference at all. Also, clearly the modification in interaction with
℘̃FfZK

has no effect in the output, because in EXEC〈FCOM〉,Z,S , ℘FfZK
always accepts the proof

as ℘̃
C follows the protocol for an honest party.

Next, we claim that in Experiment 2 (i.e., the inputs f and r are chosen randomly,
and h is the hardcore bit B(f−1(r))) the output of MΨ∗

is identical to EXECBCOM,Z,A (both
conditioned on X = {}). To see this note that in Step C6 the simulated ℘̃

C does indeed
behave like ℘

C , because b′ = h ⊕ b = B(f−1(r)) and r = rC ⊕ rR. In Step C3 also
the behavior is that of ℘

C , because r is a random string independent of rR, and as such
choosing rC = r ⊕ rR is equivalent to choosing a random string directly. The only other
differences are in interactions among ℘̃FfZK

, ℘̃
C and ℘̃

R. However since ℘̃
C and ℘̃

R are
simulations of honest parties, ℘̃FfZK

accepting their proofs leads to a perfect simulation.

Finally recall that conditioned on X 6= {}, Pr
[
MΨ∗

(f, r, h) = 0
]

= 1/2 in both Exper-
iment 1 and Experiment 2. Hence,

Pr
[
MΨ∗

(f, r, h = B(f−1(r)) = 0
]
−Pr

[
MΨ∗

(f, r, h← {0, 1}) = 0
]

= Pr [EXECCOM,Z,A = 0 ∧ X = {}]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {}
]
.

Note that MΨ∗
does nothing much more than simulate the Network, and as such is a

PPT machine with access to Ψ∗. Thus by Assumption A3, (5.4) is negligible.
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R honest, C corrupted. Here we shall use the hiding property of the commitment scheme
C and the soundness of FfZK (Lemma 5.10). When R is not corrupted, by the soundness
condition of FfZK (Lemma 5.10), if the protocol continues beyond Step C2, except with
negligible probability, f is indeed a permutation. This has two consequences: firstly in
the simulation, the sender can reveal only to the bit extracted by the simulator (using
the soundness of FfZK again). Secondly, r̃R = f(u) ⊕ rC as picked by ℘̃

R is uniformly
randomly distributed independent of c, even though f and rC may depend on c.

To compare Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {C}
]

and Pr [EXECCOM,Z,A = 0 ∧ X = {C}],
we consider an intermediate situation, where FCOM is replaced by a functionality F ′

which behaves exactly like FCOM, except that if X = {C}, then in the reveal stage it ac-
cepts a bit b from the sender and sends (reveal, b) to the receiver, irrespective of what bit
it received during the commitment phase. Also, we modify T , so that (if X = {C}) in
the reveal stage, on behalf of the corrupt ℘

C it sends (reveal, b) to F ′, where b is the bit
sent by ℘

C in Step R1. (Note that originally T just sends the message reveal to ℘FCOM ,
which results in ℘FCOM sending b∗, the extracted bit, to ℘〈FCOM〉,R as the revealed bit.) Let
T ′ denote the modified transvisor, and let S ′ = comb(A, T ′).

As noted above, if the protocol continues beyond Step C2 when R is honest, except
with negligible probability, f is indeed a permutation. Conditioned on f being a permu-
tation, the statement defined in Step R2 of the Reveal Phase is true only if b = b∗. So if
b 6= b∗ the probability that ℘

C can make ℘̃FfZK
in Step R2 accept the proof is negligible.

Hence, only if b = b∗ does the execution (EXEC〈F ′〉,Z,S′ as well as EXEC〈FCOM〉,Z,S) proceed
beyond that step, except with negligible probability. Thus

|Pr
[

EXEC〈F ′〉,Z,S′ ∧ X = {C}
]
−Pr

[
EXEC〈FCOM〉,Z,S ∧ X = {C}

]
| (5.7)

is negligible, because conditioned on b = b∗ or on execution not proceeding to the last
step, the two executions are identical.

Now, we show that

|Pr
[

EXEC〈F ′〉,Z,S′ ∧ X = {C}
]
−Pr [EXECCOM,Z,A ∧ X = {C}]| (5.8)

is negligible as well. Suppose not. Then we build a distinguisher MΨ∗
(non-uniform PPT

machine, with access to Ψ∗) which can distinguish between the following experiments:
in one experiment it is given (c, a) where a is a random string and c = C(a) is a random
commitment to a, and in the other it gets (c, a) where a is as before, but c = C(a′), where
a′ is an independently and uniformly chosen random string.

Construction 5.7: MΨ∗
to take (c, a) and distinguish between c = C(a) and c = C(a′).

MΨ∗
accepts (c, a) as input. Then it internally simulates the Network correspond-

ing to the execution EXEC〈F ′〉,Z,S′ internally. If X 6= {C} it bails out and outputs
a random bit. Otherwise it proceeds with the simulation, but with the following
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differences:

• In Step C1, the simulated program ℘̃
R sends c that MΨ∗

gets as input (instead
of picking a random rR and sending c = C(rR)).

• In Step C4, ℘̃
R sends a instead of r̃R.

• After Step C6, T ′ does not attempt to extract b∗ (which it cannot because it
would not know f−1(a⊕ rC)). Instead it simply sends an arbitrary bit (say 0)
to F ′.

Finally, MΨ∗
outputs what Z outputs.

Firstly, we observe that when the input is (c, a) such that a is random and c = C(a),
the outcome of the simulated execution is identical to EXECCOM,Z,A. This is because, after
this change, the only difference between the actual execution EXECCOM,Z,A and the sim-
ulated execution is that in Step C5, in the former ℘FfZK

and ℘
R carry out the proof (for

the statement (∃r′ : c = C(a; r′))), where as in the latter ℘̃FfZK
and ℘̃

R do not carry out this
proof. Nevertheless in both cases, the outcome of this interaction is the same: in the for-
mer ℘FfZK

sends a message proven to ℘
C , and in the latter ℘̃FfZK

sends this message to ℘
C .

Thus this difference does not have any further effect in the executions.
Secondly, we observe that when the input is (c, a) such that a is random and c = C(a′)

where a′ is another independent random string, then the outcome of the simulated exe-
cution is identical to EXEC〈F ′〉,Z,S′ . To see this, we set rR = a′ and r̃R = a. In EXEC〈F ′〉,Z,S′ ,
the transvisor T ′ picks r̃R as f(u) ⊕ rC , where u is independently chosen. But if f is a
permutation (which is the case, except with negligible probability), setting r̃R directly to
a uniformly randomly chosen string has the same effect. Note that though T ′ does not
have access to the values a′ and u = f−1(a ⊕ rC), it does not need either of these values
(unlike the actual receiver ℘

R and unlike the original transvisor T ).
Thus the advantage of MΨ∗

in distinguishing between (c = C(a), a) and (c = C(a′), a)
is the same as the expression in (5.8). Further, MΨ∗

is a PPT machine with access to Ψ.
Hence, from the hiding property of C (assumed to hold against PPT circuits with access
to Ψ∗), this advantage must be negligible.

Since the expressions in (5.7) and (5.8) are both negligible, we obtain that the expres-
sion (5.5) is also negligible.

C honest, R corrupted. Recall that in this case, the simulation is the same as that in the
case when both C and R are honest. The proof of indistinguishability is also almost the
same as in that case, except now the receiver is corrupt, and so MΨ∗

cannot choose rR.
This is taken care of by making use of the non-uniform nature of the distinguisher.

Consider an execution EXECCOM,Z,A. Let α be the random variable denoting the state
of the entire Network after Step C1. This state excludes the randomness that is not yet
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sampled by the honest party, ℘
C . (Indeed the only non-trivial contents of α are the states

ofZ andA, and the value c received by ℘
C in Step C1.) Note that α can also be considered

as the state of the Network corresponding to the execution EXEC〈COM〉,Z,S by ascribing the
state of the honest party ℘

C to that of the simulated program ℘̃
C . This is so because T

faithfully follows the protocol for ℘
C until Step C6.

Let α∗ be the value of α such that

|Pr [EXECCOM,Z,A = 0 ∧ X = {R}|α = α∗]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {R}|α = α∗
]
|

(5.9)

is maximized. This quantity is no less than that in (5.6), and so we need to only show that
this is negligible.

Let c∗ be the first message in the protocol according to the state α∗, and let r∗ be such
that c∗ = C(r∗; r′). If no such r∗ exists, then the probability that the execution proceeds
beyond Step C5 is negligible, and then the expression in (5.9) is negligible. So we shall
assume it exists and proceed. Also, we assume that X = {R} according to α∗, because
otherwise both the probabilities in (5.9) are 0.

Now we describe a non-uniform PPT machine MΨ∗
α∗ such that, if (5.9) is non-negligible,

then MΨ∗
α∗ can distinguish between a random bit and B(f−1(r)), for a randomly chosen f

and r with non-negligible probability.

Construction 5.8: MΨ∗
α∗ to distinguish between h← {0, 1} and h = B(f−1(r))

MΨ∗
α∗ gets α∗ and r∗ as non-uniform advice. It takes (f, r, h) as input where f is

randomly drawn from T(1k), r ← {0, 1}k and h is either a random bit (Experiment
1) or h = B(f−1(r)) (Experiment 2). It tries to distinguish between the two exper-
iments as follows. On receiving the inputs (f, r, h) it simulates the entire Network
execution corresponding to EXEC〈FCOM〉,Z,S , starting at state α∗, but modifies the
execution as follows (similar to MΨ∗

described in Construction 5.6):

• At Step C2, ℘̃
C sends f (received as input) to ℘̃

R (instead of picking
(f, f−1)← T(1k)).

• At Step C2, the simulated ℘FfZK
instance sends the message proven to ℘

R,
without ℘̃

C having to interact with it.

• At Step C3, ℘̃
C sends rC = r ⊕ r∗, instead of picking a random rC .

• If rR sent by ℘
R in Step C4 is not the same as r∗ and in Step C5 if ℘̃FfZK

accepts
the proof from ℘

R (i.e., ℘̃FfZK
sends the message proven to ℘̃

C), then MΨ∗
α∗

aborts (say it outputs 0).

• At Step C6, ℘̃
C sends b′ = h⊕ b, instead of sending a random bit.

Finally MΨ∗
α∗ outputs what Z outputs.
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Firstly, we point out that the probability of MΨ∗
α∗ aborting (on the simulation reach-

ing Step C5) is negligible. To see this, note that C is a perfectly binding commitment
scheme. So to make MΨ∗

α∗ abort, it must be that rR 6= r∗ and ℘
R must prove to ℘̃FfZK

a false
statement. But by the soundness of FfZK (Lemma 5.10) this happens only with negligible
probability.

Conditioned on MΨ∗
α∗ not aborting, we observe that it behaves just like MΨ∗

in Con-
struction 5.6 in Experiments 1 and 2. Following the same arguments as there, but observ-
ing that MΨ∗

α∗ starts from α∗, we obtain

Pr
[
MΨ∗

α∗ (f, r, h = B(f−1(r)) = 0
]
−Pr

[
MΨ∗

α∗ (f, r, h← {0, 1}) = 0
]

= Pr [EXECCOM,Z,A = 0 ∧ X = {}|α = α∗]−Pr
[

EXEC〈FCOM〉,Z,S = 0 ∧ X = {}|α = α∗
]
.

Since MΨ∗
α∗ does little more than simulate the Network, starting with a state of the

Network as non-uniform advice, it is a PPT machine with access to Ψ. Thus by Assump-
tion A3, (5.9) is negligible, and hence so is (5.6).

To conclude the proof, we have shown that (5.3), (5.4), (5.5) and (5.6) are all negligible.
This implies that (5.2) is indeed negligible as we set out to prove.16 �

5.7 One-to-Many Commit and Prove Functionality

In this section we outline the proof of Lemma 5.1, which completes the proof of our main
theorem- Theorem 5.1. Following the approach in [CLOS02], we use two other func-
tionalities, namely Zero-Knowledge (FZK) and Authenticated Broadcast (FBC) to securely
realize F1:M

CP .

Functionality FZK

FZK proceeds as follows, running with a prover P , a verifier V and an adversary S, and
parameterized with a relation R:

• Upon receiving (prove, x, w) from P , do: if (x,w) ∈ R, then send (proven, x) to V
and S and halt. Otherwise, halt.

Figure 5.9: FZK functionality

Zero Knowledge Functionality Canetti and Fischlin [CF01] show that a simple parallel
repetition of the well-known 3-round protocol for zero knowledge proofs suggested by
Blum [Blu82], in which a commitment subroutine is replaced by 〈FCOM〉, yields a protocol
ZK which securely realizes FZK. The proof, as noted there, is information theoretic and
independent of computational assumptions. As such it is easily verified that the same
protocol securely realizes FZK with respect to (ZΨ,AΨ

static, S
Ψ
static). We state this below.
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Lemma 5.12. (Following [CF01]) There is a protocol ZK using 〈FCOM〉 as a subroutine which
securely realizes FZK with respect to (ZΨ,AΨ

static, S
Ψ
static).

Functionality FBC

FBC proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving a message (P, x) from Pi, where P is a set of parties, send (Pi,P, x)
to all parties in P and to S, and halt.

Figure 5.10: The ideal broadcast functionality

Authenticated Broadcast The functionality FBC ensures that all the parties to which a
message is addressed receive the same message (if they do receive the message). Follow-
ing [CLOS02], we use the protocol from [GL02]. The protocol in [GL02] securely realizes
FBC in an information-theoretic manner: it does not require any computational restric-
tions on the class of adversaries. Thus, in particular, we have the following.

Lemma 5.13. ([GL02]) Protocol BC securely realizes FBC with respect to (ZΨ,AΨ
static, S

Ψ
static).

Functionality F1:M
CP

The parties are a sender C and a set of possible receivers P1, . . . , Pn, with an adversary S.
The functionality is parameterized by a relation R. The security parameter is k.
COMMIT PHASE

• Upon receiving a message (commit,P, w) from C where P is a set of parties and
w ∈ {0, 1}k, append the value w to the list w, record P , and send the message
(receipt, C,P) to all parties P ∈ P and to S. (Initially, the list w is empty). But,
if a commit message has already been received with a different set of parties P ′ 6= P
ignore this message.

PROVE PHASE

• Upon receiving a message (prove, x) from C, where x ∈ {0, 1}poly(k), compute
R(x,w). If R(x,w) = 1, then send the message (proven, x) to all parties Pi ∈ P
and to S. Otherwise, ignore the message.

Figure 5.11: The One-to-many commit-and-prove functionality

In Figure 5.12 we present the protocol OMCP, which uses 〈FBC〉 and 〈FZK〉 as subrou-
tines. To commit to a value w, the sender C computes a commitment c to w under a
perfectly binding commitment C obtained from the trapdoor-permutation of Assump-
tion A3 (which remains hiding even to adversaries with sampling access to Dµ

r for all µ

and r). Then it broadcasts c and proves to each party separately, using the FZK function-
ality, that c is indeed a valid commitment. Each party on receiving this proof broadcasts
this fact. If all parties accept the respective proofs and announce it, they all proceed to
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accept the commitment by adding c to a list c. Later, to prove R(x,w), where x is an input
and w is the list of all commitments made so far, the C proofs the statement (formulated
in terms of x and c) to each party separately using the FZK functionality. As before, on
accepting the FZK proof, each party broadcasts this fact. Finally each party accepts the
proof if it receives this broadcast message from all parties.

Protocol OMCP

The parties are a sender C and a set of possible receivers P1, . . . , Pn, with an adversary A.
The protocol is parameterized by a relation R. The security parameter is k.
COMMIT PHASE

C1 On input (commit,P, w) (where w ∈ {0, 1}k), the sender C computes c = C(w; r)
using a randomly chosen r. It adds r to a list r (initially empty).

C2 C broadcasts the message (P, c) by sending it to FBC.

C3 For each Pj ∈ P , party C sends the message (prove, c, (w, r)) to a copy of
FZK invoked with Pj as the verifier, and parameterized by the relation R′ =
{(c, (w, r)) | c = C(w; r)}.

C4 On receiving (C,P, c) from FBC and (proven, c) from FZK, (after verifying that both
values of c are the same) each Pj ∈ P broadcasts the message acceptable .

C5 On receiving the message acceptable from all parties in P , party Pj adds c to a list
c (initially c is empty; C also maintains this list).

PROVE PHASE

P1 On input (prove, x), the C broadcasts the message (P, x) by sending it to FBC.

P2 For each Pj ∈ P , party C sends the message (prove, (x, c), (w, r)) to a copy of
FZK invoked with Pj as the verifier and parameterized by the relation R′′ =
{((x, c), (w, r)) | R(x,w)

∧
cj = C(wj ; rj) for all j}

P3 On receiving (P, x) from FBC and (proven, (x, c)) from FZK, (after verifying that both
x are the same, and c and P match the locally stored values) each Pj ∈ P broadcasts
the message true x.

P4 On receiving the message true x from all parties in P , party Pj accepts x.

Figure 5.12: A protocol which uses protocols 〈FZK〉 and 〈FBC〉 as subroutines and securely realizes F 1:M
CP with

respect to (ZΨ, AΨ
static, S

Ψ
static).

Lemma 5.14. Protocol OMCP is as secure as 〈F1:M
CP 〉 with respect to (ZΨ,AΨ

static, S
Ψ
static), under

Assumption A3.

PROOF: The proof follows from the security of the commitment scheme C.17 Below we
describe a simple transvisor T = T 〈F1:M

CP 〉→OMCP, and will then argue that the simulation
provided by T is good.
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Construction 5.9: T = T 〈F
1:M
CP 〉→OMCP

T simulates all the honest parties’ programs (as ℘̃
C or ℘̃

Pi) and also all the in-
stances of the functionalities FZK and FBC (as ℘̃FZK and ℘̃FBC ). Further it receives the
messages that F1:M

CP sends to S, and also controls the message delivery from F1:M
CP

to all the parties in the session. T lets A control the message delivery from ℘̃FZK

and ℘̃FBC to ℘̃
C or ℘̃

Pi , which determines if and when ℘̃
Pi produces local outputs.

T lets F1:M
CP send the commit message to a party Pi when the simulated program

℘̃
Pi locally outputs the message acceptable . Similarly, when ℘̃

Pi locally accepts a
proof, T lets F1:M

CP send the proven message to Pi.
For the simulated honest verifiers ℘̃

Pi simply run exactly according to the protocol
specification. To describe the rest of the simulation, we consider two cases: when
C is honest, and when C is corrupt.

C Honest: In the simulation ℘̃
C runs exactly as specified by the protocol, with

the following differences.

• In Step C1, ℘̃
C sets c = C(0k; r) where 0k is the all zero string.

• In Step C3 and Step P2, ℘̃
C does not send any message to the simulated FZK

functionality, ℘̃FZK . Instead ℘̃FZK simply sends the proven messages to the
other parties.

C Corrupt: In this case the messages received by ℘̃FZK from the corrupted sender
C are used to “extract” the messages which then T (acting as the sender in the ideal
protocol 〈F1:M

CP 〉) sends to F1:M
CP . The extraction is straightforward: the messages

from A in Step C3 and Step P2 contain all w and x values that T can send to F1:M
CP .

Note that C sends x to different sessions of FZK (with different verifiers Pi), and
as such these values could be different. However, since C is perfectly binding and
C uses FBC to broadcast its messages (rather than send separate messages to each
party), there is only one value of x that the different sessions of FZK would accept
(corresponding to a given c that was broadcast). Thus the the extracted value is
indeed well-defined.
As soon as a value is extracted it is sent to F1:M

CP (but, as mentioned earlier, the
message from F1:M

CP is allowed to reach an honest party Pi only when ℘̃
Pi produces

the corresponding local output).

Conditioned on C being corrupt, it is readily seen that the simulation is perfect. Below
we argue that

|Pr [EXECOMCP,Z,A = 0 ∧ C 6∈ X]−Pr
[

EXEC〈F1:M
CP 〉,Z,S = 0 ∧ C 6∈ X

]
| (5.10)
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is negligible. For the sake of contradiction, suppose otherwise. To reduce this to a contra-
diction to the hiding property of C, we construct m hybrid situations, where m = poly(k)
is a bound on the number of items in w.18

Construction 5.10: Hybrid executions corresponding to m uses of C.

In the i-th hybrid situation, the modified transvisor Ti has access to the input to C

from Z for the first i commitments. Ti carries out the first i commitments as pre-
scribed the protocol using these input values (instead of committing to 0k). Other-
wise Ti is identical to T .

Above, for i = 0, Ti is the same as T , and for i = m, this hybrid situation is a perfect
simulation of the execution EXECOMCP,Z,A. So, if (5.10) is non-negligible, then there is
some value of i for which the corresponding difference between the i−1st and ith hybrids
above is non-negligible. In that case we can construct a machine MΨ∗

to break the hiding
property of C as follows:

Construction 5.11: MΨ∗
to break security of C.

MΨ∗
emulates the Network corresponding to the ith hybrid described above. If C

is corrupted MΨ∗
aborts; otherwise it continues with the emulation. But when it

is time for it to generate the ith commitment as c = C(w; r) it sends out the pair
of messages (w, 0k) to the experiment defining the security of C. The experiment
will randomly pick one of the two messages and replies with c to MΨ∗

, where
c is a commitment to that message, MΨ∗

will use c as the ith commitment in its
emulation. Finally it outputs what Z outputs.

Above, conditioned on the experiment picking c = C(w; r) the situation is identical
to that in the ith hybrid, where as picking c = C(0k; r) is identical to the i − 1st hybrid.
Thus the advantage Z has in distinguishing between the two hybrids translates directly
into an advantage for MΨ∗

in the experiment defining the security of C. Thus if (5.10) is
non-negligible we reach a contradiction.

Thus, we conclude that |Pr [EXECOMCP,Z,A = 0] − Pr
[

EXEC〈F1:M
CP 〉,Z,S = 0

]
| is indeed

negligible, proving the theorem. �

We have collected the results regarding all the new protocols as Lemma 5.1. In terms
of Table 5.4, Lemma 5.1 captures all the rows in after the first three. Indeed the final

protocol π11 can be written as π
OMCP-REAL/F1:M

CP
3 . Now we can give a proof for it by putting

together the above results.

PROOF OF LEMMA 5.1: It follows from Lemma 5.14 by substituting the ideal func-
tionalities by the protocols BC, ZK, COM, BZK, BCOM, ENC (see Section 5.8) and AMD
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(see Section 5.9) one after the other. The result of these substitutions is a new protocol
OMCP-REAL which is realistic (i.e., does not use any ideal functionalities). That this pro-
tocol is as secure as 〈F1:M

CP 〉 with respect to (ZΨ,AΨ
static, S

Ψ
static) follows from applying the

composition theorem (Theorem 4.1) for each substitution (making use of the fact that ZK

is as secure as 〈FZK〉 etc.), and then using (for a constant number of times) the transitivity
of the “as secure as” relation (Lemma 3.1).

To finish the proof of Lemma 5.1 we need to observe that this protocol is also a useful
realization (Definition 3.2) of F1:M

CP . That is, we need to verify that the “as secure as”
relation derived above holds with respect to (ZΨ, Å, S̊) as well. This follows because the
protocols in all the substitutions used above are also useful. To see that is indeed the case
for the protocols we showed secure in the previous sections, note that for these protocols
the same simulators we described for (ZΨ,AΨ

static, S
Ψ
static) can be used for (ZΨ, Å, S̊).19 �

5.8 Encryption

The encryption functionality FENC is simple: ℘FENC establishes a session with a sender
℘

P1 and a receiver ℘
P2 . Then, when ℘

P1 sends a message msg to ℘FENC , the functionality
℘FENC sends the length of the message |msg| to the adversary and the message itself to ℘

P2 .
(Recall that by the convention specified in Section 2.3.3, the adversary (or any other party)
will not have access to msg. However, it decides if and when msg becomes available to
℘

P2 .) We allow the same instance of ℘FENC to communicate multiple messages from ℘
P1

to ℘
P2 .
Canetti [Can01] observes that any public key encryption scheme secure against adap-

tive chosen cipher text attacks (also called a CCA2-secure encryption scheme) can be con-
verted into a protocol ENC which securely realizes FENC with respect to (Z,Astatic, Sstatic).
The protocol simply involves using the CCA2-secure encryption scheme, but for each
message using a freshly generated public-key/private-key pair. It is well-known that the
underlying encryption schemes can be constructed based on trapdoor permutations20

[DDN00, Sah99, Lin03c].

Lemma 5.15. [Can01] Assuming the existence of a collection of trapdoor permutations, there is
a protocol ENC which securely realizes 〈FENC〉 with respect to (Z,Astatic, Sstatic).

Note that we do not require ENC to be secure with respect to (ZΨ,AΨ
static, S

Ψ
static), but

only with respect to (Z,Astatic, Sstatic). This is sufficient because sinceFENC is a “low level”
component of our construction. So in OMCP we could first substitute all “higher level”
ideal subroutines with corresponding protocols to create a protocol which uses 〈FENC〉
as the only subroutine (other than 〈FAMD〉); then we substitute 〈F〉 by the protocol ENC.
Using the extended UC theorem (Theorem 4.2) we can still guarantee security of the
protocol thus obtained, with respect to (Z,Astatic, S

Ψ
static).
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However, using the trapdoor permutations from Assumption A3, it is no more dif-
ficult to make ENC secure with respect to (ZΨ,AΨ

static, S
Ψ
static). Using the trapdoor per-

mutations in Assumption A3, the CCA-2 secure encryptions of [DDN00, Sah99, Lin03c]
become secure against PPT machines MΨ∗

with access to Ψ∗. (This can be easily verified,
because the proofs are all black-box proofs which relativize with respect to Ψ∗.) Employ-
ing such an encryption scheme in the protocol ENC we obtain the following lemma.

Lemma 5.16. Under Assumption A3, there is an encryption scheme such that if protocol ENC

uses this scheme, then it securely realizes 〈FENC〉 with respect to (ZΨ,AΨ
static, S

Ψ
static).

5.9 Authenticated Message Delivery

In all our protocols we assume that messages sent by parties to each other are authen-
ticated. That is, the adversary cannot insert forged messages into the Network without
being detected. The basic idea behind implementing such an authentication mechanism
is to use digital signatures. However there are a few subtleties involved in formulating
an authentication mechanism and capturing the nature of security this offers, when there
are no trusted setups (like a public-key infrastructure). The subtleties stem from the fact
that there is no way to tie real-world identities to identities advertised in messages re-
ceived by a party. Such identification of virtual and real world identities would have
allowed the parties to have a consistent view of which parties they are communicating
with. However, there is a simple solution: we use the verification keys for the signature
scheme as the identities. This still does not let one associate real-life identities with the
virtual identities, but lets one have a consistent and unforgeable identity (or more than
one identity) in the Network. We present a functionality FAMD capturing the security that
can be obtained using a signature-based scheme.

It is easy to see that the protocol AMD securely realizes FAMD if the signature scheme
used is (existentially) unforgeable against chosen text attacks. Such signature schemes
can be constructed using one-way functions [Rom90], or using collision-resistant hash
functions [Dam87, Gol04].

Lemma 5.17. Assuming the existence of a signature scheme unforgeable against chosen text
attacks, protocol AMD securely realizes 〈FAMD〉 with respect to (Z,Astatic, Sstatic).

Note that, as was the case with the encryption protocol ENC (Section 5.8), we need
not require AMD to be secure with respect to (ZΨ,AΨ

static, S
Ψ
static), but only with respect to

(Z,Astatic, Sstatic), because FAMD is used at the “lowest level” of our construction. Us-
ing the extended UC theorem (Theorem 4.2) this will still let us guarantee the secu-
rity of the final protocol (obtained after substituting 〈FAMD〉 by AMD) with respect to
(Z,Astatic, S

Ψ
static).

But in fact, using either of Assumption A2 or Assumption A3, the constructions of
signature schemes mentioned above can be made unforgeable even for adversaries which
have access to Ψ∗. Hence, we obtain
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Functionality FAMD

The parties are denoted by P1, P2, . . ., and adversary by S.
IDENTITY ESTABLISHMENT PHASE: ℘FAMD

maintains a list µ of all the identities established
so far, and a list X of all the identities used by the adversary so far.

E1 To obtain a new identity ℘
Pi

sends id-request to ℘FAMD
.

E2 ℘FAMD
picks an identity string µ according to a (high-entropy) distribution over Ik.21

If µ ∈ µ or µ ∈ X then ℘FAMD
sends failed to ℘

Pi
; else it sends µ to ℘

Pi
and adds it to

µ.

E3 ℘
Pi outputs µ and internally records it as well (or if it received failed , it outputs

that).

MESSAGE DELIVERY:

D1 ℘
Pi receives input (To: 〈pid;µ′〉 ,msg) which signifies that the message msg needs to

be delivered to a program with ID pid belonging to a party with ID µ′.

D2 ℘
Pi sends (To: 〈pid;µ′〉 ,msg) to ℘FAMD

.

D3 If ℘
Pi

established an ID µ with ℘FAMD
, then ℘FAMD

sends the message
(msgid, From:µ, To: 〈pid;µ′〉 ,msg) to S, where msgid is a k-bit message ID string
chosen uniformly at random conditioned on being different from all previous mes-
sage IDs. (If ℘

Pi
has not established an ID, it must be corrupt. Then ℘FAMD

ignores
this message.)

D4 If S sends a message (release,msgid), and if there is a party ℘
Pj which has estab-

lished an ID µ′, then ℘FAMD
sends the message (From:µ, To:pid, msg) to ℘

Pj
. (S may

send release commands multiple times with the same msgid and each time the
message is delivered to ℘

Pj
.)

D5 If S sends a message (From:µ, To: 〈pid;µ′〉 ,msg) where µ ∈ X then ℘FAMD
sends the

message (From:µ, To: 〈pid;µ′〉 ,msg) to ℘
Pj .

D6 On receiving a message (From:µ, To:pid, msg), ℘
Pj

sends (From:µ,msg) to the pro-
gram with ID pid (if such a program exists in the party to which ℘

Pj belongs).

Figure 5.13: The Authenticated Message Delivery Functionality

Lemma 5.18. Under Assumption A2 or Assumption A3, there is a signature scheme such that if
protocol AMD uses this scheme, then it securely realizes 〈FAMD〉with respect to (ZΨ,AΨ

static, S
Ψ
static).

5.10 Remarks

We make a few remarks on our construction and assumptions.

5.10.1 Reducing the Assumptions

Complexity Leveraging to Reduce Assumptions. By choosing parameters appropri-
ately, at least one of our assumptions can be reduced to a more standard one. Specifically,
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Protocol AMD

The parties are denoted by P1, P2, . . ., and adversary by A.
IDENTITY ESTABLISHMENT PHASE:

E1 To establish a new identity, ℘
Pi

randomly generates a pair (SK, V K) of signing and
verification keys. It internally stores this pair and outputs µ = V K as the identity.

MESSAGE DELIVERY:

D1 ℘
Pi receives input (To: 〈pid;µ′〉 ,msg) which signifies that the message msg needs to

be delivered to a program with ID pid belonging to a party with ID µ′.

D2 ℘
Pi signs the tuple (From:µ, To: 〈pid;µ′〉 ,msg) using the signing key SK, to obtain a

signature sign .

D3 ℘
Pi

sends (From:µ, To: 〈pid;µ′〉 ,msg, sign, µ) to A.

D4 If ℘
Pj

with identity µ′ receives a message (From:µ, To: 〈pid;µ′〉 ,msg, sign, µ) from
A, then it verifies sign using µ as verification key. If the signature verifies then it
sends sends (From:µ,msg) to the program with ID pid (if such a program exists in
the party to which ℘

Pj
belongs).

Figure 5.14: The Authenticated Message Delivery Protocol

Assumption A3, which assumes trapdoor permutations secure against adversaries with
sampling access to Dµ

r can be replaced with an assumption of trapdoor permutations
secure against super-polynomial adversaries.

Consider choosing the domain of the trapdoor permutation {0, 1}n such that the input
size of the hash function k = nε, for some constant 0 < ε < 1. Then we can safely replace
Assumption A3 by the assumption that the trapdoor permutations are secure against
circuits of size 2nε

. This implies Assumption A3 (given Assumptions A1 and A2) because
a circuit of size 2k = 2nε

can represent the distributions Dµ
r for all (µ, r). Note that this

is only to change the assumption to a more standard one (trapdoor permutations secure
against sub-exponential circuits), and does not change the angel used.

Reducing Assumptions using Enhanced Angel. Recall that in all our assumptions, the
adversary (collision finder, distinguisher or attacker on trapdoor permutation) was given
access to the angel Ψ which provided collisions in H. However, we can reduce the as-
sumption by using an enhanced stateful angel. The modified angel Ψ′ does not provide
(z, x, y) all together as Ψ does; instead it simply gives z and stores (z, x, y) internally.
Later the entity which queried the angel can make a one-time query (z, b) where b is a sin-
gle bit; if b = 0 Ψ′ answers with x, else it answers with y. After answering, Ψ′ marks the
internally stored tuple (z, x, y) as expired; future queries on z are not entertained. It is not
hard to see that Ψ can through out be replaced by Ψ′ in our protocols and assumptions.
Since Ψ subsumes Ψ′, the new assumptions obtained this way are weaker.
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5.10.2 On Overcoming the Impossibility Results.

It is interesting to observe how this work manages to evade the impossibility results from
[Can01, CF01, CKL03, Lin03b] (while still retaining composability). First, let us briefly re-
call the result showing that under the UC-framework, commitment functionality cannot
be securely realized in the plain model (impossibility for other functionalities are similar
in spirit). Suppose, for contradiction, there is indeed such a protocol between the sender
C and receiver R. The proof proceeds by considering two “real world” situations A and
B. In situation A, the adversary corrupts C and directs it to act transparently between
the environment and R. The environment will run an honest commitment protocol (on
behalf of C), and so the receiver will accept the commitment (and later a reveal). Since
the protocol is secure, there exists a simulator SA which can effect the same commitment
and reveal in the “ideal world.” In other words SA can extract the committed bit from
the protocol messages (so that it can send it to the ideal commitment functionality). Now
consider situation B, where the receiver R is corrupted. The contradiction is achieved by
considering an adversary AB which directs R to act honestly, but sends all the messages
also to an internal copy of SA. Now SA is essentially in the same position as in situation
A and can extract the committed bit, from the honest sender’s commitment. However
this violates the security of the protocol, leading to the contradiction.

We note that just allowing the adversary (real and ideal) access to more computational
resources does not by itself stop the above proof from going through. AB can still run
SA internally and violate the protocol’s security, as it has the same computational powers
as SA. So we would like to make sure that AB cannot run SA, presumably because SA

has more computational powers than AB . But on the other hand, for the UC theorem
to hold, the environment (and hence the adversary) should be able to internally run the
simulators. In other words, the composition is known to hold only when the protocol is
secure in environments which can be as powerful as the simulators. Indeed, in proving
our UC theorem (Theorems 4.1 and 4.2, we use the fact that environment can subsume
the simulators. So it would seem that we cannot prevent AB from being able to run SA.

However, we do manage to get out of this apparent deadlock as we allow the power
of the environment/simulator to depend on the state of the Network. In particular, Ψ bases
its answers to queries on the set of corrupted parties. Note that above, in situations A and
B, the set of corrupted parties are different. This lets us make sure thatAB in situation B

cannot run SA (which expects to be in situation B), because Ψ behaves differently in the
two situations. This prevents the proof from going through. Indeed, as our results show,
including the angel in the model prevents not just the proof, but also the impossibility.

5.11 Conclusion

In this chapter we have built a multi-party computation protocol without any trusted se-
tups, for any functionality F which is provably secure (against static adversaries) accord-
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ing to the Los Angeles Network-aware security notion, using the angel Ψ. In building this
protocol, we used the new concept of an angel crucially, and overcame impossibility re-
sults which set in if the angel is not allowed. The protocol and its analysis employ tools
from previous constructions in the literature, as well as new techniques.

However the protocol above, typical of this line of construction, is very complex and
inefficient, as is evident from Table 5.4. In the next chapter we seek to prove security for
vastly simpler protocols for (limited forms of) multi-party computation.
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Notes

1We make a few comments on defining natural functionalities.

• Though we allow the adversary to provide input to a functionality, a protocol’s useful behavior is
defined with respect to the “nice” class of adversaries whose inputs are trivial. (See endnote 17 of
Chapter 3.)

• An even more restrictive definition of natural functionalities — which allows secure realizability in
the case of adaptive corruptions as well — restricts ℘F to use only the inputs from the participants and
be deterministic as well. This is not a serious handicap, since as part of the functionality specification
one could define the random tape of ℘F as the bitwise-xor of tapes provided by each party. Then as
long as at least one party is honest, we can assume that ℘F sampled its random tape. Alternately,
as suggested in [CLOS02], one could require that the functionality sends all its randomness to the
adversary as soon as all the parties in the session are corrupted.

• In [CLOS02], natural functionalities were termed “well-formed.”

• We can securely realize some unnatural functionalities. Since it is sometimes convenient to specify
intermediate functionalities as unnatural functionalities, we do not rule them out in the model.

2See Section 5.9.
3More formally, the assumption must be stated asymptotically: for every infinite sequence of pairs (µ, r) of

increasing security parameter the assumption gives a corresponding sequence of distributions Dµ
r , with the

stated indistinguishability relation (note that M stands for a circuit family here). This is necessary if we want
to use the asymptotic statement, that the distributions are indistinguishable. But for the sake of readability,
we avoid cumbersome notation and use the short hand “for every µ and r there is a distribution Dµ

r .”
4See Endnote 3. Here again, to use the asymptotic statement — that the probability is negligible — the

assumption must be interpreted as stated for all infinite sequences µ, and all PPT circuit families.
5It is not necessary that the range (and domain) of the permutation f be {0, 1}k. Any range (of size

exponential in k) suffices. Indeed, the standard candidates for trapdoor permutations have more complex
ranges. When the range is different from {0, 1}k, it becomes important that there is a way to efficiently
sample an element in the range such that even when given the randomness used for this sampling, it remains
hard to invert the element. In the literature the name enhanced trapdoor permutations is often used to specify
this property. See [Gol04, Appendix C.1] for a discussion. In this thesis, by trapdoor permutations we always
mean enhanced trapdoor permutations.

6We remark that we could considerH as a pair of functions (H0,H1) whereHb takes one less bit of input
thanH, and setsHb(x) = H(x, b). Then our assumptions onH are more akin to that on a clawfree collection
than on a general collision-resistant hash function. However considering the non-standard nature of the
assumptions, we refer to H by the generic name of hash function rather than by a name suggesting specific
properties.

7 Results in [BS05] do not directly state them in the Los Angeles Network-aware security framework, and
nor is any angel specified. However it can be seen that an angel as suggested in Endnote 5 of Chapter 3 can
be used to state the results of [BS05] in our framework.

8More formally, ℘
C sends c to ℘

R using the session Σ〈FENC〉. That is ℘
C passes c to the (dummy) program

℘〈FENC〉,C , which passes it to ℘FENC which in turn delivers it to the program ℘〈FENC〉,R, from which ℘
R receives

the message. In these descriptions we shall often omit the reference to the dummy programs.
9BCOM is not necessarily a secure protocol for commitment functionality because it does not provide a

way for a transvisor to extract the values committed to by a corrupted sender. In particular, depending on the
specifics of the hash functionH, BCOM may be a perfectly hiding commitment, with no hope for a transvisor
to extract the committed values.

10If Z and A are uniform, then MΨ∗
0 and MΨ∗

1 can also be uniform.
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11In each of the expressions in this equation, the event input℘
C

= 0 refers to the particular execution in
that expression. But in all four instances, Pr

ˆ
input℘

C

˜
is the same because the execution (or simulation) is

identical till beyond the point input℘
C

is fixed.
While comparing two executions, we shall often refer to events as common to both of them. Implicit

here is a coupling of the two executions: both the executions can be described by the same process until they
diverge at some point (after the event in question); execution instances which share the same event in this
prefix can be coupled together.

12For different values of the security parameter k, it could be either MΨ∗
0 or MΨ∗

1 which has an advantage

comparable to the distinguishing probability Pr
h

EXEC〈F̃
COM

〉,Z,S = 0
i
−Pr [EXECBCOM,Z,A = 0]. However, if

the latter is non-negligible, for some polynomial polythere are infinitely many values of k for which it is larger
than 1/poly(k). Hence the advantage of at least one of MΨ∗

0 and MΨ∗
1 will be similarly large for infinitely

many values of k.
13The functionality ℘FfZK

also runs a simulation ℘̃
V , but T does not have access to any of the messages

generated by this simulation.
14The simulation for the case when both parties are honest can be simplified if all the messages in the

protocol are encrypted (as in BCOM, for instance). However, this is unnecessary in this protocol. Further, the
simulator used in this case is the same as that for the case even when R is corrupt (and C is honest). So the
proof of security is not overly complicated by avoiding encryption.

15 Here for notational convenience, we restrict ourselves to two parties, C and R, which can be corrupted.
However, the set of corrupted identities X may be larger than this. To be precise, when we write, say
X = {C}, what we imply is R 6∈ X.

16By the convention in Endnote 15 we indeed do have

Pr [EXECCOM,Z,A = 0] = Pr [EXECCOM,Z,A = 0 ∧ X = {C, R}] + Pr [EXECCOM,Z,A = 0 ∧ X = {}]
+ Pr [EXECCOM,Z,A = 0 ∧ X = {C}] + Pr [EXECCOM,Z,A = 0 ∧ X = {R}]

and similarly for Pr
ˆ

EXEC〈FCOM〉,Z,S = 0
˜
.

17 Note that C by itself is not an equivocable commitment scheme. Nevertheless, since the protocol never
directly opens a value committed using C (instead, using FZK to convince the verifier in the reveal stage),
it is possible to simulate commitment to an unknown input (when prover is honest) by committing to an
arbitrary value.

18 Though in the definition of F 1:M
CP we have not explicitly required a polynomial bound on the number of

commitments made in one session of 〈F1:M
CP 〉, since Z ∈ ZΓ is PPT, for each Z the number of commitments is

indeed a polynomial in k (bounded by say the running time of Z).
19Even if we extend the definition of Å and S̊ to allow communication with the environment (see End-

note 16 of Chapter 3), the simulators we described for general adversaries suffice. This is because these
simulators behave nicely (i.e., belong to S̊) when the adversary is in Å. Indeed, if the adversaries in Å do not
communicate with the environment, then the simulation is simpler. In that case, if any simulator can carry
out the simulation, then a “dummy simulator” — which does not do anything except manage the delivery
of messages from the functionality to the programs — suffices.

20See Endnote 5.
21When a party establishes an identity, the identity string µ is not chosen adversarially, but according to

some distribution over Ik, by ℘FAMD .
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Chapter 6

Monitored Functionalities

6.1 Introduction

The comprehensive guarantees of Network-aware security tend to require complex pro-
tocols. A natural question is if we can develop relaxed notions of Network-aware security
which will help us prove some level of security for simpler protocols, at least for certain
limited applications, which will nevertheless apply to a general Network setting.1

In this chapter we introduce a new framework of monitored security. It builds on
the Los Angeles Network-aware security framework. The motivation for this definition
stems from the simplicity of the protocols for the semi-functionalities FC̃OM and FfZK intro-
duced in Section 5.5. At the root of this simplicity is the fact that these functionalities
enforce correctness and secrecy, but do not require the parties to know their inputs. In-
stead it is only guaranteed that some such input exists (this is the correctness guarantee).
Further, only the secrecy guarantee is provided using the simulation paradigm. Our new
security definition uses this pattern of separating correctness and secrecy guarantees.

To capture the correctness guarantee in an easy to present ideal interface, we intro-
duce the notion of a monitor. A monitor exists in the ideal world, alongside an ideal
functionality; it is a computationally unbounded virtual entity which watches over the
ideal world execution and raises an alarm if some specific condition is violated.2

We demonstrate the usefulness of this framework by securely realizing a restricted
version of two-party computation, called client server computation. In building a proto-
col for this functionality, we realize a useful tool called the monitored commit-and-prove
semi-functionality. It uses protocols for FC̃OM and FfZK from Chapter 5, whose security
can also be cast in the framework of monitored functionality. (Recall that their correct-
ness properties (binding and soundness, respectively) where guaranteed separately in
Lemma 5.6 and Lemma 5.10.)

Limitations of Monitored Functionalities. There are some serious limitations to our
current results for monitored Functionalities. It is not clear if the approach here can
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directly yield protocols for the most general kind of functionalities. Firstly, our 2-party
protocol is for a very special kind of multi-party computations only, which we term the
server-client computation. (In a server-client computation, the client receives as output
some function of its input and the server’s input. But the server receives as output, the
client’s input.)

But a more serious limitation lies with the nature of security guarantee provided.
Along with correctness and secrecy guarantees, one would like to have a guarantee that
the server’s input to the function is independent of the client’s input. For this guarantee
we will need to impose the condition that the client never uses its input previously.3

Despite the limitations, this new framework is a step in the direction of formaliz-
ing relaxed notions of security (relaxed, but still accounting for a general environment),
which will help prove security guarantees for simpler and more efficient protocols.

Monitored Commitment:MFC̃OM

Semi-Functionality FC̃OM:

COMMIT PHASE

℘
C ↔ ℘F̃COM

: Arbitrary protocol
℘F̃COM

→ ℘
R,S : commit

REVEAL PHASE

℘
C ↔ ℘F̃COM

: Arbitrary Protocol
℘F̃COM

→ ℘
R,S : (reveal, b)where b is determined arbitrarily by ℘F̃COM

Completeness: If C is honest, ℘F̃COM
never aborts.

Monitor: When ℘F̃COM
sends the message commit , the monitor must record one value b∗ as

the committed value. If C is honest this value must be the intended value for commitment.
Later if ℘F̃COM

sends (reveal, b) but b 6= b∗ then the monitor notifies the receiver by raising
an alarm.

Figure 6.1: Monitored Commitment FunctionalityMFC̃OM

6.2 Semi-Functionalities and Monitors.

A 2-party ideal functionality formulated in the Los Angeles Network-aware security
model would typically interact with both the parties in an ideal way. For instance the
ideal commitment functionality FCOM involves receiving a value from the sender secretly,
and notifying the receiver (and adversary) of the receipt, and later on receiving a com-
mand to reveal from the sender, sending the original value to the receiver. This func-
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Monitored Zero Knowledge Proof:MFfZK

Parameterized by a polynomial time relation R : {0, 1}`1 × {0, 1}`2 → {0, 1}. Common
input to ℘

P and ℘
V : x ∈ {0, 1}`1 .

Semi-Functionality:

℘
P ↔ ℘FfZK

: Arbitrary protocol
℘FfZK

→ ℘
V ,S : (proven, x)

Completeness: If P is honest, ℘FfZK
sends the proven message to ℘

V .
Monitor: If ℘FfZK

sends the message (proven, x) to the verifier, and there exists no y ∈
{0, 1}`2 such that R(x, y) = 1 then the monitor notifies the verifier by raising an alarm.

Figure 6.2: Monitored Zero Knowledge Proof Functionality:MFfZK

Monitored Commit and Prove:MFfCP

Parameterized by a polynomial time relation R : {0, 1}`1 × {0, 1}`2 × {0, 1}`3 → {0, 1}.
Semi-Functionality:

COMMIT PHASE:

℘
C ↔ ℘FfCP

: Arbitrary protocol
℘FfCP

→ ℘
R,S : commit

PROOF PHASE (CAN BE MULTIPLE TIMES):

℘
C → ℘FfCP

→ ℘
R,S : x

℘
C ↔ ℘FfCP

: Arbitrary Protocol
℘FfCP

→ ℘
R,S : (proven, x)

Completeness: Interacting with an honest prover ℘
C , ℘FfCP

never aborts.
Monitor: At the end of the commit phase, the monitor internally records a value w. If the
℘FfCP

sends (proven, x) later in the proof phase then the monitor checks if there is a value y

such that R(w, x, y) = 1. If not it raises an alarm.

Figure 6.3: Monitored Commit and Prove Functionality:MFfCP

tionality makes sure that the sender is bound to a value on committing (this is the “cor-
rectness guarantee”) and that the value remains secret (“secrecy guarantee”). Further it
ensures that the sender knows the value it committed to (because it had to explicitly send
the value to the functionality). In defining a semi-functionality we would remove this last
requirement, and further free the correctness requirements from the ideal functionality,
somehow enforcing that requirement separately.
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Client-Server Computation:MFgCSC

Parameterized by a function F .
Semi-Functionality:

℘
Q ↔ ℘FCSC

: Arbitrary Protocol
℘FCSC

→ ℘
K ,S : commit

℘
K → ℘FCSC

→ ℘
Q,S : xK

℘
Q ↔ ℘FCSC

: Arbitrary Protocol
℘FCSC

→ ℘
K ,S : z where z is determined arbitrarily by ℘FCSC

Completeness: Interacting with an honest server ℘
Q with input xQ, if the client ℘

K sends
it input xK , ℘FCSC

sends xK to ℘
Q and z = F (xQ, xK) to ℘

K .
Monitor: At the end of the first step, the monitor internally records a value x∗. If ℘FCSC

sends xK to ℘
Q and z to ℘

K , the monitor checks if z = F (x∗, xK). If not it raises an alarm.

Figure 6.4: Client-Server Computation Functionality:MFgCSC

A monitored functionality (e.g., MFC̃OM described in Figure 6.1) consists of a semi-
functionality (FC̃OM in Figure 6.1) and some conditions on the semi-functionality. The
semi-functionality is syntactically just a functionality, but it is not “ideal” enough. It is
typically defined based on an arbitrary protocol. For instance the specification of FC̃OM

consists of arbitrary interaction between the server and FC̃OM (which is unspecified in
Figure 6.1, but will be later specified in such a way that binding property can be argued
separately). Note that the arbitrary protocol is carried out between the semi-functionality
and a party, and not between the two parties. This is why the semi-functionality guarantees
secrecy – in the case of FC̃OM, the only message that the functionality sends to the receiver
and the adversary before the reveal phase is the string commit . To complete the specifica-
tion of the ideal functionality we need to also give a guarantee that the semi-functionality
is functional (i.e., it can be used by the server to make commitments) and correct (i.e., it is
binding on the server). These requirements are specified separately as properties that the
semi-functionality needs to satisfy. (Note that we are not considering the requirements
on a protocol yet; these are requirements on the functionality.) It is all these three require-
ments together that make up the specification of the ideal commitment functionality. We
shall call such a collection of requirements a monitored functionality.

Ideal world of Monitored Functionality. The monitored functionality is proposed as
an ideal functionality, which captures all the security properties of a given task. In Fig-
ures 6.1–6.4 we show the four monitored functionalities that we shall consider. The first
two are in fact reformulations of the semi-functionalities from Section 5.5.

In Figures 6.1–6.4 the semi-functionalities are not fully specified, but allows arbi-
trary interaction between one of the parties (sender, prover or server) and the semi-
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functionalities. Once a protocol is chosen, the semi-functionality will be specialized to
suit that protocol. That is, the semi-functionality will carry out the client’s part in the
protocol. Note that the view of the server is unchanged if we replace the interaction with
the semi-functionality by the protocol with the client. The important thing here is that
irrespective of the protocol that is used, these semi-functionalities are designed to cap-
ture the secrecy requirements of the respective tasks. For instance, in commitment, the
only messages sent to the client are “commit ” and “(reveal, b).” Indeed, in all four semi-
functionalities the messages reaching the client and the ideal world adversary are exactly
those messages that the corresponding (fully) ideal functionalities (FCOM, FZK etc.) would
specify. The name semi-functionality is to emphasize that they provide only the secrecy
guarantee, and correctness needs to be ensured separately. But otherwise there is nothing
“semi” about them – technically these are full-fledged functionalities.

Next, we draw the reader’s attention to the way the correctness requirement is spec-
ified. For convenience and concreteness, we employ the notion of monitors. A monitor
is a conceptual device used to specify the security requirements of a functionality. If the
security requirement is violated we want the monitor to alert the parties by “raising an
alarm.” Each session of the functionality has its own monitor. A monitor is a (computa-
tionally unbounded) function which can inspect the entire Network including all parties
and functionalities (except any other monitors) and maintain its own internal state. This
is in contrast to the PPT functionalities. There is only one way a monitor can affect the
Network, namely, by raising an alarm.

Securely Realizing a Monitored Functionality. Having defined monitored functional-
ities, we would like to have real world protocols which are as secure as using these func-
tionalities. That is, if we substitute the monitored functionality (i.e., the semi-functionality
and monitor) by a protocol, no environment should be able to detect the difference (we
are allowed also to replace the real world adversary A, by an ideal world adversary S).
This involves two things: first the protocol should securely realize the semi-functionality
(in the sense defined in Chapter 3). But in addition, it should be able to mimic being mon-
itored. But clearly there are no monitors in the real world. So we require that even in the
ideal world having the monitor should not be detectable to the environment. Note that
this is a requirement on the functionality, and not on the protocol. However, it depends
on the protocol in that the functionality is fully specified depending on the protocol.

Definition 6.1. We say a protocol π is monitorably as secure as a monitored functionalityMFe
with respect to (ZΓ,AΓ, SΓ) if

1. π is as secure as the functionality F with respect to (ZΓ,AΓ, SΓ), and

2. there exists a monitor satisfying the requirements specified in the monitored functionality,
such that in a Network with environment Z ∈ ZΓ and adversary S ∈ SΓ, the probability
that the monitor raises an alarm is negligible. Note that there may be other protocols,
functionalities and monitors in the Network.
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Note that the second condition needs to be met not just for a Network consisting of a
single session of the protocol, but for the most general setting in which the protocol will
be deployed. This is so because we do not have a composition theorem for (computa-
tionally unbounded) monitors. (i.e., a monitor may behave entirely differently when, in
some part of the Network, a protocol substitution is carried out).4 Note that there may
be other monitors in the Network. But the monitors are independent of each other and
the only way a monitor interferes with the Network is by raising an alarm. Hence other
monitors can be ignored for analyzing the monitor of a particular session.

The results from Section 5.5 can be restated as follows.

Lemma 6.1. Protocols BCOM, BMCOM and BZK respectively are monitorably as secure as func-
tionalities FC̃OM, F

M̃COM
and FfZK with respect to (ZΨ,AΨ

static, S
Ψ).

PROOF: First part of the definition of being monitorably secure, namely that the pro-
tocols are as secure as the respective semi-functionalities, was shown in Lemmas 5.5,
5.8 and 5.9. The existence of the monitors directly follows from the correctness results:
Lemmas 5.6, 5.7 and 5.10. �

6.3 Monitored Commit-and-Prove

Recall that the monitor for MFC̃OM was required to record a bit b∗ at the end of com-
mitment phase as the committed but. Loosely speaking, we defined this bit as the most
likely bit to be revealed. However in trying to extend this to obtain a monitor forMFfCP,
the commit-and-prove monitored functionality, we face a problem: no bit (or string as
the case may be) is ever revealed in this case. Nevertheless we shall see that a monitor can
indeed record a committed string when FfCP is based on a simple protocol BZK.

The commit phase in BZK is the same as in F
M̃COM

(Section 5.5.2), but we describe
it directly now. ℘

V sends a random string r and ℘
P sends c = H(µP , r, r′, w), where

r′ is a random string privately chosen by ℘
P and w is the string committed to. H :

Ik × {0, 1}nk1 × {0, 1}nk2 × {0, 1}n → {0, 1}n` is a multi-bit version ofH:

H(µ, (r1 · · · rn), (r′1 · · · r′n), (w1 · · ·wn)) = (H(µ, r1, r
′
1, w1), · · · ,H(µ, rn, r′n, wn)).

In the proof phase, there is a relation R regarding which the proof is given. Informally,
℘

P wants to send a string x and then prove that there exists y such that R(x,w, y) = 1,
where w is the string it committed to. However, ℘

P does not reveal w; instead it proves
that there exists r′ such that c = H(µP , r, r′, w). Both the proofs are carried out using
the functionality FfZK. More formally, first, ℘

P and ℘
V reduce the problem “∃w, y, r′

such that R′(x, r, c, w, y, r′) = 1” to a 3-coloring problem instance GµP (x, r, c), where
R′(x, r, c, w, y, r′) = 1 if and only if R(x,w, y) = 1 and H(µP , r, r′, w) = c. This reduc-
tion is carried out in such a way that given a 3-coloring in GµP , it is possible to recover
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(w, y, r′) as above. Then ℘
P uses the semi-functionality FfZK to prove to ℘

V that GµP is
3-colorable. The protocol is given in Figure 6.5, where the above step is denoted by the
following shorthand: ℘

P ↔ FfZK → ℘
V : ZKPR(x; r, c).

Commit and Prove Protocol: BZK

The parties are a prover P and verifier V . Input to P are w ∈ {0, 1}n and (one or more)
x ∈ {0, 1}n. k is the security parameter; k, k1, k2 are polynomially related to each other.
COMMIT PHASE:

℘
V → ℘

P : r ← {0, 1}nk1

℘
P → ℘

V : c = H(µP , r, r′, w) where r′ ← {0, 1}nk2

PROOF PHASE (CAN BE MULTIPLE TIMES):

℘
P → ℘

V : x

℘
P ↔ ℘FfZK

→ ℘
V : ZKPR(x; c)

℘
V : Accept if accepted in the above protocol

Figure 6.5: Protocol for the monitored functionality for Commit and Prove

We shall prove the following:

Lemma 6.2. Protocol BZK is monitorably as secure as MFfCP with respect to (ZΨ,AΨ, SΨ =
AΨ), under Assumption A1 and Assumption A2.

PROOF: 1. BZK is as secure as FfCP.
We describe the transvisor T = T 〈FfCP〉→BZK.

Construction 6.1: Transvisor T = T 〈FfCP〉→BZK

Both P, V corrupt. If A corrupts both participants, T acts transparently, and the
simulation is trivially perfect.

P corrupt, V honest. Just as in the case of FC̃OM and FfZK, a simple transvisor in
which ℘̃

V merely acts as a front to ℘FfCP
yields a perfect simulation.

P honest. When the prover is not corrupted, the only protocol messages A can
see are the initial commitment phase messages r and c and the (proven, G(x, r, c))
message from ℘FfZK

for each proof phase. The only non-trivial task for the simulator
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is, when V is not corrupt, to produce the commitment text c, without having access
to w. For this ℘̃

P sets ĉ = H(µP , r, r′, w′) where w′ = 0n and r′ ← {0, 1}k2 . Then ĉ

is sent to ℘
V instead of c.

Suppose in some Network, Z could distinguish between the actual execution of BZK

and the simulation: i.e., EXECBZK,Z,A and EXEC〈FfCP〉,Z,S differed non-negligibly. Then we
shall build a distinguisher MΨ∗

to violate Assumption A1. Note that Assumption A1
implies that the distributions of commitments to 0 and to 1 are indistinguishable to a
PPT distinguisher (with access to Ψ∗) MΨ∗

: that is, for all µ ∈ Ik, r ∈ {0, 1}k1

{z|x← {0, 1}k2 , z = H(µ, r, x, 0)} ≈ {z|y ← {0, 1}k2 , z = H(µ, r, y, 1)},

because both the distributions are indistinguishable from {z|(x, y, z) ← Dµ
r }. We build

MΨ∗
so that it can distinguish between the above two distributions.

Construction 6.2: MΨ∗
to distinguish betweenH(µ, r, x, 0) andH(µ, r, x, 1).

MΨ∗
receives as input z = H(µ, r, x, b), and tries to distinguish between b = 0 and

b = 1 as follows. MΨ∗
simulates the Network execution EXECBZK,Z,A internally.

If either P or V is corrupt, output a random bit and bail out. Otherwise, carry
out the execution, but with the following modification: instead of sending out c as
prescribed, ℘

P sends out c′ as constructed below.

• If Z provides an input to ℘
P , call it w. Set

c = (H(µ, r1, r
′
1, w1), · · · ,H(µ, rn, r′n, wn))

d = (H(µ, r1, r
′
1, 0), · · · ,H(µ, rn, r′n, 0)).

• If wi, the i-th bit of w, is 0, then let

ci = (c1, . . . , ci−1, di, . . . , dn)

where cj = H(µ, rj , r
′
j , wj) and dj = H(µ, rj , r

′
j , 0). That is, ci is constructed

by taking the first i − 1 components of c and remaining components from d

(which is independent of w).

• If wi = 1, the let
ci = (c1, . . . , ci−1, z, di+1, . . . , dn,

That is, ci is the same as defined for the case wi = 0, but the i-th component
is replaced by z.

• Pick a random index i← {1, . . . , n}, and let c′ = ci.

Then MΨ∗
outputs what Z outputs in this simulated Network.
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We claim that MΨ∗
has a non-negligible advantage in distinguishing between z =

H(µ, r, x, 0) and z = H(µ, r, x, 1), if EXECBZK,Z,A and EXEC〈FfCP〉,Z,S differed non-negligibly.
To see this, first we consider a sequence of hybrid executions bridging these two, obtained
by modifying ℘̃

P in EXEC〈FfCP〉,Z,S as follows: ℘̃
P is given access to w that Z passes on to

℘
P as input; instead of 0n to construct ĉ, ℘̃

P uses wi obtained by zeroing out all but the
first i bits of w. Let EXECi denote the output of Z in the i-th hybrid execution. Then, we
complete the argument by observing that

|Pr [EXECBZK,Z,A = 0]−Pr
[

EXEC〈FfCP〉,Z,S = 0
]
|

= |Pr [EXECn = 0]−Pr [EXEC0 = 0]|

= |
n∑

i=1

(Pr [EXECi = 0]−Pr [EXECi−1 = 0])|

= n|Prz=H(µ,r,x,1)

[
MΨ∗

(z) = 0
]
−Prz=H(µ,r,x,0)

[
MΨ∗

(z) = 0
]
|

where the last equality holds because when z = H(µ, r, x, 0), conditioned on MΨ∗
picking

the index i (which happens with probability 1/n), MΨ∗
(z) is identical to EXECi−1, and

hence

Prz=H(µ,r,x,0)

[
MΨ∗

(z) = 0
]

= 1/n

n∑
i=1

Pr [EXECi−1 = 0].

Similarly

Prz=H(µ,r,x,1)

[
MΨ∗

(z) = 0
]

= 1/n

n∑
i=1

Pr [EXECi = 0].

2. There is a monitor satisfying the requirements specified byMFfCP, such that the probability
of the monitor raising an alarm (before the environment halts) is negligible.

We restrict ourselves to the case whenMFfCP allows only one proof phase per session.
It is possible to extend it to multiple proofs, but the details become lengthy and tedious.

First we describe how a value w∗ is recorded byM. For this we shall first describe an
“extractor” machine MΨ\P .

Construction 6.3: Extractor MΨ\P .

MΨ\P simulates the entire Network (except any monitors) internally, starting at the
point where the session of interest running our Commit-and-Prove protocol starts
(this start state is given to MΨ\P as input). It uses access to Ψ\P to simulate calls
to Ψ (note that P is honest in this Network, and hence Ψ\P subsumes Ψ). MΨ\P

is a PPT (oracle) machine because Z has a poly(k) time bound, and other (non-
angel) entities — which are all invoked directly or indirectly by Z— are bounded
by polynomials in k and their input size. MΨ\P runs the Network until the proof
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phase of the session started, and the prover makes the commitment step. At this
point MΨ\P “forks”: it clones the Network and runs the two copies independent of
each other. If in both the copies the proof is accepted by the verifier, MΨ\P checks
if the n-bit queries made by the verifier in ZKPR(x; r, c) are identical or not. If they
are not identical this lets MΨ\P extract a 3-coloring for G (assuming the monitors
for the FC̃OMs do not raise any alarm). Then MΨ\P derives a witness (w, r′, y) from
this 3-coloring, and outputs it. Else MΨ\P outputs ⊥.

Now we use MΨ\P to describe the monitorM.

Construction 6.4: MonitorM =MFfCP
.

When FfCP sends commit to ℘
V , for each wM checks the probability of MΨ\P out-

putting w, and records the one with the highest such probability, say w∗. Later if
FfCP sends (proven, x) for some x such that for no y R(w∗, x, y) holds, then it raises
an alarm. Also, for purposes of analysis, when the prover executes the commit-
ment protocol (semi-functionality) as part of the zero-knowledge proof protocols,
M starts the monitors for FC̃OM as sub-monitors. The monitors will also be run
when the extractor MΨ\P runs. If any of these sub-monitors raises an alarm, then
tooMwill raise an alarm.

Clearly, by design, M satisfies the requirements of the functionality. We go on to
prove that the probability that M raises an alarm (which event we denote by alarm)
is negligible. In the rest of the proof, we condition on the event that none of the sub-
monitors for F

M̃COM
raise an alarm. Since we have already shown that this is an event

of negligible probability (and since only polynomially many such sub-monitors are run),
this will not change our conclusions.

Now, consider the point at which MΨ\P forks the Network. Let pw be the probabil-
ity that MΨ\P outputs w starting at (conditioned on) this point. Let q be the probabil-
ity that ℘

V accepts the proof ZKPR(x; c), but @(y, r′)R′(w∗, x, r, r′, c, y) = 1. Note that
Pr [alarm] = E [q], where the expectation is over the distribution on the state of the Net-
work at the point at which MΨ\P forks.

Since we assume that the sub-monitors do not raise alarm, MΨ\P outputs some w if
the two copies it runs both accept the proof, and in the second copy the verifier sends a
query different from the one in the first copy. So,

∑
w 6=w∗ pw ≥ q(q − 2−n). Then,

Pr
[
M

Ψ\P
∗ outputs w 6= w∗

]
≥ E

[
q(q − 2−n

]
≥ E [q]2 − 2−n E [q]

≥ 1
2 E [q]2 if E [q] ≥ 2−n+1.
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If the assumption in the last line above does not hold, we would be done, because
Pr [alarm] = E [q]. So we make that assumption and proceed.

Now we shall demonstrate a (non-uniform) PPT machine M
Ψ\P
∗ which accepts r ←

{0, 1}k and outputs (x, y) such thatH(µP , r, x, 0) = H(µP , r, y, 1), with a probability poly-
nomially related to the probability of the monitor raising an alarm.

Construction 6.5: M
Ψ\P
∗ to find (x, y) such thatH(µP , r, x, 0) = H(µP , r, y, 1).

M
Ψ\P
∗ (r) starts MΨ\P and runs the commit phase by sending r. It forks MΨ\P

after the commitment from ℘
P arrives. Then it runs the two independent copies

of MΨ\P (which involves forking the Network again), and checks if they output
different values (w1, r

′
1) and (w2, r

′
2), with w1 6= w2. If so, M

Ψ\P
∗ derives a collision

to the hash function from some bit at which w1 and w2 differ, and outputs the
corresponding portions of r′1, r

′
2.

We say that M
Ψ\P
∗ succeeds if it gets (w1, w2), such that w1 6= w2 from two runs of

MΨ\P . Then,

Pr
[
M

Ψ\P
∗ succeeds

]
≥
∑
w′

pw′
∑

w 6=w′

pw

≥
∑
w′

pw′
∑

w 6=w∗

pw because for all w′, pw∗ ≥ pw′

= (
∑
w′

pw′)(
∑

w 6=w∗

pw) ≥ (
∑

w 6=w∗

pw)2

≥ 1
4 E [q]4 =

1
4

Pr [alarm]4.

Putting it all together we have that Pr [alarm] ≤ (4Pr
[
M

Ψ\P
∗ finds a collision

]
)

1
4 ,

which is negligible by assumption onH. �

6.4 Client-Server Computation

As we have seen above, theoretically interesting cryptographic tools like commitment
and zero-knowledge proofs can be securely realized in this framework, relatively effi-
ciently (compared to the protocols in Chapter 5). The reason for this is that our security
requirements are much more relaxed. However this raises the question if these weak-
ened versions of the above tools are useful to achieve security for practically interesting
tasks. In this section we make some progress towards making this framework usable for
multi-party computation problems.

We restrict ourselves to 2-party computations of a very specific kind, as described in
Figure 6.4. Note that the client does not keep any secrets from the server Q. But the server
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must commit to its inputs (and the monitor shall record the committed input) before the
client sends its inputs. First, we shall give a protocol for this monitored functionality,
before discussing some extensions possible and some limitations.

Client-Server Computation Protocol: CSC

The protocol is parameterized by a function F .
℘

Q ↔ ℘FfCP
→ ℘

K : COMMIT-PHASE(xQ)
℘

K → ℘
Q : xK

℘
Q → ℘

K : z = F (xQ, xK)
℘

Q ↔ ℘FfCP
→ ℘

K : PROOF-PHASE(z == F (COMMITTED-VALUE, xK))

Figure 6.6: Protocol for the monitored functionality for Client-Server Computation

Theorem 6.1. The protocol CSC is monitorably as secure asMFgCSC with respect to (ZΨ,AΨ
static,

SΨ
static).

PROOF: The proof directly follows from the security ofMFfCP.
1. There is a monitor satisfying the requirements specified byMFgCSC, such that the probability of
the monitor raising an alarm is negligible.

Construction 6.6: MonitorM =MFCSC .

M internally starts the monitorMFfCP
(described in Construction 6.4); If the proto-

col proceeds beyond the first step,MFfCP
would record a value x∗ internally as the

committed value. M will copy that value and record it as the input of Q. Later if
the monitor forMFfCP raises an alarm,Mwill raise an alarm.

If FCSC sends the value z to K, then FfCP must have returned (proven, z = F (x∗, xK)).
So if the monitor forMFfCP does not raise an alarm, it means indeed z = F (x∗, xK) and
M need not raise any alarm either. ThusM does satisfy the requirements specified by
MFgCSC. Further the probability thatM raises an alarm is the same as that theMFfCP

raises
an alarm. By earlier analysis, this is indeed negligible.
2. CSC is as secure as FCSC with respect to (ZΨ,AΨ

static, S
Ψ
static).

We describe a PPT transvisor T = T 〈FCSC〉→CSC (with access to Ψ).

Construction 6.7: Transvisor T = T 〈FCSC〉→CSC

Both Q,K corrupt. If A corrupts both participants, T acts transparently, and the
simulation is trivially perfect.
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Q corrupt, K honest. As in the case of all the monitored functionalities introduced
in this work, thanks to the way the semi-functionality is designed, a simple transvi-
sor in which ℘̃

K merely acts as a front to ℘FCSC yields a perfect simulation.

Q honest. Note that in this case the view of A consists of the following: the mes-
sage commit from ℘FfCP

, the value xK , the value z = F (xQ, xK) and the message
(proven, z == F (COMMITTED-VALUE, xK)) from ℘FfCP

. On the other hand T re-
ceives xK and z == F (COMMITTED-VALUE, xK) from FCSC, which is enough to
carry out a perfect simulation.

It readily follows that the simulation is perfect. �

We record our final result for client-server computation as the following corollary.

Corollary 6.1. There is a protocol which does not use any ideal functionalities, and which is
monitorably as secure asMFgCSC with respect to (ZΨ,AΨ

static, S
Ψ
static), under assumptions A1, A2

and A3.

PROOF: Theorem 6.1 directly implies this corollary, except that the protocol CSC uses
ideal functionalities. Using the composition theorem 4.1 to compose CSC with protocols
BZK, BZK, BMCOM, ENC and AMD (employing Lemmas 5.9, 5.8, 5.5, 5.17) we obtain a
protocol which is secure as CSC with respect to (ZΨ,AΨ

static, S
Ψ
static), and does not use any

ideal functionalities. By transitivity of the “as secure as” relation (Lemma 3.1) we see that
this protocol satisfies the first condition of being monitorably as secure asMFgCSC. �

6.5 Independence of Inputs and Locked States

6.5.1 Problem withMFgCSC

There are some serious limitations to the functionality MFgCSC. Clearly, the set of func-
tions that can be computed are limited (namely, only client-server computations). But
more seriously, the guarantee given by the monitor is not satisfactory. In particular, there
is no guarantee of “independence” of inputs. Though the monitor records a value for the
server’s input prior to the client sending out its input, the value recorded is allowed to
be dependent on the entire Network, and in particular on the input of the client!5

6.5.2 The Solution: Restricting the Monitors

Below we suggest a way to address this problem. We show that if the clients keep their
private inputs totally unused until the point of commitment by the server (but may use
them immediately afterwards), then the monitor can be required to record a value inde-
pendent of their private inputs. As it turns out, the protocols are not altered, but some



108

restrictions are imposed on the monitor, and some parts of the proof become significantly
more involved.

Locked State. We introduce a notion that some part of the state of the Network can
be kept “locked.” This part, which we shall call the locked state, cannot be used in the
Network (until it is unlocked). The requirement on the monitor is that it does not have
access to the part of the Network state if it is locked at the point the monitor is required
to record a value; it will have to record a value based on the rest of the Network, which
we shall call the open state.

Technically, the locked state corresponding to a protocol execution is defined at the
beginning of that execution: it is the maximal part of the Network state, not including
any of the adversary’s state, such that the distribution of the rest of the Network state at
the recording point is independent of it. Note that the independence requirement implies
in particular that the probability of unlocking the state before the commitment phase is
over is zero (unless the locked state is completely predictable a priori from the open state).

We do allow the locked state to evolve, as long as the independence is maintained
(in particular, no information should pass between the locked state and the open state).
Further, for full generality, we allow the locked state to be randomized: i.e., its value is a
random variable. However, we shall require that this random variable is efficiently sam-
pleable (which is implied by the assumption that the non-adversarial part of the Network
is PPT). In particular all the “future” randomness, i.e., randomness which is sampled af-
ter the monitor finishes recording, can be considered part of the locked state.6

Use of Locked States. As indicated earlier, the reason we allow the notion of a locked
state in our framework has to do with the meaningfulness of the two-party computation
scenario. With the modification sketched above in place, we can allow the client to keep
its input locked, and then even the monitor does not get to see it, before recording the
other party’s input.

However, note that to keep an input locked, it can never be used in the Network at
all.7 This is because the monitor is computationally unbounded. Note that this is related
to the problem of malleability: if it was used in the Network previously, somehow that
can be mauled and used to make a commitment related to it. However, interestingly we
do avoid the problem of malleability while opening a commitment: the locked state is
allowed to be unlocked before the commitment is opened.

6.5.3 Restricted Monitors

We now show that in the monitored functionalities we use, the monitors can be required
not to inspect the locked state of the Network. Surprisingly, this complicates the con-
struction of the monitor and the proofs considerably.
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Lemma 6.3. For any polynomials (in the security parameter k) τ and Π, under Assumption A2,
there is a monitor satisfying the requirements specified by MFC̃OM which does not inspect the
locked state of the Network, such that the probability of the monitor raising an alarm within time
τ is less than 1/Π.

PROOF OVERVIEW: WhenFC̃OM sends the commit message the monitor MΠ must record
a bit b∗ internally. First, we sketch how MΠ does this. As before, the basic idea is for the
monitor to look ahead in the Network, and record the more likely bit that the sender will
ever reveal; if the sender can reveal to both bits with significant probability, a reduction
can be used to obtain a circuit for finding collisions in the hash function. But note that
here MΠ does not know the value of the locked state, and so it cannot calculate the bit
as above. However, we can show that for no two values for the locked state, can the
sender feasibly reveal the commitment in different ways. Intuitively then, the monitor
can use an arbitrary value for the locked state and use it to carry out the calculation.
However, there are a couple of problems with this. Firstly, revealing can depend not only
on the open state of the Network at the end of commitment, but also on the locked state,
as it might be unlocked after the commit phase is over. In particular, for certain values
of the locked state (and open state), the sender might never complete the reveal phase.
So using a single value of the locked state will not suffice. The second problem is that
while MΠ is computationally unbounded, the reduction to finding collision should use
a polynomial sized circuit. This circuit will need to be given the value(s) of the locked
state with which it will emulate the Network. Further, the circuit will obtain as input
the random challenge in the commitment. Thus, the value(s) of the locked state that it
obtains should be defined prior to seeing the random challenge.

Nevertheless, we show how to define polynomially many values for the locked state of
the Network, based only on the open state of the Network, and obtain a bit b∗ using just these
values. To show that the probability of MΠ raising an alarm within time τ is less than
1/Π, we show that otherwise we can give a polynomial sized circuit (with the above
mentioned values of the locked states built-in) which can find a collision in our hash
function for a random challenge with significant possibility.

The full proof is given below. C

PROOF: When ℘FC̃OM
sends the commit message the monitor MΠ must record a bit b∗

internally, by inspecting just the open state of the Network, so that it will not have to raise
an alarm with in time τ , except with probability at most 1/Π. First, we describe how MΠ

decides on b∗, and then argue why it satisfies the requirement.
We use the following notation: the open state of the Network (defined for the partic-

ular instance of ℘FC̃OM
that we are considering), at the point commit message is sent by

℘FC̃OM
, is denoted by the random variable L and a generic value of this random variable

will be denoted by λ. The value of the locked state of the Network at that point is denoted
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by the variable δ∗. Since we allow the locked state to be randomized, by the “value” of
the locked state, we mean a distribution. Recall that the monitor does not know δ∗. But
it can consider all possible values (distributions) of the locked state (this is well-defined,
since the distributions should be sampleable by a PPT circuit, and the monitor can con-
struct all such circuits). We shall denote a generic value of the locked state (represented
by the efficient sampler which produces this distribution) by δ.

All our probabilities are conditioned on any initial (open) state of the Network. Let pλ

denote the probability that L takes value λ. Note that by definition of the locked states,
pλ is the same independent of δ∗. In other words, if we replace δ∗ by some other value δ,
the probability pλ does not change for any λ. Denote by p

(λ,δ)
rev:0 the probability, conditioned

on δ being the locked state and λ being the open state at the point of commitment, that
℘FC̃OM

later sends 0 as the revealed bit to the receiver (within time τ from the point of

commitment, and before the receiver is corrupted). Similarly define p
(λ,δ)
rev:1 . Let p

(λ,δ)
rev =

p
(λ,δ)
rev:0 +p

(λ,δ)
rev:1 denote the probability that ℘FC̃OM

sends any revealed bit at all to the receiver
(within time τ , and before receiver is corrupted), conditioned on δ and λ being the locked
and open states.

First, MΠ chooses a set ∆ of values for locked state and uses them to “cover” a set Λ
of values for open states, as follows. Start with an empty set ∆, and also an empty set Λ.
Then, it checks if there exists a locked state value δ 6∈ ∆ such that∑

λ6∈Λ

pλp
(λ,δ)
rev ≥ 1/$ (6.1)

where $ is a polynomial that we shall shortly relate to Π, If such an δ exists, it adds it to
∆. Further δ will be used to cover all (uncovered) values λ for which

p
(λ,δ)
rev ≥ 1/(2$). (6.2)

Then all such λ are added to Λ. Note that then we will have∑
λ covered by δ

pλ ≥ 1/(2$). (6.3)

The whole procedure is repeated, until there are no more δ satisfying (6.1). From (6.3),
each new δ added to ∆ covers an additional 1/(2$) fraction (weight) of λ. So the above
procedure terminates after adding at most 2$ elements to ∆. Also, we note that for every
δ, we will have ∑

λ6∈Λ

pλp
(λ,δ)
rev ≤ 1/$. (6.4)

(This is true for δ 6∈ ∆ as otherwise it would have been added. This is true for δ ∈ ∆ as
well, because for every λ 6∈ Λ we have p

(λ,δ)
rev ≤ 1/(2$).)
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MΠ uses the above set ∆ to decide what bit to record, depending only on the open
state at the point of commitment. If this state is λ, MΠ checks if it is covered by any δ ∈ ∆.
If not, it records an arbitrary bit. But if it is covered by some δ ∈ ∆, then if p

(λ,δ)
rev:0 ≥ p

(λ,δ)
rev:1

it records the bit 0; else it records 1. We shall denote the bit so defined, by b∗λ.
Now we need to prove that the probability that ℘FC̃OM

reveals a bit other than b∗λ is
negligible, no matter what the actual locked state δ∗ is. The high level plan is to show
that if for some locked state value δ∗, if this is not the case, then we can demonstrate a
PPT circuit MΨ\R , which can find collisions in our hash function. MΨ\R will emulate the
Network until the commitment point, but using an externally received random string as
the challenge sent by ℘FC̃OM

in the commitment phase. Then it will fork into different
execution threads using δ∗ as well as δ ∈ ∆ as the locked state values. It will be the
case that there will be some δ ∈ ∆ which covers a significant fraction of Λ such that the
execution thread with δ∗ has a significant probability of making ℘FC̃OM

reveal b 6= b∗λ, and
the execution thread with δ has a significant probability of making ℘FC̃OM

reveal b∗λ. This
will allow MΨ\R to have a significant probability in outputting a collision, corresponding
to the random challenge it received externally. Details follow.

Construction 6.8: PPT machine MΨ\R for finding collisions inH.

MΨ\R receives (as non-uniform input) the initial open state of the Network, and
the set ∆ of at most 2$ values for the locked state. It simulates (the open state of)
the Network (if the receiver is not corrupted8 ), with the following modifications:

• If the Network reaches the commitment phase, then instead of independently
choosing a random challenge r ← {0, 1}k1 on behalf of ℘FC̃OM

, it receives an r

from outside and passes it on as the challenge from ℘FC̃OM
.

• Then if it receives a commitment c from the sender, it makes multiple copies
of the Network to be run independently from that point onwards. MΨ\R

makes one copy for each δ ∈ ∆ and one for the actual value of the locked
state δ∗. (Note that though MΠ cannot see δ∗, we can define MΨ\R which
depends on δ∗.) MΨ\R runs these copies as independent threads (terminating
a thread if the receiver is corrupted in it).

• If in any two such copies, c is revealed differently, then MΨ\R copies the re-
veal messages obtained by ℘FC̃OM

, which contain a collision to the hash func-
tion, using the random challenge r, and outputs it.

We would like to show that the probability with which MΨ\R succeeds in outputting
a collision is polynomially related to that of the probability of MΠ raising an alarm (if the
latter is more than 1/Π). The former probability is lower bounded by

∑
λ pλp

(λ,δ)
rev:b∗λ

p
(λ,δ∗)

rev:̄bλ

for all δ ∈ ∆, where b̄λ = 1− b∗λ.
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Suppose the probability of MΠ raising the alarm is at least 2/$ (we shall set $ = 2Π).
Then,

∑
λ pλp

(λ,δ∗)

rev:̄bλ
≥ 2/$. We shall argue that there exists δ ∈ ∆ such that the above sum

puts a significant weight on λ covered by δ. Specifically, we claim∑
λ covered by δ

pλp
(λ,δ∗)

rev:̄bλ
≥ 1/(2$2). (6.5)

To see this, note that using (6.4), and that p
(λ,δ∗)

rev:̄bλ
≤ p

(λ,δ∗)
rev , we get

∑
λ∈Λ pλp

(λ,δ∗)

rev:̄bλ
≥ 2/$−

1/$ = 1/$. Now, all λ ∈ Λ are covered by at most 2$ δ ∈ ∆. So indeed there exists an
δ ∈ ∆ such that

∑
λ covered by δ pλp

(λ,δ∗)

rev:̄bλ
≥ (1/$)/(2$).

Now we use the earlier lowerbound on the collision probability and conclude that

Pr
[
MΨ\R outputs a collision

]
≥
∑

λ

pλp
(λ,δ)
rev:b∗λ

p
(λ,δ∗)

rev:̄bλ

≥
∑

λ covered by δ

pλp
(λ,δ)
rev:b∗λ

p
(λ,δ∗)

rev:̄bλ

≥
∑

λ covered by δ

pλ(
1
2
p
(λ,δ)
rev )p(λ,δ∗)

rev:̄bλ
by choice of b∗λ

≥
∑

λ covered by δ

pλ
1

4$
p
(λ,δ∗)

rev:̄bλ
by (6.2)

≥ 1
8$3

by (6.5).

This concludes the proof as we have shown that if MΠ raises alarm with probability
more than 2/$ = 1/Π probability, then MΨ\R succeeds with probability at least 1/(8$3),
which is a contradiction. �

The construction of the monitor forFfCP is also changed in a similar fashion. However,
since the monitor in this case is defined based on an extractor, and the extractor itself will
need to be modified to take polynomially many values of the locked state, the proof is
much more involved.

Lemma 6.4. For any polynomial (in the security parameter k) Π, under Assumption A2, there is
a monitor satisfying the requirements specified byMFfCP which does not inspect the locked state
of the Network, such that the probability of the monitor raising an alarm is less than 1/Π.

PROOF: When ℘FfCP
sends the commit message the monitor MΠ must record a value

w∗ internally, by inspecting just the open state of the Network, so that it will not have to
raise an alarm except with probability at most 1/Π. First, we describe how MΠ decides
on w∗, and then argue why it satisfies the requirement.

We use the symbols λ, δ and δ∗ similar to that in the proof for FC̃OM. Here again they
correspond to the states of the Network at the point FfCP sends the commit message to
the verifier. The probability pλ is also defined as there: it is the probability that the open
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state of the Network is λ at point of commitment. Beyond this point, the proof differs
from that of FC̃OM.

Note that FfCP allows multiple proof sessions based on the same commitment. We
shall use i to denote the proof number (i.e., the first proof will have i = 1 and so on).
Let τ be an upperbound on the number of proofs (which is a polynomial depending on
the environment). The monitor could use any proof to derive the witness w∗. However,
depending on different values for the locked state, different proofs may have different
probabilities of being accepted. So it will not be sufficient to consider just one value of
i. As was done with locked state values in the case of FC̃OM, this will be dealt with by
considering multiple values of i. In fact, the monitor will form a set ∆ to “cover” pairs of
the form (λ, i) for most values of λ and i.

Unlike in the case of FC̃OM, since the witness to be recorded is not necessarily revealed
later, the witness recorded w∗λ is defined in terms of an extractor E . The extractor E when
started with parameters (λ, δ, i) will emulate the Network, starting from the states (λ, δ)
(which correspond to the open and locked states of the Network at the point FfCP accepts
the commitment). For purpose of analysis, we assume that the monitors for MFC̃OM

are also started for the instances of MFC̃OM used in the proof phase. Further we shall
condition on the event that none of these monitors raise an alarm. This will not make
any significant difference to the conclusions below since only polynomially many such
monitors are invoked (even taking into account the possible cloning of the Network by
E), and the probability that any of them raises an alarm is negligible (by considering an
appropriate monitor).

Construction 6.9: Extractor E(λ, δ, i).

Suppose the prover enters the ith proof with FfCP, with a common input x. If the
prover makes the commitment step in this proof, then at that point E clones the
entire Network and runs two independent threads of execution. If in both threads
the proofs are eventually accepted by FfCP, E checks if the t-bit queries made by FfCP

in ZKPR(x; r, c) are identical or not (where t = ω(log k)). If they are not identical
this lets E extract a Hamiltonian cycle for the graph G (assuming the monitors for
the FC̃OMs do not raise any alarm). Then E derives a witness (w, r′, y) from this
Hamiltonian cycle, and outputs it. Else it outputs ⊥.

We shall denote the probability that E(λ, δ, i) outputs a witness of the form (w, ·, ·) by
p
(λ,δ,i)
ext:w . Also the probability that E(λ, δ, i) outputs any witness at all will be denoted by

p
(λ,δ,i)
ext . Note that p

(λ,δ,i)
ext =

∑
w p

(λ,δ,i)
ext:w .

Now we are ready to describe how MΠ chooses the value w∗λ. It chooses a set ∆ of δ

and uses them to “cover” a set Λ of values for open states, as was done by the monitor for
MFC̃OM. The only differences are that Λ consists of pairs (λ, i), rather than just the open
state values λ, and instead of looking at p

(λ,δ)
rev , now the monitor looks at p

(λ,δ,i)
ext .9 That is,
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at each step of building ∆ and Λ, we add a new δ to ∆ if∑
(λ,i) 6∈Λ

pλp
(λ,δ,i)
ext ≥ 1/$

and then use it to cover all (λ, i) for which

p
(λ,δ,i)
ext ≥ 1/(2$τ).

The covered pair (λ, i) is added to Λ.
For (λ, i) ∈ Λ, define δ(λ,i) as the value in ∆ which covers it. For (λ, i) 6∈ Λ, let δ(λ,i)

be an arbitrary value in ∆ (say the lexicographically smallest value). Then we denote

p
(λ,δ(λ,i),i)
ext:w by p

(λ,i)|∆
ext:w , and p

(λ,δ(λ,i),i)
ext by p

(λ,i)|∆
ext .

Then, similar to before, the following properties will hold.∑
(λ,i) covered by δ

pλ ≥ 1/(2$) ∀δ (6.6)

|∆| ≤ 2τ$ (6.7)∑
(λ,i) 6∈Λ

pλp
(λ,δ,i)
ext ≤ 1/$ ∀δ (6.8)

p
(λ,i)|∆
ext ≥ 1/(2$) if (λ, i) ∈ Λ. (6.9)

Note that in equation (6.7), we have an extra factor of τ now, because the each λ can be
covered up to τ times (for each value of i).

Construction 6.10: Monitor MΠ.

Given λ, if there is some i such that (λ, i) ∈ Λ, then define w∗λ as that w which
maximizes p

(λ,i)|∆
ext:w . Note that for the same value of λ, we may have (λ, i) ∈ Λ for

multiple values of i; maximization is over all such pairs. If for no i do we have
(λ, i) ∈ Λ, then define w∗λ as the all-zero string. If the open state of the Network is
λ at the point of commitment, then MΠ records w∗λ as the committed value.
Note that Λ may be exponentially large in k, but MΠ is computationally unlimited.
Also note that Λ is defined independent of the locked state of the Network δ∗. Thus
indeed MΠ can calculate w∗λ at the point of commitment.
Then if for any proof in the session if ℘FfCP

accepts a statement such that w∗λ is not
part of a valid witness for the statement, then MΠ raises an alarm.

Our aim is to show that the probability MΠ raises an alarm is less than 1/Π.
Roughly, the covered values of λ (i.e., λ such that (λ, i) ∈ Λ for some i) are such that

with a good probability the extractor will extract some w starting with the locked state δ.
However, this does not prevent the extractor from extracting different values of w with
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significant probabilities. Intuitively however, extracting different values of w will let one
find a collision in the hash function, and hence the weight of such λ should be small. We
formalize this below.

Let Λbad ⊆ Λ contain all (λ, i) ∈ Λ such that p
(λ,i)|∆
ext:w∗λ

≤ 1
2p

(λ,i)|∆
ext . Then

Claim.

p
(λ,i)|∆
ext:w∗λ

≥ 1/(4$) for (λ, i) ∈ Λ\Λbad (6.10)∑
(λ,i)∈Λbad

pλp
(λ,i)|∆
ext ≤ νk (6.11)

where νk stands for some negligible function in k.

Equation (6.10) follows from the definition of Λbad and equation (6.9). To prove
equation (6.11) first we observe that if p

(λ,i)|∆
ext:w∗λ

≤ 1
2p

(λ,i)|∆
ext , then we can split the val-

ues w into two sizeable disjoint sets: W 1 and W 2 such that for i = 1, 2 we have∑
w∈Wi p

(λ,i)|∆
ext:w∗λ

≥ 1
4p

(λ,i)|∆
ext . Then, we can build a PPT machine MΨ\V (with oracle ac-

cess to Ψ\V ) to find collisions in H (for ID V ) with probability polynomially related to∑
(λ,i)∈Λbad

pλp
(λ,i)|∆
ext , as follows.

Construction 6.11:

MΨ\V to find collisions in H. MΨ\V simulates the entire Network (recall that the
monitor operates only when V is honest, and hence Ψ\V subsumes Ψ), with the
following modifications:

• Instead of sending random r to ℘
P , it will accept r as an input and send that

to ℘
C as the first message in the commitment phase.

• On reaching an open state λ at the point after the commitment phase, for each
i = 1, . . . , τ and δ ∈ ∆ MΨ\V runs two copies of the extractor E(λ, δ, i).

• If for any δ ∈ ∆, the two executions of E(λ, δ, i) extract different values w1

and w2, then MΨ\V uses them to derive a collision.

The probability of MΨ\V outputting a collision is bounded below by

∑
(λ,i)∈Λbad

pλ (Pr [w1 ∈W1]Pr [w2 ∈W2]) ≥
∑

(λ,i)∈Λbad

pλ

(
1
4
p
(λ,i)|∆
ext

)2

≥ 1
16

 ∑
(λ,i)∈Λbad

pλp
(λ,i)|∆
ext

2

.
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Since the left hand side is negligible, so must the right hand side, proving equation (6.11).

Now we need to show that, no matter what the actual value δ∗ of the locked state
of the Network is, the probability that MΠ raises an alarm is smaller than 1/Π. For this
again we construct a collision finder NΨ\V (somewhat resembling the above construction
of MΨ\V , but using δ∗ for one of the runs on which the extractor is applied).

Construction 6.12: NΨ\V to find collisions inH.

NΨ\V simulates the entire Network (recall that the monitor operates only when V

is honest, and hence Ψ\V subsumes Ψ), with the following modifications:

• Instead of sending random r to ℘
P , it will accept r as an input and send that

to ℘
C as the first message in the commitment phase.

• On reaching an open state λ at the point after the commitment phase, for each
i = 1, . . . , τ and δ ∈ ∆ NΨ\V runs a copy of the extractor E(λ, δ, i). Further, it
runs a copy of the extractor with the real locked state δ∗, E(λ, δ∗, i).

• If E(λ, δ∗, i) outputs w1 and for any δ ∈ ∆, the execution of E(λ, δ, i) extracts
w2 6= w1, then NΨ\V uses (w1, w2) to derive a collision.

For every i we have

Pr
[
NΨ\V succeeds

]
≥
∑

λ

pλp
(λ,i)|∆
ext:w∗λ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

 .

This is because if in the “real run” (i.e., with the locked state δ∗) the extractor returns
w 6= w∗λ and in the run with δ = δ(λ,i) if the extractor returns w∗λ, then NΨ\V succeeds in
outputting a collision. Note that the right hand summation is over mutually exclusive
events (one event for each value of λ). Now summing up the above for i = 1, . . . , τ we
get

τ Pr
[
NΨ\V succeeds

]
≥
∑
λ,i

pλp
(λ,i)|∆
ext:w∗λ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w


≥

∑
(λ,i)∈Λ

pλp
(λ,i)|∆
ext:w∗λ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w


≥

∑
(λ,i)∈Λ\Λbad

pλp
(λ,i)|∆
ext:w∗λ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

 .
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Now applying equation (6.10) (and dividing by τ ), we obtain

Pr
[
NΨ\V succeeds

]
≥ 1

4$τ

∑
(λ,i)∈Λ\Λbad

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w


=

1
4$τ

∑
(λ,i)∈Λ

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

− ∑
(λ,i)∈Λbad

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

 .

Then, applying equation (6.11), we obtain

Pr
[
NΨ\V succeeds

]
≥ 1

4$τ

∑
(λ,i)∈Λ

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

− νk. (6.12)

Now we shall relate Pr [alarm] to
∑

(λ,i)∈Λ

(
pλ
∑

w 6=w∗λ
p
(λ,δ∗,i)
ext:w

)
. Recall that alarm oc-

curs when ℘FfCP
accepts a statement for which w∗λ is not part of a valid witness, where

λ is the open state of the Network at the point of commitment (in the commitment
phase). Let alarmi denote the event that the alarm is raised for the ith proof. Then
Pr [alarm] ≤

∑τ
i=1 Pr [alarmi]. Let αi denote the full state of the Network at the point at

which the extractor would have forked (i.e., the point at which ℘FC̃OM
— run internally by

℘FfZK
in turn run by ℘FfCP

— accepts the commitment for the zero knowledge proof). Let
qαi denote the probability that conditioned on αi, a proof of a statement for which w∗λ is
not part of a valid witness is accepted by ℘FfCP

. Then

Pr [alarmi] =
∑
αi

pαiqαi .

On the other hand,

∑
λ,i

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w ≥

∑
i

∑
αi

pαiqαi(qαi − νk) ≥ 1/τ

(∑
i

∑
αi

pαiqαi

)2

− νk

where νk stands for a negligible function in k. Further,

Pr [alarm] ≤
τ∑

i=1

Pr [alarmi].

Combining the above inequalities we get∑
λ,i

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w ≥ 1/τ Pr [alarm]2 − νk. (6.13)
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It remains to relate this to the sum on the left hand restricted to (λ, i) ∈ Λ.∑
(λ,i)∈Λ

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w =

∑
λ,i

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w −

∑
(λ,i) 6∈Λ

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w

≥
∑
λ,i

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w −

∑
(λ,i) 6∈Λ

pλp
(λ,δ,i)
ext .

Then appealing to equation (6.8),∑
(λ,i)∈Λ

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w ≥

∑
λ,i

pλ

∑
w 6=w∗λ

p
(λ,δ∗,i)
ext:w − 1/$. (6.14)

Combining equations (6.12), (6.13) and (6.14)

τ Pr
[
NΨ\V succeeds

]
≥ 1

4$

(
1
τ

Pr [alarm]2 − νk − 1/$

)
− νk.

Since Pr
[
NΨ\V succeeds

]
is negligible by Assumption A2, we conclude that

Pr [alarm] ≤
√

τ/$ + νk.

By choosing $ = 2τΠ2 we obtain that the probability MΠ raises an alarm, Pr [alarm] is
less than 1/Π, as needed to be proved. �

Given that the monitors for FC̃OM and FfCP do not require to inspect the locked states,
it easily follows that the monitors for the FfZK and FCSC need not inspect the locked states
either. (Recall that these monitors simply run the other monitors internally.) Thus we get
the following result.

Lemma 6.5. For any polynomial (in the security parameter k) Π, under Assumption A2, there is
a monitor satisfying the requirements specified byMFgCSC which does not inspect the locked state
of the Network, such that the probability of the monitor raising an alarm is less than 1/Π.

This result is useful when the client K can keep its input locked until after the server
Q commits to its input. (Note that the protocol CSC requires K to unlock its input after
the commitment by Q.) Then the monitor is guaranteed to record the server’s input
independent of the client’s.

6.6 Conclusion

In this chapter we presented an alternate notion of Los Angeles security, employing the
new concept of monitors. Monitored functionalities capture a level of security which is
weaker than Los Angeles security, but is nevertheless of intuitive value. The advantage of
this notion is demonstrated by the fact that protocols like CSC which (after substituting
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in all ideal subroutines) are extremely simple can be shown secure under this notion.
However its usefulness is somewhat limited: in the case of client-server computation, the
client must keep its input locked until after the server commits to its input, to have the
guarantee that the server’s input is independent of client’s. The way we have formulated
the framework, weaker guarantees of independence are not available. In the next chapter,
we point out a few interesting directions in which this exploration could be furthered.
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Notes
1Stand-alone security notions can also be seen as relaxations of Network-aware security, which admit

much simpler protocols. However, when these protocols are deployed in a Network setting, the stand-alone
security guarantees simply do not have any implications. Our goal is to develop relaxed Network-aware
security definitions which, though weaker, are nevertheless for the Network setting.

2A monitor is different from an angel in a crucial manner: a monitor can see the entire Network, including
inputs to the honest parties, where as an angel does not see anything that the adversary cannot. Further, the
monitor does not communicate with any of the other entities in the Network, except by raising an alarm
(which, it will be required, should happen only with negligible probability). In contrast an angel is available
for counsel to the environment, the adversary and the transvisors.

3It is always the case that, in general, if a party uses its input in one session, then there may be no
independence in a later protocol. However, Network-aware security can still provide a relative security
guarantee which is useful if we know that the information leaked by a previous use of the input can be
tolerated. In the context of monitored functionalities and locked states as presented here, we do not provide
any guarantee of independence when an input has been used previously.

4 However, typically the entire Network except for the session being analyzed and the adversary can
be considered part of the environment. The monitors we demonstrate are robust against redefining the
Network in this way.

5The monitor’s recorded value is independent of as yet unsampled randomness in the Network. So if the
client’s input is only a freshly sampled random value, as is the case in a ZK proof or coin-tossing protocol,
this issue does not arise.

6Incidentally, in the use of semi-functionalities in Chapter 5, the only locked state is future randomness.
However this is an especially simple special case, taken care of by the proofs there. As it turns out general-
izing to other locked states complicates our arguments considerably.

7In other words, the inputs are for one time use only. After that if it is used as a client input in a server-
client computation protocol, there is no guarantee that the server’s input will be independent of that input.
This is a significant limitation. However note that a client’s input for a “server-client” computation, with a
corrupt server is the last time it can be used secretly, as the computation gives the client’s input to the server.

It is an interesting problem to relax this information theoretic locking constraint to a computational
equivalent.

8These arguments extend to the adaptive case. There the simulation is carried out until the receiver is
corrupted.

9The reason for considering (λ, i) is that while relating to the alarm probability, we need to consider the
possibility that the alarm may occur for any i.
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Chapter 7

Conclusion

In this thesis we have overcome a proven impossibility, by an appropriate change in
the theoretical abstraction involved. Our new notions of security are aimed at making
the theory of cryptography more practically relevant, as much as at answering pressing
problems posed in the literature. While the protocol in Chapter 5 for secure multi-party
computation without trusted setups is our central result, the definition of security using
angels is the critical enabling element in this work. The assumptions we used in Chapters
5 and 6 are also crucially used in the constructions.

There are several directions in which this research must be carried forward. We list a
few of these below.

Complexity Theoretic Assumptions. Our novel complexity assumptions is a strength
as well as weakness of our work. On the one hand we would like to know if more
standard assumptions can yield similar results. This question has been in part answered
by the recent work of Barak and Sahai [BS05], who avoid the “non-malleable” nature
of our assumptions, though their protocols are significantly more involved. Another
question is whether our assumptions can be reduced to other assumptions which may
be easier to study or evaluate. Malkin et. al. [MMY05] use specific number theoretic
assumptions (which are still non-standard) to instantiate hash functions satisfying our
assumptions.

The other possible direction is to investigate the implications of our assumptions. In
particular, we would like to know whether these or similar assumptions can yield im-
proved protocols, or whether they have implications in cryptography beyond the con-
struction of protocols for general multi-party computation.

In either direction, it is an intriguing problem to understand our assumptions further
and see how they relate to more well-studied assumptions in complexity theory.

Tradeoffs Against Efficiency. Monitored security notion of Chapter 6 promises a viable
efficiency-security tradeoff: by replacing certain security requirements by their moni-
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tored equivalents, it may be possible to construct vastly simpler protocols. This tradeoff
has more room for investigation, both in terms of constructing new functionalities and
protocols within the monitored security framework, and in terms of devising even newer
frameworks for providing weaker security guarantees.

Another tradeoff is between efficiency and the strength of complexity assumptions.
Indeed, by requiring that it is not only hard to find a collision for the hash functionH, but
in fact it is hard to even find a point in the range of the hash function which has multiple
pre-images, one could convert the basic protocol BCOM itself into a secure protocol for
FCOM (using an appropriate angel). However requiring that it is hard to find such points
in the range, along with Assumption A1 is a very strong assumption. It is a challenge to
assess this tradeoff as it requires a good understanding of the strength of the assumption.

Extensions. Several extensions are possible to our protocols, some of which are rela-
tively simple. On the other hand certain other extensions are open questions.

Our results for general multi-party computation are all restricted to static adver-
saries. The proofs do not generalize to the setting of adaptive adversary: protocols COM

and OMCP use perfectly binding commitments which prevents them from being secure
against an adaptive attack. It is not clear if simple modifications of the our protocol can
yield security against adaptive attacks. However Barak and Sahai [BS05] do provide such
security guarantee for their protocol.

In the case of monitored functionalities, the extension to adaptive adversaries is eas-
ier, because the basic protocols BCOM and BZK do not use binding commitments, and are
secure against adaptive adversaries; encryption protocol ENC can also be made secure
against adaptive adversaries by using non-committing encryptions [CFGN96, DN00]
(with appropriate complexity theoretic assumptions) as pointed out in [Can01, CLOS02].
The challenge, on the other hand, is to extend the applicability of the framework to more
general multi-party computation problems (retaining the relative simplicity of the pro-
tocols). While it is not hard to extend the 2-party client-server computation to a multi-
client-single-server setting, it seems problematic to extend it to a general setting with no
server, and retain the independence guarantees as well as the advantages of using moni-
tors. Intriguing possibilities include considering computational restrictions on monitors
(but still giving them more power than the players) as well as formulating less than per-
fect independence guarantees for inputs.

Restricted Models. Studying simplified models is often useful in understanding fun-
damental issues and in developing tools which may be extended to more complicated
settings. One direction of simplification would be to impose restrictions on the nature
of the Network, on the pattern of corruptions allowed in the Network or on the kind of
functionalities of interest. Indeed, models preceding the Network-aware security model
can be considered to be the result of such restrictions. However it may be useful to con-
sider newer models which are closer to the Network-aware security model in what we
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now know are some crucial features (like requiring a transvisor-based simulation, and
not a rewinding-based one). For instance [PS05] introduces a “fixed-roles” model called
the server-client model (which we omit from this thesis), which otherwise retains all the
features of the model used for Los Angeles Network-aware security. Interestingly, the
resulting simplifications in the assumptions on the hash function H make it possible to
realize such a hash function using standard (super-polynomial) assumptions [MMY05].

From Theory to Practice. From a practical point of view the ultimate goal of theoret-
ical cryptography is to able to provide meaningful security guarantees for practically
deployed schemes. Some of the challenges involved are of a fundamental nature and
well within the realm of theoretical cryptography. We already mentioned the issue of
efficiency. Another issue is regarding the use of randomness. In theory we assume that
all parties have access to perfect randomness: secret, unbiased random bits which are
independent of each other and of the rest of the Network. However this is somewhat
problematic (even without going into the philosophical questions of modeling physical
sources using probability distributions), because in practice, the sources available are sel-
dom perfectly random. A more plausible guarantee is that they have a high entropy rate.
However now we know [DOPS04] that such a guarantee is not enough. It remains an
interesting question to model imperfect random sources theoretically and understand
how they can be safely used in cryptography. Another challenge is to contain the side-
channels by which the environment communicates with the adversary. Note that the
security of the cryptographic protocols does not make any guarantee regarding the be-
havior of the environment. A more detailed and less pessimistic model of environment,
adversary and communication will be be helpful in studying these side-channels, and
also may prove useful in dealing with new (to theory) problems like denial of service at-
tacks. Indeed, there is a lot of room for the trade-off between generality and usefulness.

While Network-aware security notions are fast evolving and provide a fertile ground for
exploration and innovation, attempts at becoming relevant to practice will probably pro-
vide the most challenging and rewarding directions to pursue this exploration. This the-
sis — by providing flexible definitions of security, demonstrating secure protocols with
no trusted setups and simpler protocols with a security-efficiency tradeoff, and devising
concrete complexity assumptions to capture strong assumptions on hash functions used
in practice — takes a step along that direction.
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Notation Quick Reference

k Security parameter. pg. 22.

TΓ Class of PPT transvisors with access to the angel Γ. pg. 38.

A The Adversary in the Network. pg. 17.

AΓ Class of PPT adversaries with access to Γ. May have restrictions in corruption
patterns. pg. 24.

Å Class of adversaries which do not corrupt any party or communicate with the
environment, and deliver all messages immediately. pg. 24.

AΓ
SH,AΓ

SH-static Class of semi-honest (honest-but-curious) adversaries. pg. 24.

AΓ
static Class of PPT adversaries with access to Γ, restricted to static corruption. pg. 24.

SΓ,SΓ
static,SΓ

SH,SΓ
SH-static Classes of simulators. pg. 24.

Z The Environment in the Network. pg. 17.

ZΓ Class of PPT environments with access to Γ, invoking a single session of a proto-
col. pg. 24.

ZΓ
∗ Class of PPT environments with access to Γ, invoking multiple sessions of proto-

cols from a protocol collection. pg. 24.

Z, Astatic, ASH-static, Sstatic, SSH-static Classes of environments, adversaries and simulators
without access to any angel. pg. 24.

π,ρ, σ, φ Typical symbols used to denote unnamed protocols. pg. 18.

Σπ,sid A session of protocol π with session ID sid. When irrelevant or clear from the
context, π and/or sid may be dropped from the symbol. pg. 18.

℘
Σ,pid A program instance associated with the protocol session Σ, executed by an honest

party in the Network. pid identifies this program within the session Σ. When the
session and program ID are clear or irrelevant, we simply write ℘. pg. 18.
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F Typical symbol for an ideal functionality. pg. 19.

℘F An instance of the functionality F . pg. 19.

µ Typical variable used to indicate the identity string of a party. pg. 56.

Ik Set of identities used for the parties. (See Section 5.9.) pg. 56.

pid Typical symbol to denote a program instance ID value. pg. 18.

sid Typical symbol to denote a session ID value. pg. 18.

Γ Typical symbol for an angel. pg. 19.

X Set of corrupted parties in the Network. pg. 57.

Ψ The angel used in protocols of Chapters 5 and 6. pg. 57.

Ψ∗ An oracle like Ψ, but does not filter queries based on X. pg. 57.

Ψ\µ An oracle like Ψ∗, but filters out queries for ID µ. pg. 57.

comb(E1, . . . , E`) Combination of the entities E1, . . . , E` in the Network. pg. 25.

EXECπ,Z,A Random variable for the bit output by Z in a Network with (at most) one
session of the protocol π and adversary A. pg. 35.

〈F〉 A dummy protocol for communicating with the ideal functionalityF . The dummy
protocol 〈F〉 typically involves just relaying to ℘F all the inputs received, and out-
putting the messages received from ℘F . pg. 36.

T ρ→π Transvisor which transforms the view of the adversary from that of interacting
with a session of ρ to that of interacting with a session of π. pg. 38.

πφ/σ Protocol π with subroutine σ substituted by φ. (Mnemonic: π using φ instead of
σ.) pg. 44.

B(·) Hardcore predicate associated with the collection of trapdoor permutations T. pg.
57.

C A perfectly binding commitment scheme. pg. 58.

Dµ
r A distribution over collisions inH(µ, r, ·, ·). pg. 56.

H A non-self-reducible collision-resistant hash function. pg. 56.

T A collection of trapdoor permutations. T denotes the algorithm used to sample
permutations and trapdoors — (f, f−1) — from the collection. pg. 57.
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