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Basics: Indistinguishability
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Independence


Statistical Indistinguishability


Computational Indistinguishability



A Game

A “dealer” and two “players” Alice and Bob (computationally 
unbounded)


Dealer has a message, say two bits m1m2


She wants to “share” it among the two players so that 
neither player by herself/himself learns anything about the 
message, but together they can find it


Bad idea: Give m1 to Alice and m2 to Bob


Other ideas?



Sharing a bit

To share a bit m, Dealer picks a uniformly random bit b and gives 
a := m⊕b to Alice and b to  Bob


Together they can recover m as a⊕b


Each party by itself learns nothing about m: for each possible 
value of m, its share has the same distribution  
 

 

i.e., Each party’s “view” is independent of the message

m = 0 → (a,b) = (0,0) or (1,1) w.p. 1/2 each

m = 1  → (a,b) = (1,0) or (0,1) w.p. 1/2 each

a = ShareA(m;r) = m⊕r 
b = ShareB(m;r) = r   . 



Is the message m really secret?


Alice or Bob can correctly find the bit m with probability ½, by 

randomly guessing


Worse, if they already know something about m, they can do 
better (Note: we didn’t say m is uniformly random!)


But they could have done this without obtaining the shares


The shares didn’t leak any additional information to either party


Typical crypto goal: preserving secrecy


What Alice (or Bob) knows about the message after seeing her 
share is the same as what she knew a priori

Secrecy



What Alice knows about the message a priori: probability 
distribution over the message


For each message m, Pr[msg=m]


What she knows after seeing her share (a.k.a. her view)


Say view is v. Then new distribution: Pr[msg=m | view=v]


Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]


i.e., view is independent of message


Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view=v]


i.e., for all possible values of the message, the view is 
distributed the same way


i.e., ∀ m1,m2  { ShareA(m1;r) }r ≡ { ShareA(m2;r) }r 

Secrecy



Equivalent formulations:


For all possible values of the message, the view is distributed 
the same way


∀ v, ∀m1, m2, Pr[view=v | msg=m1] = Pr[view=v | msg=m2]


View and message are independent of each other


∀ v, ∀ m, Pr[msg=m, view = v] = Pr[msg = m] × Pr[view = v] 


View gives no information about the message


∀ v, ∀ m, Pr[msg=m | view=v] = Pr[msg = m]


Important: can’t say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] 
(unless the prior is uniform)

Secrecy
Doesn’t involve message 

distribution at all.

Require a message 
distribution (with full 

support)

Require a message 
distribution (with full 

support)



Consider the following secret-sharing scheme


Message space = { Jan, Feb, Mar }


Jan  → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each


Feb  → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each


Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or 
(11,00) w/ prob 1/8 each


Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as 
follows: 00 → Jan, 01 → Feb, 10 or 11 → Mar


Is it secure?

Exercise



Shared-key (Private-key) Encryption


Key Generation: Randomized


K ← K , uniformly randomly drawn from the key-space 

(or according to a key-distribution)


Encryption: Deterministic


Enc: M ×K →C


Decryption: Deterministic


Dec: C ×K → M 

The Syntax

Onetime Encryption

Will change later 
(for more-than-once 

encryption)



Perfect Secrecy

0 1 2 3

a x y y z

b y x z y

M

K

Onetime Encryption

Perfect secrecy: ∀ m, m’ ∈ M


{Enc(m,K)}K←KeyGen = {Enc(m’,K)}K←KeyGen


Distribution of the ciphertext is defined 
by the randomness in the key


In addition, require correctness


∀ m, K,   Dec( Enc(m,K), K) = m


E.g. One-time pad: M = K = C  = {0,1}n and      

Enc(m,K) = m⊕K, Dec(c,K) = c⊕K


More generally M = K = C = G (a finite group) 

and Enc(m,K) = m+K, Dec(c,K) = c-K

Distribution of the ciphertext

Assuming K uniformly drawn from K 


Pr[ Enc(a,K)=x ] = ¼,  
Pr[ Enc(a,K)=y ] = ½,  
Pr[ Enc(a,K)=z ] = ¼

______________ 
Same for Enc(b,K).



Relaxing  
Secrecy Requirement

When view is not exactly independent of the message


Next best: view close to a distribution that is independent of 
the message


Two notions of closeness: Statistical and Computational
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Statistical Difference
Given two distributions A and B over the same sample space, how  
well can a test T distinguish between them?


T given a single sample drawn from A or B


How differently does it behave in the two cases?


Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

a.k.a. Statistical Distance or Total Variation Distance



Indistinguishability
Two distributions are statistically indistinguishable from each 
other if the statistical difference between them is “negligible”


What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!


Security guarantees will be given asymptotically as a function of 

the security parameter


A knob that can be used to set the security level


Given {Ak}, {Bk}, Δ(Ak,Bk) is a function of the security parameter k


Negligible: reduces “very quickly” as the knob is turned up


“Very quickly”: quicker than 1/poly for any polynomial poly


So that if negligible for one sample, remains negligible for 
polynomially many samples



Indistinguishability

Distribution ensembles {Ak}, {Bk} are statistically indistinguishable 
if ∃ negligible ν(k) s.t. Δ(Ak,Bk) ≤ ν(k) 


Δ(Ak,Bk) := max T | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] |


ν(k) is said to be negligible if ∀ d ≥ 0, ∃ N s.t. ∀ k>N, ν(k) < 1/kd


Can rewrite as: ∀ tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

In particular, the best test



Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Efficient: Probabilistic Polynomial Time (PPT)


PPT T: a family of randomised programs Tk (one for each value 
of the security parameter k), s.t. there is polynomial p with 
each Tk running for at most p(k) time


(Could restrict to uniform PPT. But by default, we’ll allow  
non-uniform.)

Non-Uniform

Ak ≈ Bk


