Advanced Tools from Modern Cryptography

Lecture 1
Basics: Indistinguishability

Manoj Prabhakaran

IIT Bombay

Outline

- Independence
- Statistical Indistinguishability
- Computational Indistinguishability

A Game

- A "dealer" and two "players" Alice and Bob (computationally unbounded)
- Dealer has a message, say two bits m₁m₂
- She wants to "share" it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it
- Bad idea: Give m₁ to Alice and m₂ to Bob
- Other ideas?

Sharing a bit

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
 - Together they can recover m as a⊕b

Each party by itself learns nothing about m: for each possible value of m, its share has the same distribution

m = 0
$$\rightarrow$$
 (a,b) = (0,0) or (1,1) w.p. 1/2 each
m = 1 \rightarrow (a,b) = (1,0) or (0,1) w.p. 1/2 each

• i.e., Each party's "view" is independent of the message

Secrecy

- Is the message m really secret?
- ullet Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is uniformly random!)
- But they could have done this without obtaining the shares
 - The shares didn't leak any <u>additional</u> information to either party
- Typical crypto goal: preserving secrecy
 - What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori

Secrecy

- What Alice knows about the message a priori: probability distribution over the message
 - For each message m, Pr[msg=m]
- What she knows after seeing her share (a.k.a. her view)
 - Say view is v. Then new distribution: Pr[msg=m | view=v]
- Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]
 - i.e., view is independent of message
 - Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view=v]
 - i.e., for all possible values of the message, the view is distributed the same way
 - i.e., \forall m₁,m₂ { Share_A(m₁;r) }_r = { Share_A(m₂;r) }_r

Secrecy

Doesn't involve message distribution at all.

- Equivalent formulations:
 - For all possible values of the message, the view is distributed the same way
 - o \forall v, $\forall m_1$, m_2 , $Pr[view=v \mid msg=m_1] = Pr[view=v \mid msg=m_2]$
 - View and message are independent of each other
 - View gives no information about the message

Require a message distribution (with full support)

Important: can't say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] (unless the prior is uniform)

Exercise

- Consider the following secret-sharing scheme
 - Message space = { Jan, Feb, Mar }
 - Jan → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each
 - Feb → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each
 - Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or (11,00) w/ prob 1/8 each
 - Reconstruction: Let β₁β₂ = share_{Alice} ⊕ share_{Bob}. Map β₁β₂ as follows: 00 → Jan, 01 → Feb, 10 or 11 → Mar
- Is it secure?

Onetime Encryption The Syntax

- Shared-key (Private-key) Encryption
 - Key Generation: Randomized
 - \bullet K \leftarrow % , uniformly randomly drawn from the key-space (or according to a key-distribution)
 - Encryption: Deterministic <</p>

• Enc: $\mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}$

Will change later (for more-than-once encryption)

- Decryption: Deterministic
 - © Dec: C×K→ M

Onetime Encryption

Perfect Secrecy

- Perfect secrecy: ∀ m, m' ∈ M
 - $\{Enc(m,K)\}_{K\leftarrow KeyGen} = \{Enc(m',K)\}_{K\leftarrow KeyGen}$
- Distribution of the ciphertext defined by the randomness in the key
- In addition, require correctness
 - ∀ m, K, Dec(Enc(m,K), K) = m
- E.g. One-time pad: $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ and $Enc(m,K) = m \oplus K$, $Dec(c,K) = c \oplus K$
 - More generally $\mathcal{M} = \mathcal{K} = \mathcal{C} = \mathcal{C}$ (a finite group) and Enc(m,K) = m+K, Dec(c,K) = c-K

91	0	1	2	3
a	×	У	У	Z
b	У	×	Z	У

Assuming K uniformly drawn from ${\mathscr K}$

$$Pr[Enc(a,K)=x] = \frac{1}{4},$$

$$Pr[Enc(a,K)=y] = \frac{1}{2}$$
,

Pr[Enc(a,K)=z] =
$$\frac{1}{4}$$

Relaxing Secrecy Requirement

- When view is not exactly independent of the message
 - Next best: view close to a distribution that is independent of the message
 - Two notions of closeness: Statistical and Computational

Statistical Difference

- Given two distributions A and B over the same sample space, how well can a <u>test</u> T distinguish between them?
 - T given a single sample drawn from A or B
 - How differently does it behave in the two cases?

Indistinguishability

- Two distributions are statistically indistinguishable from each other if the statistical difference between them is "negligible"
- Security guarantees will be given asymptotically as a function of the security parameter
 - A knob that can be used to set the security level
- Given $\{A_k\}$, $\{B_k\}$, $\Delta(A_k,B_k)$ is a function of the security parameter k
- Negligible: reduces "very quickly" as the knob is turned up
 - "Very quickly": quicker than 1/poly for any polynomial poly
 - So that if negligible for one sample, remains negligible for polynomially many samples

Indistinguishability

- Distribution ensembles {A_k}, {B_k} are statistically indistinguishable if ∃ negligible ν(k) s.t. $Δ(A_k, B_k) ≤ ν(k)$
- Can rewrite as: \forall tests T_i ∃ negligible ν (k) s.t.

$$Pr_{x\leftarrow A_k}[T(x)=1] - Pr_{x\leftarrow B_k}[T(x)=1] \le v(k)$$
 In par

In particular, the best test

Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if ∀ "efficient" tests T, ∃ negligible $\nu(k)$ s.t.

$$| Pr_{x \leftarrow A_k}[T(x)=1] - Pr_{x \leftarrow B_k}[T(x)=1] | \leq \nu(k)$$

Indistinguishability

- Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if \forall "efficient" tests T, \exists negligible $\nu(k)$ s.t. $|Pr_{x\leftarrow A_k}[T(x)=1] Pr_{x\leftarrow B_k}[T(x)=1]| \leq \nu(k)$
- Efficient: Probabilistic Polynomial Time (PPT)
- Non-Uniform

 for each value
- PPT T: a family of randomised programs T_k (one for each value of the security parameter k), s.t. there is polynomial p with each T_k running for at most p(k) time
- (Could restrict to uniform PPT. But by default, we'll allow non-uniform.)