Advanced Tools from Modern Cryptography

Lecture 2 First Tool: Secret-Sharing

Secret-Sharing

- Dealer encodes a message into n shares for n parties
 - Privileged subsets of parties should be able to reconstruct the secret
 - View of an unprivileged subset should be independent of the secret
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Secure multi-party computation
 - Attribute-Based Encryption
 - Leakage resilience ...

- (n,t)-secret-sharing
 - Divide a message m into n shares s1,...,sn, such that
 any t shares are enough to reconstruct the secret
 up to t-1 shares should have no information about the secret
- Recall last time: (2,2) secret-sharing

e.g., (s₁,...,s_{t-1}) has the same distribution for every m in the message space

Construction: (n,n) secret-sharing

Additive Secret-Sharing

- Message-space = share-space = G, a finite group
 e.g. G = Z₂ (group of bits, with xor as the group operation)
 or, G = Z₂^d (group of d-bit strings)
 - \odot or, G = \mathbb{Z}_p (group of integers mod p)

Share(M):

Pick s₁,...,s_{n-1} uniformly at random from G

o Let $s_n = -(s_1 + ... + s_{n-1}) + M$

• <u>Reconstruct(s1,...,sn</u>): $M = S_1 + ... + S_n$

Claim: This is an (n,n) secret-sharing scheme [Why?]

Additive Secret-Sharing: Proof

Share(M):

PR-OOF

Ø Pick s₁,...,s_{n-1} uniformly at random from G

- Claim: Upto n-1 shares give no information about M
- Proof: Let $T \subseteq \{1,...,n\}$, |T| = n-1. We shall show that $\{s_i\}_{i \in T}$ is distributed the same way (in fact, uniformly) irrespective of what M is.
 - For concreteness consider T = {2,...,n}. Fix any (n-1)-tuple of elements in G, (g₁,...,g_{n-1}) ∈ Gⁿ⁻¹. To prove Pr[(s₂,...,s_n)=(g₁,...,g_{n-1})] is same for all M.

Fix any M.

- So $\Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = \Pr[(s_1,...,s_{n-1})=(a,g_1,...,g_{n-2})], a:=(M-(g_1+...+g_{n-1}))$
- But Pr[(s₁,...,s_{n-1})=(a,g₁,...,g_{n-2})] = 1/|G|ⁿ⁻¹, since (s₁,...,s_{n-1}) are picked uniformly at random from G
- Hence $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = 1/|G|^{n-1}$, irrespective of M.

An Application

Gives a "private summation" protocol (for <u>commutative</u> groups)

Clients with inputs

Secure against passive corruption" (i.e., no colluding set of servers/clients learn more than what they must) if at least one server stays out of the collusion

Construction: (n,2) secret-sharing

Message-space = share-space = F, a finite field (e.g. integers mod prime)

solution for $r \cdot a_i + M = d$, for

every value of d

• Share(M): pick random r. Let $s_i = r \cdot a_i + M$ (for i=1,..., n < |F|)

• Reconstruct(s_i, s_j): $r = (s_i - s_j)/(a_i - a_j)$; $M = s_i - r \cdot a_i$

Each si by itself is uniformly distributed,
 irrespective of M [Why?] { Since ai⁻¹ exists, exactly one

Geometric interpretation

• Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(a_i)$.

- s_i is independent of M: exactly one line passing through (a_i,s_i) and (0,M') for any secret M'
- But can reconstruct the line from two points!

a_i are n distinct,

(n,2) Secret-Sharing: Proof

- Share(M): pick random r ← F. Let $s_i = r \cdot a_i + M$ (for i=1,...,n < |F|)
 </p>

PPOO^t</sup>

- Claim: Any one share gives no information about M
 Proof: For any i∈{1,..,n} we shall show that s_i is distributed the same way (in fact, uniformly) irrespective of what M is.
- Consider any g∈F. We shall show that Pr[s_i=g] is independent of M.
 Fix any M.
- or any g ∈ F, s_i = g ⇔ r · i + M = g ⇔ r = (g-M) · a_i⁻¹ (since a_i≠0)
- So, Pr[s_i=g] = Pr[r=(g-M)·a_i⁻¹] = 1/|F|, since r is chosen uniformly at random

Shamir Secret-Sharing

- (n,t) secret-sharing in a (large enough) field F
- Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random <u>degree t-1 polynomial</u> f(X), such that f(0)=M. Shares are s_i = f(a_i).
 - So Random polynomial with f(0)=M: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0=M$ and $c_1,...,c_{t-1}$ at random.

• <u>Reconstruct(s₁,...,s_t)</u>: Lagrange interpolation to find $M=c_0$

Need t points to reconstruct the polynomial. Given t-1 points, out of |F|^{t-1} polynomials passing through (0,M') (for any M') there is exactly one that passes through the t-1 points

Lagrange Interpolation

Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t coefficients)

The set of t

A linear system: Wc=s, where W is a txt matrix with ith row, W_i= (1 a_i a_i² ... a_i^{t-1})

W (called the Vandermonde matrix) is invertible

 \odot c = W⁻¹s

Linear Secret-Sharing

- Share(M): For some fixed n×t matrix W, let $\overline{S} = W \cdot \overline{C}$, where $c_0 = M$ and other t-1 coordinates are random
 - The shares are subsets of coordinates of $\overline{S}_{<}$

Shamir Secret-Sharing is of this form

- Reconstruction: pool together all the available coordinates of \overline{S} ; can reconstruct if there are enough equations to solve for c_0
 - Claim: If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure
- Reconstruction too is a linear combination of available shares (coefficients depending on which subset of shares available)

Linear Secret-Sharing

• <u>Claim</u>: If not reconstructible, shares independent of secret • Suppose $T \subseteq [n]$ s.t. c_0 not reconstructible from s_T

- i.e., solution space for W_T·C = s_T is an affine subspace of some dimension d≥1, and contains at least two points with distinct values α and β for c₀
- Then, $\forall \gamma \in F$, the solution space has a point with $c_0=\gamma$ (e.g., linearly combine the above points with factors $(\gamma-\beta)/(\alpha-\beta)$ and $(\alpha-\gamma)/(\alpha-\beta)$)
- Therefore, for any $\gamma \in F$, can add equation $c_0=\gamma$ and get a solution space of dimension d-1

 ${\it {\it o}}$ i.e., with $x_0=\gamma,$ exactly $|\mathsf{F}|^{d-1}$ choices of randomness that give s_T

∞ i.e., for all s_T and γ , $Pr[view=s_T | M=\gamma] = |F|^{d-1}/|F|^{t-1}$

- Secret-sharing schemes
 (n,t) Threshold secret-sharing
 Additive sharing for (n,n)
 Shamir secret-sharing for all (n,t)
 Optimal (ideal) when Imessage-spacel is a prime-power, larger than n
 - Linear secret-sharing