Advanced Tools from Modern Cryptography

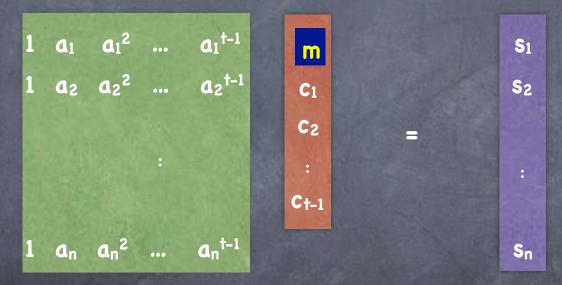
Lecture 3
Secret-Sharing (ctd.)

Secret-Sharing

- Last time
 - (n,t) secret-sharing
 - o (n,n) via additive secret-sharing
 - Shamir secret-sharing for general (n,t)
 - Shamir secret-sharing is a linear secret-sharing scheme

Shamir Secret-Sharing

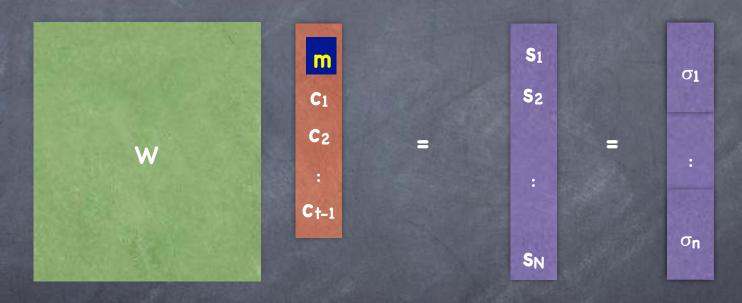
Share(m): Pick a random degree t-1 polynomial $f(X) = \sum_{i \in \{0...t-1\}} c_i X^i$, such that f(0)=m (i.e., $c_0=m$). Shares are $s_i=f(a_i)$, where a_i are distinct and non-zero.



- Reconstruct($s_{i_1},...,s_{i_t}$): Lagrange interpolation to find m= c_0
 - σ i.e., solve for (m c_1 ... c_{t-1}) from t rows of the above system

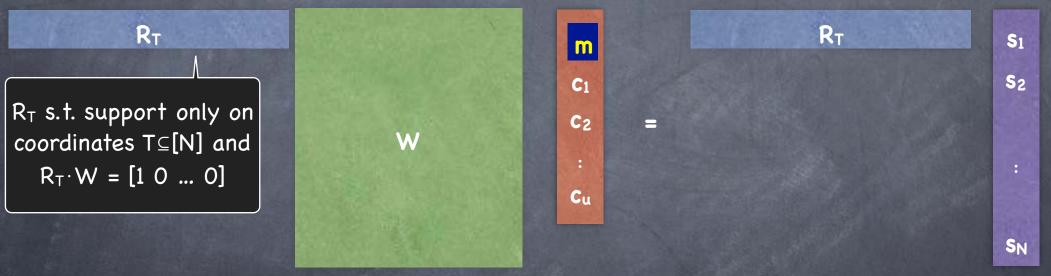
Linear Secret-Sharing

Share(m): For some fixed matrix W, let $\overline{S} = W \cdot \overline{C}$, where $c_0 = m$ and the other coordinates are random. Shares are "sub-vectors" of \overline{S} .



Linear Secret-Sharing

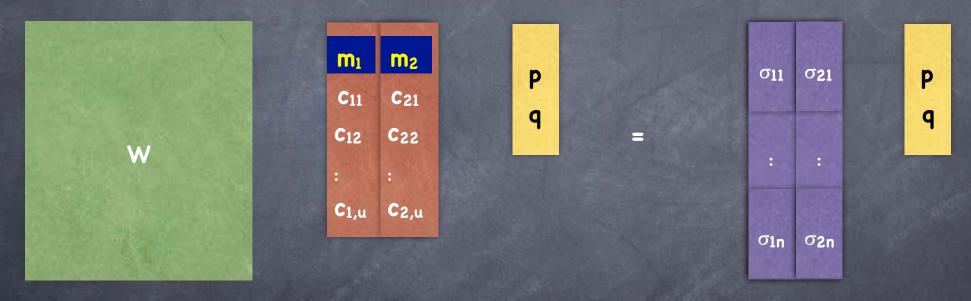
Reconstruct($\sigma_{i_1},...,\sigma_{i_t}$): pool together available coordinates $T\subseteq [N]$. Can reconstruct if there are enough equations to solve for m.



- $oldsymbol{o}$ Claim: $\forall T ⊆ [n]$, s_T either fully determines m, or is independent of m
 - If $T \subseteq [N]$ s.t. $[1\ 0\ ...\ 0]$ not in the row span of W_T , for any $\gamma \in F$, we can add an equation $m=\gamma$ to the system $W_{T} \cdot \overline{C} = s_T$. Number of resulting solutions for \overline{C} independent of γ .

Linear Secret-Sharing: Computing on Shares

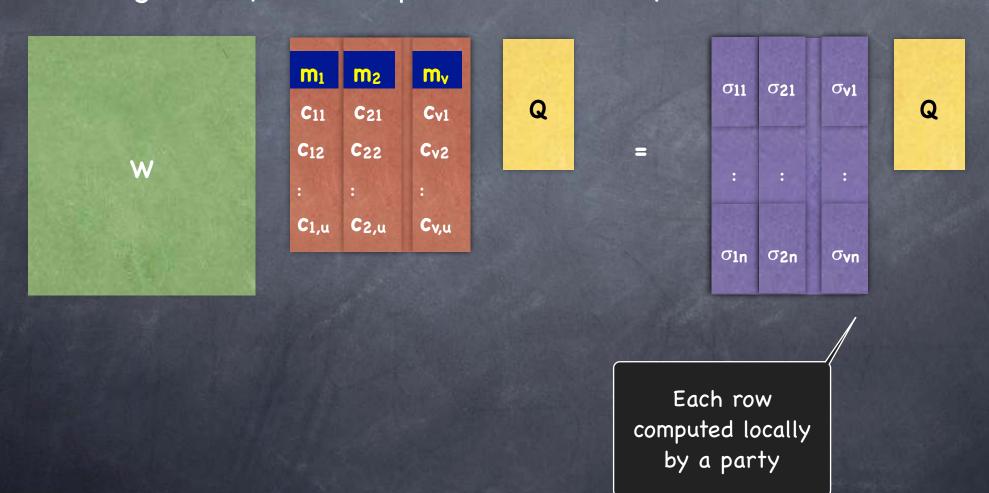
Suppose two secrets m₁ and m₂ shared using the same secretsharing scheme



Then for any p,q \in F, shares of p·m₁ + q·m₂ can be computed <u>locally</u> by each party i as $\sigma_i = p \cdot \sigma_{1i} + q \cdot \sigma_{2i}$

Linear Secret-Sharing: Computing on Shares

More generally, can compute shares of any linear transformation

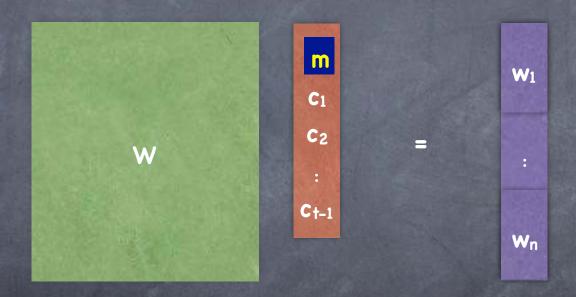


Switching Schemes

- Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
- Given shares $(w_1, ..., w_n) \leftarrow W.Share(m)$
- **Share** each w_i using scheme Z: $(\sigma_{i1},...,\sigma_{in})$ ← Z. Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon ($σ_{1j}$,..., $σ_{nj}$)
- Olaim: (z1, ..., zn) is a valid Z-sharing of m

Linear Secret-Sharing: Switching Schemes

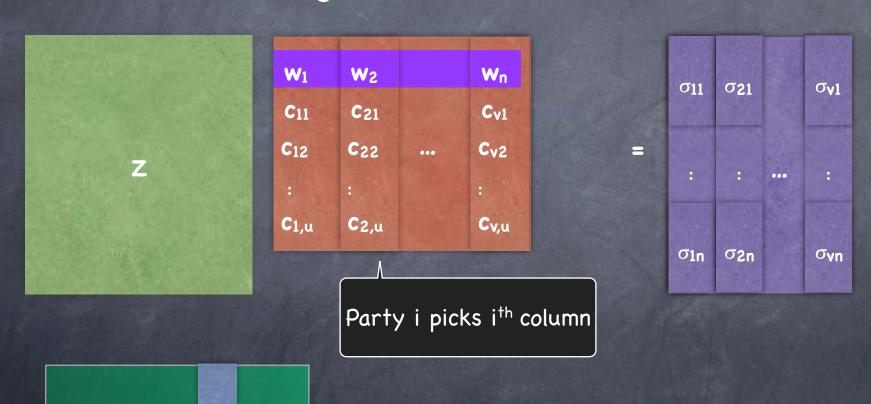
• Given shares $(w_1, ..., w_n) \leftarrow W.Share(m)$



Recall reconstruction in W:

Linear Secret-Sharing: Switching Schemes

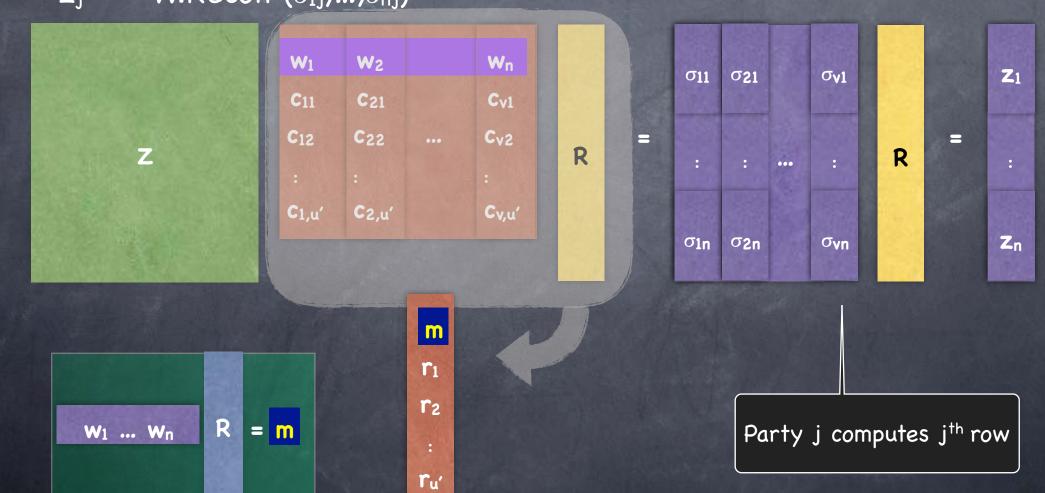
• Share each w_i using scheme $Z: (\sigma_{i1},...,\sigma_{in}) \leftarrow Z.Share(w_i)$



W1 ... Wn

Linear Secret-Sharing: Switching Schemes

Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})



Switching Schemes

- Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
- Given shares $(w_1, ..., w_n) \leftarrow W.Share(m)$
- **Share each** w_i using scheme Z: $(\sigma_{i1},...,\sigma_{in})$ ← Z. Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon ($σ_{1j}$,..., $σ_{nj}$)
- Claim: $(z_1, ..., z_n)$ is a valid Z-sharing of m
- Olaim: If a party-set T⊆[n] is not allowed to learn the secret by both W and Z, then T learns nothing about m from this process
 - Exercise

More General Access Structures

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret

 - In general access structure could be any monotonic set of subsets
- Shamir's secret-sharing solves threshold secret-sharing. How about the others?

More General Access Structures

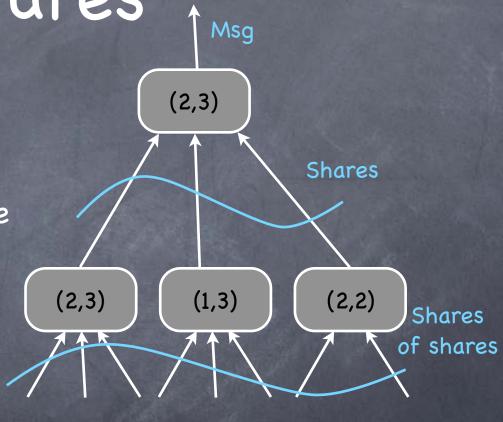
- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

 $|\mathcal{B}|$ = (n choose t)

- $m{o}$ How big is \mathcal{B} ? (Say when \mathcal{A} is a threshold access structure)
- Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.) $t \cdot (n \text{ choose})$
- More efficient schemes known for large classes of access structures

More General Access Structures

- A simple generalization of threshold access structures
 - A threshold tree to specify the access structure
 - Can realize by recursively threshold secret-sharing the shares
- Note: <u>linear</u> secret-sharing
- Fact: Access structures that admit linear secret-sharing are those which can be specified using "monotone span programs"



Efficiency

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - $m{o}$ Naïve scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - $oldsymbol{o}$ N can be exponential in n (as ${\mathcal B}$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)
 - Not all access structures have ideal schemes
 - Non-linear schemes can be more efficient than linear schemes