Advanced Tools from
Modern Cryptography

Lecture 4
Secure Multi-Party Computation:
Passive Corruption + Honest-Majority

MPC

@ Several dimensions
@ Passive (Semi-Honest) vs. Active corruption
@ Passive: corrupt parties still follow the protocol
@ Honest-Majority vs. Unrestricted corruption

@ Information-theoretic vs. Computational security

G (XX]

Security Definition

@ Simplest case: Passive corruption, Information-theoretic security
@ Need honest-majority (or similar restriction)
@ In passive corruption, only concern will be secrecy

@ Perfect secrecy condition similar to secret-sharing

Security Definition

@ Multiple parties in a protocol could be corrupt
@ Collusion
@ Modelled using a single adversary who corrupts the parties
@ Its view contains all the corrupt parties’ views
@ Security guarantee given against an “adversary structure”

@ Set of parties that could be corrupt fogether

Security Definition

@ For secret sharing we needed to formalise “x is secret”
@ Now want to say: x is secret except for f(x) which is revealed

@ v x, X' s.t. f(x)=F(x"), { view | input=x} = { view | input=x’ }

MPC: Outline

@ Today's goal: Perfectly secure MPC against passive corruption
@ First, MPC for linear functions
@ Arbitrary subset of parties can be corrupt

@ MPC for general functions

@ Only with honest-majority

@ i.e., adversary structure: subsets with < N/2 parties

MPC for Linear Functions

@ Client-server setting

l, l,)15 Clients with inputs
® 6 & o ¢

May be

same
parties

Servers

O O Clients with oufputs

F1(X1,...,><5) \l, \l, Fz(x1,...,X5)

MPC for Linear Functions:
Using Llnear Secref-Sharlng

Q Clients with inputs
Share /
v

Servers

Linearly
Combine

Reconsfru>® O Clients with outputs

Fl(X1,...,X5) \l, \l, Fz(xl,...,xs)

MPC for Linear Functions:
Using Linear Secret-Sharing

.’.‘1 ,’.‘2 Xv o1l O21 Ovl ma T
Cn C21 ,'a.FvL
c:z sz Cv2

t
Bl
Fé_&'ﬁéaz u\‘:

Oln O2n Ovn

Min Tan
Each column with Each row given to Each column sent

an input client a server to an output client

MPC for Linear Functions:
Using Linear Secret-Sharing

[View of the adversary (corrupt parties) L
/ V

Oln O2n Ovn

1

Each column with Each row given to Each column sent
an input client a server to an output client

Security

@ Adversary allowed to corrupt any set of input and output clients
and any subset T which is not a privileged set (i.e., not in the
access structure) for the secret-sharing scheme

@ View of adversary should reveal nothing beyond the inputs and
outputs of the corrupted clients

@ Claim: Consider any input y of corrupt clients. If x, x of
uncorrupted clients such that for each corrupt output client |
fi(x,y)=fi(x",y), then the view of the adversary in the two cases
are identically distributed

@ Because for any given view of the adversary, the solution
space of randomness has the same dimension in the two
cases

@ EXxercise

MPC for General Functions?

So far: a 2-round protocol for any linear function
How about other functions?

Any function over a finite field can be computed using addition
and mulfiplication

@ Interested in functions which are efficiently computable

@ Arithmetic circuit: representation of the computation using
addition and multiplication

Goal: MPC Protocol for f, which is efficient if we are given an
efficient arithmetic circuit for f

MPC for General Functions?

@ Plan: Gate-by-gate evaluation
@ Servers maintain shares of the wires at all times

@ Types of gates:

@ Input gate » Each input client acts as a dealer v
@ A linear function » Each server locally computes v

@ A binary multiplication > How?

@ Output gate » Send shares to each output client v/

@ Question: How to go from shares(x), shares(y) to shares(x-y)
securely?

MPC for General Functions:
Using Shamir Secret-Sharing

@ Question: How to go from shares(x), shares(y) to shares(x-y) securely?
@ Idea: Use Shamir secret-sharing!

@ For polynomials, multiplication commutes with evaluation:
(F-g)(x) = f(x)-g(x)

@ In particular, to get a polynomial h with h(0)= f(0)-g(0),
simply define h = f-g. Shares h(x) can be computed as f(x)-g(x)

@ But note: h has a higher degree!
@ Problem 1: Cant continue protocol after one multiplication

@ Problem 2: If degree > N, cant reconstruct the secret even if
all parties reveal their shares

MPC for General Functions:
Using Shamir Secret-Sharing

@ Problem: If x, y shared using a degree d polynomial, x-y is shared
using a degree 2d polynomial

@ Solution: Bring it back to the original secret-sharing scheme!

@ By “securely” switching shares from degree-2d shares to degree-d
shares

@ Note: All N servers together should be able fo linearly
reconstruct the degree-2d sharing

@ Start with N > 2d+1 M

@ Can tolerate only up to d (< (N-1)/2) corrupt servers

Linear Secret-Sharing:
Switching Schemes

High-degree shares

[High-degree reconstruction]

. l‘z:l. 4

llz:n 4

LEach column with one party

w3 . =

Low-degree sharing J

Each row made available
with one party

MPC for General Functions?

@ Plan: Gate-by-gate evaluation
@ Servers maintain shares of the wires at all times
@ Types of gates:

@ Input gate » Each input client acts as a dealer v

@ A linear function » Each server locally computes v
@ A binary multiplication ®» Local mult. & degree reduction

@ Output gate » Send shares fo each oufput client v/

