Advanced Tools from Modern Cryptography

Lecture 4 Secure Multi-Party Computation: Passive Corruption + Honest-Majority

Several dimensions

- Passive (Semi-Honest) vs. Active corruption
 - Passive: corrupt parties still follow the protocol
- Honest-Majority vs. Unrestricted corruption
- Information-theoretic vs. Computational security
- Ø ...

Security Definition

Simplest case: Passive corruption, Information-theoretic security
Need honest-majority (or similar restriction)
In passive corruption, only concern will be secrecy
Perfect secrecy condition similar to secret-sharing

Security Definition

Multiple parties in a protocol could be corrupt
Collusion

Modelled using a single adversary who corrupts the parties
Its view contains all the corrupt parties' views
Security guarantee given against an "adversary structure"
Set of parties that could be corrupt together

Security Definition

For secret sharing we needed to formalise "x is secret"
Now want to say: x is secret except for f(x) which is revealed
∀ x, x' s.t. f(x)=f(x'), { view | input=x} = { view | input=x' }

MPC: Outline

Today's goal: Perfectly secure MPC against passive corruption
First, MPC for linear functions
Arbitrary subset of parties can be corrupt
MPC for general functions
Only with honest-majority
i.e., adversary structure: subsets with < N/2 parties

MPC for Linear Functions

Client-server setting

Servers -

May be same parties

 $f_1(x_1,...,x_5)$

MPC for Linear Functions: Using Linear Secret-Sharing

MPC for Linear Functions: Using Linear Secret-Sharing

Security

Adversary allowed to corrupt any set of input and output clients and any subset T which is not a privileged set (i.e., not in the access structure) for the secret-sharing scheme

- View of adversary should reveal nothing beyond the inputs and outputs of the corrupted clients
 - Claim: Consider any input y of corrupt clients. If x, x' of uncorrupted clients such that for each corrupt output client i f_i(x,y)=f_i(x',y), then the view of the adversary in the two cases are identically distributed
 - Because for any given view of the adversary, the solution space of randomness has the same dimension in the two cases
 - Exercise

MPC for General Functions?

- So far: a 2-round protocol for any <u>linear</u> function
- How about other functions?
- Any function over a finite field can be computed using addition and multiplication
 - Interested in functions which are efficiently computable
 - Arithmetic circuit: representation of the computation using addition and multiplication
- Goal: MPC Protocol for f, which is efficient if we are given an efficient arithmetic circuit for f

MPC for General Functions?

Plan: Gate-by-gate evaluation

- Servers maintain shares of the wires at all times
- Types of gates:
 - Input gate
 Each input client acts as a dealer
 - A linear function
 Each server locally computes
 - A binary multiplication
 - Output gate
 Send shares to each output client

▶ How?

Question: How to go from shares(x), shares(y) to shares(x·y) securely?

MPC for General Functions: Using Shamir Secret-Sharing

- Question: How to go from shares(x), shares(y) to shares(x \cdot y) securely?
- Idea: Use Shamir secret-sharing!
 - For polynomials, multiplication commutes with evaluation:
 (f·g)(x) = f(x)·g(x)
 - In particular, to get a polynomial h with h(0)= f(0)·g(0), simply define h = f·g. Shares h(x) can be computed as f(x)·g(x)
 - But note: h has a higher degree!
 - Problem 1: Can't continue protocol after one multiplication
 - Problem 2: If degree > N, can't reconstruct the secret even if all parties reveal their shares

MPC for General Functions: Using Shamir Secret-Sharing

- Problem: If x, y shared using a degree d polynomial, x·y is shared using a degree 2d polynomial
- Solution: Bring it back to the original secret-sharing scheme!
 By "securely" switching shares from degree-2d shares to degree-d shares
 - Note: All N servers together should be able to linearly reconstruct the degree-2d sharing
 - Start with N ≥ 2d+1

< N/2

MPC for General Functions?

Plan: Gate-by-gate evaluation

- Servers maintain shares of the wires at all times
- Types of gates:
 - Input gate
 Each input clie
 - A linear function
 - A binary multiplication
 - Output gate

Each input client acts as a dealer
 Each server locally computes
 Local mult. & degree reduction
 Send shares to each output client