
Advanced Tools from  

 Modern Cryptography

Lecture 4

Secure Multi-Party Computation: 

Passive Corruption + Honest-Majority



MPC

Several dimensions


Passive (Semi-Honest) vs. Active corruption


Passive: corrupt parties still follow the protocol 


Honest-Majority vs. Unrestricted corruption


Information-theoretic vs. Computational security


…



Security Definition

Simplest case: Passive corruption, Information-theoretic security


Need honest-majority (or similar restriction)


In passive corruption, only concern will be secrecy


Perfect secrecy condition similar to secret-sharing



Security Definition

Multiple parties in a protocol could be corrupt


Collusion


Modelled using a single adversary who corrupts the parties


Its view contains all the corrupt parties’ views


Security guarantee given against an “adversary structure”


Set of parties that could be corrupt together



Security Definition

For secret sharing we needed to formalise “x is secret”


Now want to say: x is secret except for f(x) which is revealed


∀ x, x’ s.t. f(x)=f(x’), { view | input=x} ≡ { view | input=x’ }



MPC: Outline

Today's goal: Perfectly secure MPC against passive corruption


First, MPC for linear functions


Arbitrary subset of parties can be corrupt


MPC for general functions


Only with honest-majority


i.e., adversary structure: subsets with < N/2 parties 



MPC for Linear Functions
Client-server setting

Clients with inputs

Clients with outputs

Servers

May be 
same 

parties

x3x1 x2 x4 x5

f1(x1,…,x5) f2(x1,…,x5)



Share

Linearly 
Combine

Reconstruct

Clients with inputs

Clients with outputs

Servers

MPC for Linear Functions:  
Using Linear Secret-Sharing

f1(x1,…,x5) f2(x1,…,x5)

x3x1 x2 x4 x5



W

 x1  


 c11  

 c12


 :  

 c1,u

=

 x2  


 c21  

 c22


 :  

 c2,u

 xv  


 cv1  

 cv2


 :  

 cv,u

Q Q
 

 

 

 

:  

 

σ1n

σ11  

:  

 

σvn

σv1 

:  

 

σ2n

σ21

Each row given to 
a server

π11  

 

:


 

 

π1n 

=

π21  

 

:


 

 

π2n 

Each column sent 
to an output client

Each column with 
an input client

MPC for Linear Functions:  
Using Linear Secret-Sharing



W

 x1  


 c11  

 c12


 :  

 c1,u

=

 x2  


 c21  

 c22


 :  

 c2,u

 xv  


 cv1  

 cv2


 :  

 cv,u

Q Q
 

 

 

 

:  

 

σ1n

σ11  

:  

 

σvn

σv1 

:  

 

σ2n

σ21

Each row given to 
a server

π11  

 

:


 

 

π1n 

=

π21  

 

:


 

 

π2n 

Each column sent 
to an output client

Each column with 
an input client

MPC for Linear Functions:  
Using Linear Secret-Sharing

View of the adversary (corrupt parties)View of the adversary (corrupt parties)View of the adversary (corrupt parties)



Security
Adversary allowed to corrupt any set of input and output clients 
and any subset T which is not a privileged set (i.e., not in the 
access structure) for the secret-sharing scheme


View of adversary should reveal nothing beyond the inputs and 
outputs of the corrupted clients


Claim: Consider any input y of corrupt clients. If x, x’ of 
uncorrupted clients such that for each corrupt output client i 
fi(x,y)=fi(x’,y), then the view of the adversary in the two cases 
are identically distributed


Because for any given view of the adversary, the solution 
space of randomness has the same dimension in the two 
cases


Exercise



So far: a 2-round protocol for any linear function


How about other functions?


Any function over a finite field can be computed using addition 
and multiplication


Interested in functions which are efficiently computable


Arithmetic circuit: representation of the computation using 
addition and multiplication


Goal: MPC Protocol for f, which is efficient if we are given an 
efficient arithmetic circuit for f

MPC for General Functions?



Plan: Gate-by-gate evaluation


Servers maintain shares of the wires at all times


Types of gates:


Input gate 


A linear function


A binary multiplication


Output gate


Question: How to go from shares(x), shares(y) to shares(x⋅y) 
securely?

MPC for General Functions?

Each input client acts as a dealer ✓

Each server locally computes ✓

Send shares to each output client ✓

How?



Question: How to go from shares(x), shares(y) to shares(x⋅y) securely?


Idea: Use Shamir secret-sharing!


For polynomials, multiplication commutes with evaluation: 
(f⋅g)(x) = f(x)⋅g(x)


In particular, to get a polynomial h with h(0)= f(0)⋅g(0),  
simply define h = f⋅g. Shares h(x) can be computed as f(x)⋅g(x)


But note: h has a higher degree!


Problem 1: Can’t continue protocol after one multiplication


Problem 2: If degree ≥ N, can’t reconstruct the secret even if 
all parties reveal their shares

MPC for General Functions: 
Using Shamir Secret-Sharing



Problem: If x, y shared using a degree d polynomial, x⋅y is shared 
using a degree 2d polynomial


Solution: Bring it back to the original secret-sharing scheme!


By “securely” switching shares from degree-2d shares to degree-d 
shares


Note: All N servers together should be able to linearly 
reconstruct the degree-2d sharing


Start with N ≥ 2d+1


Can tolerate only up to d ( ≤ (N-1)/2) corrupt servers

MPC for General Functions: 
Using Shamir Secret-Sharing

< N/2



Z

 w1                       


 c11  

 c12                …


  :  

 c1,u’

 w2     


 c21  

 c22


 :  

 c2,u’

 wn  


 cv1  

 cv2


 :  

 cv,u’

Linear Secret-Sharing: 
Switching Schemes

=
          …

 

:  

 

σ1n

σ11  

:  

 

σvn

σv1 

:  

 

σ2n

σ21

Each row made available 
with one party

R R
=

 

:  

 

zn

z1

 m


r1  

r2


:  

ru’

w1 … wn R =  m


High-degree shares

Low-degree sharing

High-degree reconstruction

Each column with one party



Plan: Gate-by-gate evaluation


Servers maintain shares of the wires at all times


Types of gates:


Input gate 


A linear function


A binary multiplication


Output gate

MPC for General Functions?

Each input client acts as a dealer ✓

Each server locally computes ✓

Send shares to each output client ✓

Local mult. & degree reduction


