
Advanced Tools from  

 Modern Cryptography

Lecture 5

Secure Multi-Party Computation: 

Passive Corruption



MPC: Honest-Majority + 
Passive-Corruption

Can achieve information-theoretic security for any function


Function should be given as an arithmetic circuit over a large 
enough field (|F| > #parties)


Gate-by-gate evaluation, under Shamir secret-sharing of 
wires



Functions as Circuits

Directed acyclic graph


Nodes: multiplication and addition 
gates, constant gates, inputs, 
output(s)


Edges: wires carrying values from F 


Each wire comes out of a unique 
gate, but a wire might fan-out


Can evaluate wires according to a 
topologically sorted order of gates 
they come out of
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Gate-by-Gate Evaluation
Wire values will be kept Shamir-secret-
shared among all parties


Linear operations “free” (no communication)


Multiplication involves degree reduction: 
reshare the higher-degree “product” shares 
and locally reconstruct shares of the 
original degree


Efficiency proportional to the number of 
multiplication gates in the circuit (not 
counting multiplication with constants)


To use degree d Shamir secret-sharing need 
N > 2d parties. Can tolerate only d < N/2 
corrupt parties.
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MPC: Honest-Majority + 
Passive-Corruption

Can achieve information-theoretic security for any function


Function should be given as an arithmetic circuit over a large 
enough field (|F| > #parties)


Can tolerate corruption of strictly less than N/2 parties


e.g., 1 party out of 3, or 2 parties out of 5


No security in a 2-party setting!


Q: For which functions can we obtain information-theoretic 
security against N/2 (or more) corruption?


Not all functions!


Exactly known for N=2  (later)


General case is still an open problem!



Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Because, if there were an N-party AND protocol tolerating 
N/2 corrupt parties, we can convert it into a 2-party 
protocol for AND as follows:


Alice runs P1,…,PN/2 “in her head”, with her input as P1’s 
input and 1 as input for the others. Bob runs the 
remaining parties similarly.


View of the parties in Alice's head don’t reveal anything 
about Bob’s input, other than what the AND reveals

Information-Theoretic MPC: 
No Honest-Majority



Suppose there is a 2-party protocol for AND. Consider a 
transcript m such that Pr[m|x=0,y=0] = p > 0.


By security against Alice, Pr[m|x=0,y=1] = p.  
And by security against Bob, Pr[m|x=1,y=0] = p.


How about Pr[m|x=1,y=1]? Should be 0, for correctness


Suppose m=m1m2…mt, with Alice sending the first 
message. Alice with x=1 will send m1 with positive 
probability because Pr[m|x=1,y=0] > 0. Bob with y=1, and 
given m1 will send m2 with positive probability, etc.  
Hence Pr[m|x=1,y=1] > 0 !

Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC: 
No Honest-Majority



Plan (Still sticking with passive corruption):


Two protocols, that are secure computationally


The “passive-GMW” protocol for any number of parties


A 2-party protocol using Yao’s Garbled Circuits


Both rely on a computational primitive called Oblivious Transfer


Today: OT and Passive-GMW


(Not exactly the version from the GMW’87 paper.)

MPC without Honest-Majority



All 2 of 
them!

Oblivious Transfer

Pick one out of two, 
without revealing 
which 

Intuitive property: 
transfer partial 
information 
“obliviously”

FOT

We Predict

STOCKS!!

AA:up, B:down

I need just 
one

x0 x1

F

b

xb

But can’t 
tell you 
which

up

Sure

If we had a 
trusted third 

party



Why is OT Useful?

Say Alice’s input x, Bob’s input y, and only Bob should learn f(x,y)


Alice (who knows x, but not y) prepares a table for f(x,⋅) with 
D = 2|y| entries (one for each y)


Bob uses y to decide which entry in the table to pick up using 
1-out-of-D OT (without learning the other entries)


Bob learns only f(x,y) (in addition to y). Alice learns nothing 
beyond x.


OT captures the essence of MPC


Problem: D is exponentially large in |y|


Plan: somehow exploit efficient computation (e.g., circuit) of f



Passive GMW
Adapted from the famous Goldreich-Micali-Wigderson (1987) 
protocol (due to Goldreich-Vainish, Haber-Micali,…)


Passive secure MPC based on OT, without any other computational 
assumptions


Will assume that a trusted party is available to carry out OT 
between any pair of parties (replaced by a cryptographic 
protocol, later)


Tolerates any number of corrupt parties


Idea: Computing on additively secret-shared values


For a variable (wire value) s, will write [s]i to denote its share 
held by the ith party 



Computing on Shares: 2 Parties

Let gates be + & ⨉ (XOR & AND for Boolean circuits)


Plan: Similar to BGW: shares of each wire value will be 
computed, with Alice holding one share and Bob the other. 
At the end, Alice sends her share of output wire to Bob.


w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [v]1 [u]2 [v]2u v

[w]1 [w]2

+

w

+ +



What about w = u ⨉ v ?


[w]1 + [w]2 = ( [u]1 + [u]2 ) ⨉ ( [v]1 + [v]2 )


Alice picks [w]1 and lets Bob compute [w]2 using the naive 
(proof-of-concept) protocol


Note: Bob’s input is ([u]2,[v]2). Over the binary field, this 
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

FOT

[w]1 [w]2

Computing on Shares: 2 Parties



Passive GMW
Secure?


View of Alice:


Input x and random values it picks through out the protocol ✓ 


View of Bob:


Input y and random values it picks through out the protocol


A random value (picked via OT) for each wire out of a × gate


f(x,y) - own share, for the output wire


This distribution is the same for x, x’ if f(x,y)=f(x’,y) ✓


Exercise: What goes wrong in the above claim if Alice reuses [w]1 
for two × gates?



m-way sharing: s = [s]1 +…+ [s]m


Addition, local as before


Multiplication: For w = u ⨉ v  
[w]1 +..+ [w]m = ( [u]1 +..+ [u]m ) ⨉ ( [v]1 +..+ [v]m )


Party i computes [u]i[v]i


For every pair (i,j), i≠j, Party i picks random aij and lets Party 
j securely compute bij s.t. aij + bij = [u]i[v]j using the naive 
protocol (a single 1-out-of-2 OT)


Party i sets [w]i = [u]i[v]i + Σj ( aij + bji )

Computing on Shares: m Parties


