
Advanced Tools from  

 Modern Cryptography

Lecture 5

Secure Multi-Party Computation:

Passive Corruption

MPC: Honest-Majority +
Passive-Corruption

Can achieve information-theoretic security for any function

Function should be given as an arithmetic circuit over a large
enough field (|F| > #parties)

Gate-by-gate evaluation, under Shamir secret-sharing of
wires

Functions as Circuits

Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

10

-1

Gate-by-Gate Evaluation
Wire values will be kept Shamir-secret-
shared among all parties

Linear operations “free” (no communication)

Multiplication involves degree reduction:
reshare the higher-degree “product” shares
and locally reconstruct shares of the
original degree

Efficiency proportional to the number of
multiplication gates in the circuit (not
counting multiplication with constants)

To use degree d Shamir secret-sharing need
N > 2d parties. Can tolerate only d < N/2
corrupt parties.

10

-1

MPC: Honest-Majority +
Passive-Corruption

Can achieve information-theoretic security for any function

Function should be given as an arithmetic circuit over a large
enough field (|F| > #parties)

Can tolerate corruption of strictly less than N/2 parties

e.g., 1 party out of 3, or 2 parties out of 5

No security in a 2-party setting!

Q: For which functions can we obtain information-theoretic
security against N/2 (or more) corruption?

Not all functions!

Exactly known for N=2 (later)

General case is still an open problem!

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Because, if there were an N-party AND protocol tolerating
N/2 corrupt parties, we can convert it into a 2-party
protocol for AND as follows:

Alice runs P1,…,PN/2 “in her head”, with her input as P1’s
input and 1 as input for the others. Bob runs the
remaining parties similarly.

View of the parties in Alice's head don’t reveal anything
about Bob’s input, other than what the AND reveals

Information-Theoretic MPC:
No Honest-Majority

Suppose there is a 2-party protocol for AND. Consider a
transcript m such that Pr[m|x=0,y=0] = p > 0.

By security against Alice, Pr[m|x=0,y=1] = p.  
And by security against Bob, Pr[m|x=1,y=0] = p.

How about Pr[m|x=1,y=1]? Should be 0, for correctness

Suppose m=m1m2…mt, with Alice sending the first
message. Alice with x=1 will send m1 with positive
probability because Pr[m|x=1,y=0] > 0. Bob with y=1, and
given m1 will send m2 with positive probability, etc.  
Hence Pr[m|x=1,y=1] > 0 !

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC:
No Honest-Majority

Plan (Still sticking with passive corruption):

Two protocols, that are secure computationally

The “passive-GMW” protocol for any number of parties

A 2-party protocol using Yao’s Garbled Circuits

Both rely on a computational primitive called Oblivious Transfer

Today: OT and Passive-GMW

(Not exactly the version from the GMW’87 paper.)

MPC without Honest-Majority

All 2 of
them!

Oblivious Transfer

Pick one out of two,
without revealing
which

Intuitive property:
transfer partial
information
“obliviously”

FOT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

x0 x1

F

b

xb

But can’t
tell you
which

up

Sure

If we had a
trusted third

party

Why is OT Useful?

Say Alice’s input x, Bob’s input y, and only Bob should learn f(x,y)

Alice (who knows x, but not y) prepares a table for f(x,⋅) with 
D = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick up using
1-out-of-D OT (without learning the other entries)

Bob learns only f(x,y) (in addition to y). Alice learns nothing
beyond x.

OT captures the essence of MPC

Problem: D is exponentially large in |y|

Plan: somehow exploit efficient computation (e.g., circuit) of f

Passive GMW
Adapted from the famous Goldreich-Micali-Wigderson (1987)
protocol (due to Goldreich-Vainish, Haber-Micali,…)

Passive secure MPC based on OT, without any other computational
assumptions

Will assume that a trusted party is available to carry out OT
between any pair of parties (replaced by a cryptographic
protocol, later)

Tolerates any number of corrupt parties

Idea: Computing on additively secret-shared values

For a variable (wire value) s, will write [s]i to denote its share
held by the ith party

Computing on Shares: 2 Parties

Let gates be + & ⨉ (XOR & AND for Boolean circuits)

Plan: Similar to BGW: shares of each wire value will be
computed, with Alice holding one share and Bob the other.
At the end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [v]1 [u]2 [v]2u v

[w]1 [w]2

+

w

+ +

What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1 and lets Bob compute [w]2 using the naive
(proof-of-concept) protocol

Note: Bob’s input is ([u]2,[v]2). Over the binary field, this
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

FOT

[w]1 [w]2

Computing on Shares: 2 Parties

Passive GMW
Secure?

View of Alice:

Input x and random values it picks through out the protocol ✓

View of Bob:

Input y and random values it picks through out the protocol

A random value (picked via OT) for each wire out of a × gate

f(x,y) - own share, for the output wire

This distribution is the same for x, x’ if f(x,y)=f(x’,y) ✓

Exercise: What goes wrong in the above claim if Alice reuses [w]1
for two × gates?

m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u ⨉ v  
[w]1 +..+ [w]m = ([u]1 +..+ [u]m) ⨉ ([v]1 +..+ [v]m)

Party i computes [u]i[v]i

For every pair (i,j), i≠j, Party i picks random aij and lets Party
j securely compute bij s.t. aij + bij = [u]i[v]j using the naive
protocol (a single 1-out-of-2 OT)

Party i sets [w]i = [u]i[v]i + Σj (aij + bji)

Computing on Shares: m Parties

