
Advanced Tools from  

 Modern Cryptography

Lecture 6

Secure Multi-Party Computation:

Yao’s Garbled Circuit

Story so far:

For honest-majority: Information-theoretically secure protocol,
using Shamir secret-sharing [BGW]

Without honest-majority: Using Oblivious Transfer (OT), using
additive secret-sharing [GMW]

Today

A 2-party protocol (so no honest-majority) using Oblivious
Transfer and Yao’s Garbled Circuits

Uses additional computational primitives and is limited to
arithmetic circuits over small fields (e.g., boolean circuits)

Needs just one round of interaction

Garbled Circuits have other applications too

MPC for Passive Corruption

Oblivious Linear-function Evaluation
(OLE) for large fields (Exercise)

All 2 of
them!

Oblivious Transfer

Pick one out of two,
without revealing
which

Intuitive property:
transfer partial
information
“obliviously”

FOT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

x0 x1

F

b

xb

But can’t
tell you
which

up

Sure

If we had a
trusted third

party

Re
ca
ll

Naïve 2PC from OT

Say Alice’s input x, Bob’s input y, and only Bob should learn f(x,y)

Alice (who knows x, but not y) prepares a table for f(x,⋅) with 
D = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick up using
1-out-of-D OT (without learning the other entries)

Bob learns only f(x,y) (in addition to y). Alice learns nothing
beyond x.

OT captures the essence of MPC

Problem: D is exponentially large in |y|

Re
ca
ll

Functions as Circuits

Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

10

-1

Re
ca
ll

2-Party MPC for 
 General Circuits

“General”: evaluate any arbitrary (boolean) circuit

One-sided output: both parties give inputs, one
party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds x=a, Bob has y=b; Bob should get OR(x,y)

0 1

0 0 1

1 1 1

A Physical Protocol
Alice prepares 4 boxes Bxy corresponding to 4
possible input scenarios, and 4 padlocks/keys Kx=0,
Kx=1, Ky=0 and Ky=1

Inside Bxy=ab she places the bit OR(a,b) and locks it
with two padlocks Kx=a and Ky=b (need to open both
to open the box)

She un-labels the four boxes and sends them in
random order to Bob. Also sends the key Kx=a
(labeled only as Kx).

So far Bob gets no information

Bob “obliviously picks up” Ky=b, and tries the two
keys Kx,Ky on the four boxes. For one box both
locks open and he gets the output.

0

1

1

1

00

11

01

10

0 1

0 0 1

1 1 1

0 0

0

0

1

1 b

1 0

0 1

1 1

F

A Physical Protocol
Secure?

For curious Alice: only influence from Bob is when
he picks up his key Ky=b

But this is done “obliviously”, so she learns
nothing

For curious Bob: What he sees is predictable (i.e.,
simulatable), given the final outcome

What Bob sees: His key opens Ky in two boxes,
Alice’s opens Kx in two boxes; only one random
box fully opens. It has the outcome.

Note when y=1, cases x=0 and x=1 appear same

0 1

0 0 1

1 1 1

0

1

1

1

0

0

1

1 b
F

Larger Circuits

00 1 1

0 1
Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

0 1 0 1 0 1

0 1 0 10 1

Larger Circuits

For each gate G with input wires (u,v) and output  
wire w, prepare 4 boxes Buv and place Kw=G(a,b) inside  
box Buv=ab. Lock Buv=ab with keys Ku=a and Kv=b

Give to Bob: Boxes for each gate, one key for each of
Alice’s input wires

Obliviously: one key for each of Bob’s input wires

Boxes for output gates have values instead of keys

00 1 1

0 1

bb
b

F

F

F

Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

Larger Circuits
Evaluation: Bob gets one key for each input wire of a
gate, opens one box for the gate, gets one key for the
output wire, and proceeds

Gets output from a box for the output gate

Security similar to before

Curious Alice sees nothing

Bob can simulate his view given final output: Bob could
prepare boxes and keys (stuffing unopenable boxes
arbitrarily); for an output gate, place the output bit in
the box that opens

00 1 1

0 1

bb
b

F

F

F

Garbled Circuit
That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by Symmetric Key
Encryption (specifically, using a Pseudorandom Function or PRF)

EncK(m) = PRFK(index) ⊕ m, where index is a wire index
(distinct for different wires fanning-out of the same gate)

Double lock: EncKx(EncKy(m))

PRF in practice: a block-cipher, like AES

Uses Oblivious Transfer for strings: For passive security, can just
repeat bit-OT several times to transfer longer keys

Security? Need to first define security when computational
primitives are used! (Next time!)

Garbled Circuit
One minor issue when using encryption instead of locks

Given four doubly locked boxes (in random order) and two
keys, we simply tried opening all locks until one box fully
opened

With encryption, cannot quite tell if a box opened or not!
Outcome of decryption looks random in either case.

Simple solution: encode the keys so that wrong decryption
does not result in outputs that look like valid encoding of keys

Better solution: attach a “pointer” label (random, distinct) for
each key. (A single bit suffices, since a key’s wire is known.)
Locked boxes marked with the pointers of the two keys
needed to unlock them.

