
Advanced Tools from  

 Modern Cryptography

Lecture 7

Basics: Computational Indistinguishability

Security Definitions
So far: Perfect secrecy

Achieved in Shamir secret-sharing, passive BGW and passive
GMW (given a trusted party for OT)

But for 2PC using Yao’s Garbled circuit (even given a trusted party
for OT) security only against computationally bounded adversary

We haven’t defined such security yet!

Plan

Computational Indistinguishability (Today)

Simulation-based security (Next time)

Because, the obvious
definition obtained by

replacing perfect secrecy
by computational secrecy
turns out to be slightly

weak

Relaxing  
Secrecy Requirement

When view is not exactly independent of the message

Next best: view close to a distribution that is independent of
the message

Two notions of closeness: Statistical and Computational

Re
ca
ll

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Statistical Difference
Given two distributions A and B over the same sample space, how
well can a test T distinguish between them?

T given a single sample drawn from A or B

How differently does it behave in the two cases?

Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

a.k.a. Statistical Distance or Total Variation Distance

Re
ca
ll

Indistinguishability
Two distributions are statistically indistinguishable from each
other if the statistical difference between them is “negligible”

What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!

Security guarantees will be given asymptotically as a function of

the security parameter

A knob that can be used to set the security level

Given {Ak}, {Bk}, Δ(Ak,Bk) is a function of the security parameter k

Negligible: reduces “very quickly” as the knob is turned up

“Very quickly”: quicker than 1/poly for any polynomial poly

So that if negligible for one sample, remains negligible for
polynomially many samples

Indistinguishability

Distribution ensembles {Ak}, {Bk} are statistically indistinguishable
if ∃ negligible ν(k) s.t. Δ(Ak,Bk) ≤ ν(k)

Δ(Ak,Bk) := max T | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] |

ν(k) is said to be negligible if ∀ d ≥ 0, ∃ N s.t. ∀ k>N, ν(k) < 1/kd

Can rewrite as: ∀ tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

In particular, the best test

Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k) Ak ≈ Bk

≈

∀ PPTT T

x ← Ak x ← Bk

Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

Efficient: Probabilistic Polynomial Time (PPT)

PPT T: a family of randomised programs Tk (one for each value
of the security parameter k), s.t. there is a polynomial p with
each Tk running for at most p(k) time

(Could restrict to uniform PPT. But by default, we’ll allow  
non-uniform.)

Non-Uniform

Ak ≈ Bk

Example: Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k→{0,1}n(k) where n(k) > k

Security definition: Output distribution induced by random input
seed should be “pseudorandom”

i.e., Computationally indistinguishable from uniformly random

{Gk(x)}x←{0,1}
k ≈ Un(k)

Note: {Gk(x)}x←{0,1}
k cannot be statistically indistinguishable

from Un(k) unless n(k) ≤ k (Why?)

i.e., no non-trivial PRG against unbounded adversaries

Example: Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k→{0,1}n(k) where n(k) > k

Security definition: {Gk(x)}x←{0,1}
k ≈ Un(k)

REAL ≈ IDEAL

T T

x ← {0,1}k

z ← Gk(x)
z ← {0,1}n

∀ PPT

IDEALREAL

A
dv

an
ta

ge

Interpreting Asymptotics

Security

parameter

Time to

tolerate

Admissible
advantage

If adversary

runs for less

than this long

Then its advantage
is no more than this

set k
here

 T
im

e
st

ep
s

Pseudorandom Function (PRF)
A compact representation of an exponentially long (pseudorandom)
string

Allows “random-access” (instead of just sequential access)

A function F(s;i) outputs the ith block of the pseudorandom
string corresponding to seed s

Exponentially many blocks (i.e., large domain for i)

Pseudorandom Function

Need to define pseudorandomness for a function (not a string)

Idea: the view of an adversary arbitrarily interacting with the
function is indistinguishable from its view when interacting with
a random function

s ← {0,1}k

F(s,⋅)
Random function

R(⋅)

T T
∀ PPT

∀ PPT

REAL ≈ IDEAL IDEALREAL

F: {0,1}k×{0,1}m(k) →{0,1}n(k)

is a PRF if

Pseudorandom Function (PRF)

Security for MPC
Recall: For passive security, secrecy is all the matters

For a 2-party functionality f, with only Bob getting the output,
perfect secrecy against corrupt Bob:  
i.e., ∀ x, x’, y s.t., f(x,y) = f(x’,y’), viewBob(x,y) = viewBob(x’,y)

In particular, if (y, f(x,y)) uniquely determines x (i.e., if
f(x’,y)=f(x,y) ⇒ x’=x), then OK for view to reveal x

In the computational setting, just replace = with ≈ ?

We should ask for more!

E.g., f is a decryption algorithm, with key x and ciphertext y

Often, a (long enough) ciphertext and message uniquely
determines the key

But not OK to reveal the key to Bob!

Because,  
uniquely determines

≠ reveals!

