
Advanced Tools from  

 Modern Cryptography

Lecture 7

Basics: Computational Indistinguishability



Security Definitions
So far: Perfect secrecy


Achieved in Shamir secret-sharing, passive BGW and passive 
GMW (given a trusted party for OT)


But for 2PC using Yao’s Garbled circuit (even given a trusted party 
for OT) security only against computationally bounded adversary


We haven’t defined such security yet!


Plan


Computational Indistinguishability (Today)


Simulation-based security (Next time)

Because, the obvious 
definition obtained by 

replacing perfect secrecy 
by computational secrecy 
turns out to be slightly 

weak



Relaxing  
Secrecy Requirement

When view is not exactly independent of the message


Next best: view close to a distribution that is independent of 
the message


Two notions of closeness: Statistical and Computational
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Statistical Difference
Given two distributions A and B over the same sample space, how  
well can a test T distinguish between them?


T given a single sample drawn from A or B


How differently does it behave in the two cases?


Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |
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a.k.a. Statistical Distance or Total Variation Distance
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Indistinguishability
Two distributions are statistically indistinguishable from each 
other if the statistical difference between them is “negligible”


What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!


Security guarantees will be given asymptotically as a function of 

the security parameter


A knob that can be used to set the security level


Given {Ak}, {Bk}, Δ(Ak,Bk) is a function of the security parameter k


Negligible: reduces “very quickly” as the knob is turned up


“Very quickly”: quicker than 1/poly for any polynomial poly


So that if negligible for one sample, remains negligible for 
polynomially many samples



Indistinguishability

Distribution ensembles {Ak}, {Bk} are statistically indistinguishable 
if ∃ negligible ν(k) s.t. Δ(Ak,Bk) ≤ ν(k) 


Δ(Ak,Bk) := max T | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] |


ν(k) is said to be negligible if ∀ d ≥ 0, ∃ N s.t. ∀ k>N, ν(k) < 1/kd


Can rewrite as: ∀ tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

In particular, the best test



Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k) Ak ≈ Bk

≈

∀ PPTT T

x ← Ak x ← Bk



Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Efficient: Probabilistic Polynomial Time (PPT)


PPT T: a family of randomised programs Tk (one for each value 
of the security parameter k), s.t. there is a polynomial p with 
each Tk running for at most p(k) time


(Could restrict to uniform PPT. But by default, we’ll allow  
non-uniform.)

Non-Uniform

Ak ≈ Bk



Example: Pseudorandomness 
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string


Gk: {0,1}k→{0,1}n(k) where n(k) > k


Security definition: Output distribution induced by random input 
seed should be “pseudorandom”


i.e., Computationally indistinguishable from uniformly random


{Gk(x)}x←{0,1}
k ≈ Un(k) 


Note: {Gk(x)}x←{0,1}
k cannot be statistically indistinguishable 

from Un(k) unless n(k) ≤ k (Why?)


i.e., no non-trivial PRG against unbounded adversaries



Example: Pseudorandomness 
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string


Gk: {0,1}k→{0,1}n(k) where n(k) > k


Security definition: {Gk(x)}x←{0,1}
k ≈ Un(k) 

REAL ≈ IDEAL

T T

x ← {0,1}k


z ← Gk(x)
z ← {0,1}n

∀ PPT

IDEALREAL
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Interpreting Asymptotics

Security 

parameter

Time to 

tolerate

Admissible 
advantage

If adversary 

runs for less 

than this long

Then its advantage 
is no more than this

set k 
here
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Pseudorandom Function (PRF)
A compact representation of an exponentially long (pseudorandom) 
string


Allows “random-access” (instead of just sequential access)


A function F(s;i) outputs the ith block of the pseudorandom 
string corresponding to seed s


Exponentially many blocks (i.e., large domain for i)


Pseudorandom Function


Need to define pseudorandomness for a function (not a string)


Idea: the view of an adversary arbitrarily interacting with the 
function is indistinguishable from its view when interacting with 
a random function



s ← {0,1}k


F(s,⋅)
Random function


R(⋅)

T T
∀ PPT

∀ PPT

REAL ≈ IDEAL IDEALREAL

F: {0,1}k×{0,1}m(k) →{0,1}n(k) 

is a PRF if 

Pseudorandom Function (PRF)



Security for MPC
Recall: For passive security, secrecy is all the matters


For a 2-party functionality f, with only Bob getting the output, 
perfect secrecy against corrupt Bob:  
i.e., ∀ x, x’, y s.t., f(x,y) = f(x’,y’), viewBob(x,y) = viewBob(x’,y)


In particular, if (y, f(x,y)) uniquely determines x (i.e., if 
f(x’,y)=f(x,y) ⇒ x’=x), then OK for view to reveal x


In the computational setting, just replace = with ≈ ?


We should ask for more!


E.g.,  f is a decryption algorithm, with key x and ciphertext y


Often, a (long enough) ciphertext and message uniquely 
determines the key


But not OK to reveal the key to Bob!

Because,  
uniquely determines 

≠ reveals!


