Advanced Tools from Modern Cryptography

Lecture 7 Basics: Computational Indistinguishability

Security Definitions

- So far: Perfect secrecy
 - Achieved in Shamir secret-sharing, passive BGW and passive GMW (given a trusted party for OT)
- But for 2PC using Yao's Garbled circuit (even given a trusted party for OT) security only against computationally bounded adversary
 - We haven't defined such security yet!
- Plan
 - Computational Indistinguishability (Today)
 - 🛛 Simulation-based security (Next time) 🥌

Because, the obvious definition obtained by replacing perfect secrecy by computational secrecy turns out to be slightly weak

Relaxing Secrecy Requirement

Recall

When view is not exactly independent of the message

- Next best: view close to a distribution that is independent of the message
- Two notions of closeness: Statistical and Computational

a.k.a. Statistical Distance or Total Variation Distance

Statistical Difference

Given two distributions A and B over the same sample space, how well can a <u>test</u> T distinguish between them?

• T given a single sample drawn from A or B

How differently does it behave in the two cases?

- Two distributions are statistically indistinguishable from each other if the statistical difference between them is "negligible"
- What is negligible? 2-20? 2-40? 2-80? Let the "user" decide!
- Security guarantees will be given <u>asymptotically</u> as a function of the <u>security parameter</u>

A knob that can be used to set the security level

• Given {A_k}, {B_k}, $\Delta(A_k, B_k)$ is a function of the security parameter k

Negligible: reduces "very quickly" as the knob is turned up

"Very quickly": quicker than 1/poly for any polynomial poly

So that if negligible for one sample, remains negligible for polynomially many samples

Distribution ensembles {A_k}, {B_k} are statistically indistinguishable if ∃ negligible v(k) s.t. ∆(A_k,B_k) ≤ v(k)

• $\Delta(A_k, B_k) := \max_T | Pr_{x \leftarrow A_k}[T(x)=1] - Pr_{x \leftarrow B_k}[T(x)=1] |$

• $\nu(k)$ is said to be **negligible** if $\forall d \ge 0, \exists N s.t. \forall k>N, \nu(k) < 1/k^d$

Can rewrite as: ∀ tests T, ∃ negligible v(k) s.t.
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ v(k) In particular, the best test

Distribution ensembles {A_k}, {B_k} computationally indistinguishable if ∀ "efficient" tests T, ∃ negligible v(k) s.t.
 | Pr_{x←A_k}[T(x)=1] - Pr_{x←B_k}[T(x)=1] | ≤ v(k)

Distribution ensembles {A_k}, {B_k} computationally indistinguishable if ∀ "efficient" tests T, ∃ negligible v(k) s.t.
 | Pr_{x←Ak}[T(x)=1] - Pr_{x←Bk}[T(x)=1] | ≤ v(k)

Distribution ensembles {A_k}, {B_k} computationally indistinguishable if ∀ "efficient" tests T, ∃ negligible v(k) s.t.
 | Pr_{x←A_k}[T(x)=1] - Pr_{x←B_k}[T(x)=1] | ≤ v(k)

Efficient: Probabilistic Polynomial Time (PPT)

Non-Uniform

PPT T: a family of randomised programs T_k (one for each value of the security parameter k), s.t. there is a polynomial p with each T_k running for at most p(k) time

 (Could restrict to uniform PPT. But by default, we'll allow non-uniform.)

Example: Pseudorandomness Generator (PRG)

- Takes a short seed and (deterministically) outputs a long string • $G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}$ where n(k) > k
- Security definition: Output distribution induced by random input seed should be "pseudorandom"
 - i.e., Computationally indistinguishable from uniformly random

 - Note: {G_k(x)}_{x←{0,1}}^k cannot be statistically indistinguishable from U_{n(k)} unless n(k) ≤ k (Why?)

i.e., no non-trivial PRG against unbounded adversaries

Example: Pseudorandomness Generator (PRG)

Takes a short seed and (deterministically) outputs a long string • $G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}$ where n(k) > k• Security definition: $\{G_k(x)\}_{x \leftarrow \{0,1\}}^k \approx U_{n(k)}$ **x** ← {0,1}^k z ← {0,1}ⁿ $z \leftarrow G_k(x)$ Т ∀ PPT ● Т REAL ≈ IDEAL REAL IDEAL

Pseudorandom Function (PRF)

A compact representation of an exponentially long (pseudorandom) string

- Allows "random-access" (instead of just sequential access)
 - A function F(s;i) outputs the ith block of the pseudorandom string corresponding to seed s
 - Exponentially many blocks (i.e., large domain for i)
- Pseudorandom Function
 - Need to define pseudorandomness for a function (not a string)
 - Idea: the view of an adversary <u>arbitrarily interacting with the function</u> is indistinguishable from its view when interacting with a random function

Pseudorandom Function (PRF)

Security for MPC

Recall: For passive security, secrecy is all the matters

- For a 2-party functionality f, with only Bob getting the output, perfect secrecy against corrupt Bob:
 i.e., ∀ x, x', y s.t., f(x,y) = f(x',y'), view_{Bob}(x,y) = view_{Bob}(x',y)
 - In particular, if (y, f(x,y)) uniquely determines x (i.e., if f(x',y)=f(x,y) ⇒ x'=x), then OK for view to reveal x
- In the computational setting, just replace = with \approx ?
 - We should ask for more!
 - E.g., f is a decryption algorithm, with key x and ciphertext y
 - Often, a (long enough) ciphertext and message uniquely determines the key
 - But not OK to reveal the key to Bob!

Because, uniquely determines ≠ reveals!