Advanced Tools from
Modern Cryptography

Lecture 8
MPC: Simulation-Based Security



Security for MPC

@ Recall: For passive security, secrecy is all the matters

@ For a 2-party functionality f, with only Bob getting the output,
perfect secrecy against corrupt Bob:

i.e., V x, X', ys.t., f(x,y) = f(x’,y’), viewsos(X,y) = viewsob(X',y)

@ In particular, if (y, f(x,y)) uniquely determines x (i.e., if
f(x’,y)=f(x,y) = x'=x), then OK for view to reveal x

@ In the computational setting, just replace = with = ?
@ We should ask for more!
@ E.g., fis a decryption algorithm, with key x and ciphertext vy

@ Often, a (long enough) ciphertext and message uniquely

determines the key Because,
uniquely determines
@ But not OK tfo reveal the key to Bob! + reveals!




Security for MPC

@ Compare the protocol execution with an “ideal” execution involving
an incorruptible trusted party

@ Trusted party collects all inputs, carries out all computation and
delivers the outputs (over private channels)

@ Ideal is the best we can hope for

@ If anything that could "go wrong” with the protocol execution
could happen with the ideal execution too, then it is not the
protocols fault



Simulation-Based Security

N
g “ *'n
'J

“3
O
I Protocol is V
! secure (and o
correct) if: A
¥
3 i s.t. \?
! s I

output of @
is distributed
identically in

IDEAL REAL and IDEAL REAL




Simulation-Based Security

Protocol may also use (simpler)
functionalities, like OT

| Functionality

‘\/ »

F

A
proto ‘ ! ) proto

Computational:
all PPT

V
Sequre (and
correct) if: A
v &
3 g s.t. T-)

V@

output of @

is distributed

identically in REAL
REAL and IDEAL

A0 —A

g
£

IDEAL




Variants of Security

@ Same definitional framework can be used to define various
levels of security!

@ Passive adversary: corrupt parties stick tfo the protocol

@ Will require corrupt parties in the ideal world also to use
the correct inputs/outputs

@ Universally Composable security: Active adversary interacting
with the environment arbitrarily

@ Standalone security: environment is not “live.” Interacts with
the adversary before and after (but not during) the protocol

@ Super-PPT simulation: meaningful when the “security” of
ideal world is information-theoretic

@ Non-simulation-based security definitions for MPC: Useful for
intermediate tools (but often too subtle for final applications)



Trust Issues Considered

@ Protocol may leak a party’s secrets
@ Clearly an issue -- even for passive corruption

@ Protocol may give adversary illegitimate influence on the
outcome

@ Say in poker, if adversary can influence hands dealt
@ An issue even when no secrecy requirements
@ e.g., Exchanging inputs
@ Simulation-based security covers these concerns

@ Because the ideal trusted party would allow neither



Example: Coin-Tossing

Functionality Feoin Samples a uniform random bit and sends it to
all parties

Security against passive corruption is trivial (Why?)

Fact: Impossible to (even stand-alone) securely realise against
computationally unbounded active adversaries

Protocol for stand-alone security against PPT adversaries using
commitment

@ If given ideal commitment functionality, information-theoretic
security



Commitment

IDEAL World

e Commit NOW, 30 Day Free Trial

reveal later

® Intuitive properties:
hiding and binding

conmmuit

e G S

wMMIT"
<z



@ © @ @ ©

Example: Coin-Tossing

A (fully) secure 2-party protocol for coin-tossing, given an ideal
commitment functionality Feom

Alice sends a bit a to Feom. (Bob gets “committed” from Fcom)

Bob sends a bit b to Alice

Alice sends “open” to Fcom. (Bob gets a from Fcom)

Both output c=a®b

Simulator:

@ Will get a bit ¢ from Fein. Needs to simulate the corrupt
party’s view in the protocol, including the interaction with Feom

@ If Alice corrupt: Get a from Alice. Send b = a®c.

@ If Bob corrupt: Send "committed”. Get b. Send a = bac.

Perfect simulation (why?)



