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Lecture 9

MPC: Security Against Active Corruption



Handling Active Corruption
Need to ensure that there is a well-defined input for the 
adversary 


Simulator should be able to “extract” the corrupt parties’ inputs


Should make sure that the adversary cannot change the outcome


Secrecy should hold even if the corrupt parties deviate from the 
protocol


General idea: catch deviations. 


On catching a deviation an honest party may abort the 
protocol (if adversarial abort is allowed in the ideal world)


Or “deactivate” (potentially) corrupt players and continue the 
protocol. Possible when there is a large enough honest-majority


Note: Catching itself shouldn’t reveal information about inputs



GMW Paradigm

Run a passive-secure protocol Π, but let each party “verify” that 
the others are following the protocol correctly


Correctly: pick arbitrary inputs and arbitrary randomness first, 
but then follow the specified program


Verification should not reveal information: then cannot rely on 
passive security of Π any more!


How to verify without learning any information?


Zero-Knowledge Proofs!



Zero-Knowledge Proofs
Suppose Alice wants to convince Bob that a boolean formula in 
n-variables f(x1,…,xn) is satisfiable


i.e., ∃ values (v1,…,vn) such that f(v1,…,vn) = 1


But doesn’t want to reveal any “knowledge” about the solution 
to Bob (even if solution fully determined by f)


Zero-Knowledge Proof functionality: FZK


Alice sends (f, (v1,…,vn)) to FZK, which sends (f, f(v1,…,vn)) to 
Bob


Zero-Knowledge protocol: a 2-party secure computation protocol 
for the functionality FZK


Not interesting for passive corruption (of prover)



Uses a commitment protocol 
as a subroutine 

At least 1/m probability of 
catching a wrong proof 

Soundness amplification: 
Repeat say mk times  
(with independent color 
permutations)
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Zero-Knowledge Proofs
Traditional definition of ZK proofs is somewhat different


Simulation-based security for actively corrupt (standalone) 
verifier only


Security against prover: Soundness


Allows computationally unbounded corrupt provers


A corrupt prover should have negligible probability of 
getting the honest verifier to accept a false statement


Our definition of ZK proofs corresponds to “Proof/Argument of 
Knowledge”


Argument: Soundness only against PPT prover


Knowledge: Prover “knows” v s.t. f(v)=1



Consider an honest-majority, passive-secure MPC protocol Π for 
the ZK functionality, with n servers (in addition to one input 
client and one output client)


Alice carries out the execution of a session of the MPC protocol 
with her inputs (f,v) as the input of the input client


Alice sends the view of the output client View(out) to Bob and 
commits to the view of the ith server, View(i), for every i, to Bob


Bob sends a random subset S ⊆ [n], |S| < n/2 to Alice. Alice opens 
View(i) for all i∈S.


Bob accepts the proof (outputs) f, if every pair of views it got is 
consistent, and View(out) has the output f

Zero Knowledge Proofs

From Passive, Honest-Majority MPC “in the head”



Security against corrupt Bob: Bob’s view consists solely of 
View(out) and View(i) for i∈S where S is chosen by Bob (after 
seeing View(out))


Since |S|<n/2, can be simulated just based on f, by the passive 
(adaptive) security of Π


Security against corrupt Alice: Simulator can see what Alice 
commits to, but these views may not be consistent


If there is a vertex cover of < n/2 server views covering 
“inconsistent edges”, then execution corresponds to one with  
< n/2 corrupt parties. Simulator for Π can extract v from the 
view of the honest parties.


If no such vertex cover, too many inconsistent edges and S will 
contain at least one such pair except with negligible probability

Zero Knowledge Proofs

From Passive, Honest-Majority MPC “in the head”



GMW Paradigm

Run a passive-secure protocol Π, but let each party “verify” that 
the others are following the protocol correctly


Correctly: pick arbitrary inputs and arbitrary randomness first, 
but then follow the specified program


Need to prove that each message was correctly computed, right 
when it is sent


If proof required only at the end, too late!


Proving ∃ input, rand, s.t. next-messageΠ (input,rand,messages) 

equals the message being sent


Should use the same input and randomness through out!



Proving ∃v f(v)=1 is by itself not enough for the GMW 
transformation


Multiple statements to prove with the same v


Commit-and-Prove functionality: FCaP


Alice sends v to FCaP, which sends “committed” to Bob


Subsequently, for i=1,2,… Alice sends a function fi 
(represented as a circuit) to FCaP, which sends (fi,fi(v)) to Bob


More generally, Alice sends (fi,wi) and FCaP sends (fi,fi(v,wi)) 
to Bob


Note: same v used in all rounds

Commit & Prove



GMW Paradigm
Run a passive-secure protocol Π, but let each party “verify” that 
the others are following the protocol correctly


Correctly: pick arbitrary inputs and arbitrary randomness first, 
but then follow the specified program


Each party proves using FCaP that each message was correctly 
computed, for the same committed inputs and randomness


Could “securely implement” FCaP using a “plain” commitment of v 
(i.e., not using Fcom), and proving statements about it using FZK


(Or can use FOT instead of FCom in the protocol for FZK)


fi defined so that fi(v) = 1 iff Π produces message mi on input/
randomness v for the proving party, given the transcript so far


All communication in Π assumed to be over public channels



Composition

We built an active-secure protocol using access to ideal FCaP 
functionality


Is it OK to “replace” it by a protocol for FCaP?


Depends on the exact definition of security


Hint: OK for Universally Composable security


Later


