
Advanced Tools from  

 Modern Cryptography

Lecture 9

MPC: Security Against Active Corruption

Handling Active Corruption
Need to ensure that there is a well-defined input for the
adversary

Simulator should be able to “extract” the corrupt parties’ inputs

Should make sure that the adversary cannot change the outcome

Secrecy should hold even if the corrupt parties deviate from the
protocol

General idea: catch deviations.

On catching a deviation an honest party may abort the
protocol (if adversarial abort is allowed in the ideal world)

Or “deactivate” (potentially) corrupt players and continue the
protocol. Possible when there is a large enough honest-majority

Note: Catching itself shouldn’t reveal information about inputs

GMW Paradigm

Run a passive-secure protocol Π, but let each party “verify” that
the others are following the protocol correctly

Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

Verification should not reveal information: then cannot rely on
passive security of Π any more!

How to verify without learning any information?

Zero-Knowledge Proofs!

Zero-Knowledge Proofs
Suppose Alice wants to convince Bob that a boolean formula in
n-variables f(x1,…,xn) is satisfiable

i.e., ∃ values (v1,…,vn) such that f(v1,…,vn) = 1

But doesn’t want to reveal any “knowledge” about the solution
to Bob (even if solution fully determined by f)

Zero-Knowledge Proof functionality: FZK

Alice sends (f, (v1,…,vn)) to FZK, which sends (f, f(v1,…,vn)) to
Bob

Zero-Knowledge protocol: a 2-party secure computation protocol
for the functionality FZK

Not interesting for passive corruption (of prover)

Uses a commitment protocol
as a subroutine

At least 1/m probability of
catching a wrong proof

Soundness amplification:
Repeat say mk times  
(with independent color
permutations)

A ZK Proof for Graph
Colorability

pick random
edge

distinct
colors?

Use

ran
dom

co
lors edge

G,coloring

OK

F

re
ve

al
ed

ge

com
m

itted

Zero-Knowledge Proofs
Traditional definition of ZK proofs is somewhat different

Simulation-based security for actively corrupt (standalone)
verifier only

Security against prover: Soundness

Allows computationally unbounded corrupt provers

A corrupt prover should have negligible probability of
getting the honest verifier to accept a false statement

Our definition of ZK proofs corresponds to “Proof/Argument of
Knowledge”

Argument: Soundness only against PPT prover

Knowledge: Prover “knows” v s.t. f(v)=1

Consider an honest-majority, passive-secure MPC protocol Π for
the ZK functionality, with n servers (in addition to one input
client and one output client)

Alice carries out the execution of a session of the MPC protocol
with her inputs (f,v) as the input of the input client

Alice sends the view of the output client View(out) to Bob and
commits to the view of the ith server, View(i), for every i, to Bob

Bob sends a random subset S ⊆ [n], |S| < n/2 to Alice. Alice opens
View(i) for all i∈S.

Bob accepts the proof (outputs) f, if every pair of views it got is
consistent, and View(out) has the output f

Zero Knowledge Proofs

From Passive, Honest-Majority MPC “in the head”

Security against corrupt Bob: Bob’s view consists solely of
View(out) and View(i) for i∈S where S is chosen by Bob (after
seeing View(out))

Since |S|<n/2, can be simulated just based on f, by the passive
(adaptive) security of Π

Security against corrupt Alice: Simulator can see what Alice
commits to, but these views may not be consistent

If there is a vertex cover of < n/2 server views covering
“inconsistent edges”, then execution corresponds to one with  
< n/2 corrupt parties. Simulator for Π can extract v from the
view of the honest parties.

If no such vertex cover, too many inconsistent edges and S will
contain at least one such pair except with negligible probability

Zero Knowledge Proofs

From Passive, Honest-Majority MPC “in the head”

GMW Paradigm

Run a passive-secure protocol Π, but let each party “verify” that
the others are following the protocol correctly

Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

Need to prove that each message was correctly computed, right
when it is sent

If proof required only at the end, too late!

Proving ∃ input, rand, s.t. next-messageΠ (input,rand,messages)

equals the message being sent

Should use the same input and randomness through out!

Proving ∃v f(v)=1 is by itself not enough for the GMW
transformation

Multiple statements to prove with the same v

Commit-and-Prove functionality: FCaP

Alice sends v to FCaP, which sends “committed” to Bob

Subsequently, for i=1,2,… Alice sends a function fi
(represented as a circuit) to FCaP, which sends (fi,fi(v)) to Bob

More generally, Alice sends (fi,wi) and FCaP sends (fi,fi(v,wi))
to Bob

Note: same v used in all rounds

Commit & Prove

GMW Paradigm
Run a passive-secure protocol Π, but let each party “verify” that
the others are following the protocol correctly

Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

Each party proves using FCaP that each message was correctly
computed, for the same committed inputs and randomness

Could “securely implement” FCaP using a “plain” commitment of v
(i.e., not using Fcom), and proving statements about it using FZK

(Or can use FOT instead of FCom in the protocol for FZK)

fi defined so that fi(v) = 1 iff Π produces message mi on input/
randomness v for the proving party, given the transcript so far

All communication in Π assumed to be over public channels

Composition

We built an active-secure protocol using access to ideal FCaP
functionality

Is it OK to “replace” it by a protocol for FCaP?

Depends on the exact definition of security

Hint: OK for Universally Composable security

Later

