Advanced Tools from
Modern Cryptography

Lecture 9
MPC: Security Against Active Corruption



Handling Active Corruption

@ Need fo ensure that there is a well-defined input for the
adversary

@ Simulator should be able to “extract” the corrupt parties’ inputs
@ Should make sure that the adversary cannot change the outcome

@ Secrecy should hold even if the corrupt parties deviate from the
protocol

@ General idea: catch deviations.

@ On catching a deviation an honest party may abort the
protocol (if adversarial abort is allowed in the ideal world)

@ Or “deactivate” (potentially) corrupt players and continue the
protocol. Possible when there is a large enough honest-majority

@ Note: Catching itself shouldnt reveal information about inputs



GMW Paradigm

@ Run a passive-secure protocol II, but let each party “verify” that
the others are following the protocol correctly

@ Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

@ Verification should not reveal information: then cannot rely on
passive security of II any more!

@ How to verify without learning any information?

@ Zero-Knowledge Proofs!



Zero-Knowledge Proofs

@ Suppose Alice wants to convince Bob that a boolean formula in
n-variables f(xi,...,xn) is satisfiable

@ i.e., 3 values (vi,...,vn) such that f(vy,...,vn) = 1

@ But doesnt want to reveal any “knowledge” about the solution
to Bob (even if solution fully determined by f)

@ Zero-Knowledge Proof functionality: Fz«

@ Alice sends (f, (vy,...,vn)) to Fzx, which sends (f, f(vy,...,vn)) to
Bob

@ Zero-Knowledge protocol: a 2-party secure computation protocol
for the functionality Fz«

@ Not interesting for passive corruption (of prover)



A ZK Proof for Graph
Colorability

® Uses a commitment protocol
as a subroutine

® At least 1/m probability of
catching a wrong proof

® Soundness amplification:
Repeat say mk times
(with independent color
permutations)

pick random
edge

distinct
<
colors?




Zero-Knowledge Proofs

@ Traditional definition of ZK proofs is somewhat different

@ Simulation-based security for actively corrupt (standalone)
verifier only

@ Security against prover: Soundness
@ Allows computationally unbounded corrupt provers

@ A corrupt prover should have negligible probability of
getting the honest verifier to accept a false statement

@ Our definition of ZK proofs corresponds to “Proof/Argument of
Knowledge”

@ Argument: Soundness only against PPT prover

@ Knowledge: Prover “"knows” v s.t. f(v)=1



Zero Knowledge Proofs
From Passive, Honest-Majority MPC “in the head’

/

@ Consider an honest-majority, passive-secure MPC protocol II for
the ZK functionality, with n servers (in addition to one input
client and one output client)

@ Alice carries out the execution of a session of the MPC protocol
with her inputs (f,v) as the input of the input client

@ Alice sends the view of the output client View(out) to Bob and
commits to the view of the i server, View(i), for every i, to Bob

@ Bob sends a random subset S ¢ [n], IS| < n/2 to Alice. Alice opens
View(i) for all ieS.

@ Bob accepts the proof (outputs) f, if every pair of views it got is
consistent, and View(out) has the output f



Zero Knowledge Proofs
From Passive, Honest-Majority MPC “in the head”

@ Security against corrupt Bob: Bobs view consists solely of
View(out) and View(i) for ieS where S is chosen by Bob (after

seeing View(out))

@ Since [Sl<n/2, can be simulated just based on f, by the passive
(adaptive) security of II

@ Security against corrupt Alice: Simulator can see what Alice
commits to, but these views may not be consistent

@ If there is a vertex cover of < n/2 server views covering
“inconsistent edges”, then execution corresponds to one with
< n/2 corrupt parties. Simulator for II can extract v from the
view of the honest parties.

@ If no such vertex cover, too many inconsistent edges and S will
contain at least one such pair except with negligible probability



GMW Paradigm

@ Run a passive-secure protocol II, but let each party “verify” that
the others are following the protocol correctly

@ Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

@ Need to prove that each message was correctly computed, right
when it is sent

@ If proof required only at the end, too late!

@ Proving 3 input, rand, s.t. next-messagern (input,rand,messages)
equals the message being sent

@ Should use the same input and randomness through out!



Commit & Prove

@ Proving 3v f(v)=1 is by itself not enough for the GMW
transformation

@ Multiple statements to prove with the same v
@ Commit-and-Prove functionality: Fcep
@ Alice sends v to Fcap, Which sends “committed” to Bob

@ Subsequently, for i=1,2,... Alice sends a function f;
(represented as a circuit) to Fcap, Which sends (fi,fi(v)) to Bob

@ More generally, Alice sends (fi,wi) and Fcap sends (fi,fi(v,wi))
to Bob

@ Note: same v used in all rounds



GMW Paradigm

@ Run a passive-secure protocol I, but let each party “verify” that
the others are following the protocol correctly

@ Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

@ Each party proves using Fcap that each message was correctly
computed, for the same committed inputs and randomness

@ Could “securely implement” Fcqp using a “plain” commitment of v
(i.e., not using Fem), and proving statements about it using Fz«

@ (Or can use For instead of Fcom in the protocol for Fz)

@ fi defined so that fi(v) = 1 iff II produces message m; on input/
randomness v for the proving party, given the transcript so far

@ All communication in IT assumed to be over public channels



Composition

@ We built an active-secure profocol using access to ideal Fcap
functionality

@ Is it OK to “replace” it by a protocol for Fcqp?
@ Depends on the exact definition of security
@ Hint: OK for Universally Composable security

@ Later



