Advanced Tools from Modern Cryptography

Lecture 12

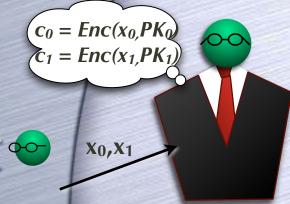
MPC: UC-secure OT

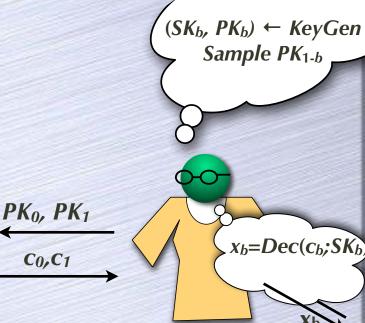
UC-Secure OT

- UC-secure OT is impossible (even against PPT adversaries) in the "plain model" (i.e., without the help of another functionality)
- But possible from simple setups
 - e.g., noisy channel (without computational assumptions)
 - e.g., random coins (needs computational assumptions)
 - Today: from Common random string
 - Like random coins, but reusable across multiple sessions

An OT Protocol (passive corruption)

- Using (a special) encryption
 - PKE in which one can sample a public-key without knowing secret-key
- *c*_{1-b} inscrutable to a passive corrupt receiver
- Sender learns nothing about *b*





Towards Active Security

- Should not let the receiver pick PK₀ and PK₁ independently!
- (PK₀,PK₁) tied together, in which at most one can be decrypted
 - \circ (PK₀,PK₁,SK) \leftarrow Gen(b) s.t. check(PK₀,PK₁) = True
 - (PK₀,PK₁) hides b. SK decrypts Enc(m;PK_b), but not Enc(m;PK_{1-b})
 - But a simulator should be able to extract b from (PK₀,PK₁) (if Receiver corrupt) and m from Enc(m;PK_{1-b}) (if Sender corrupt)
 - Scheme will use a <u>common random string</u> Q (to be generated by a trusted party)
 - During simulation Simulator can generate (Q,T) where T is a Trapdoor that can be used for extraction

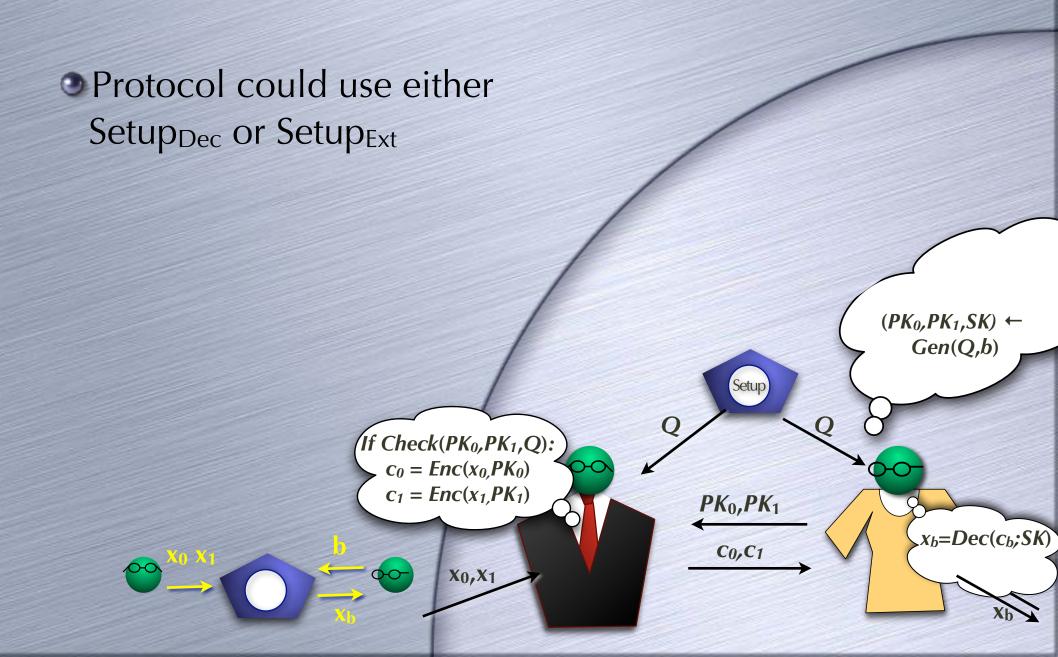
Towards Active Security

- Need: (PK_0,PK_1,SK) ← Gen(Q,b) s.t. $check(PK_0,PK_1,Q)$ = True.
 - (PK₀,PK₁) hides b. Enc(m;PK_c) hides m for some c (even if (PK₀,PK₁) maliciously generated). Simulator should have trapdoors.
 - Suppose two different types of setups possible such that: Type 1 setup: For honest (PK₀,PK₁), b statistically hidden. Trapdoor decrypts both Enc(m;PK₀) and Enc(m;PK₁). Type 2 setup: Honest Enc(m;PK_c) statistically hides m for some c. Trapdoor extracts a "lossy" c from any (PK₀,PK₁). Type 1 setup ≈ Type 2 setup (computationally)
 - (PK₀,PK₁) computationally hides b in Type 2 setup too. Enc(m;PK_c) hides m for some c in Type 1 setup too.
 - Simulation when Sender corrupt: Use Type 1 setup
 - Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

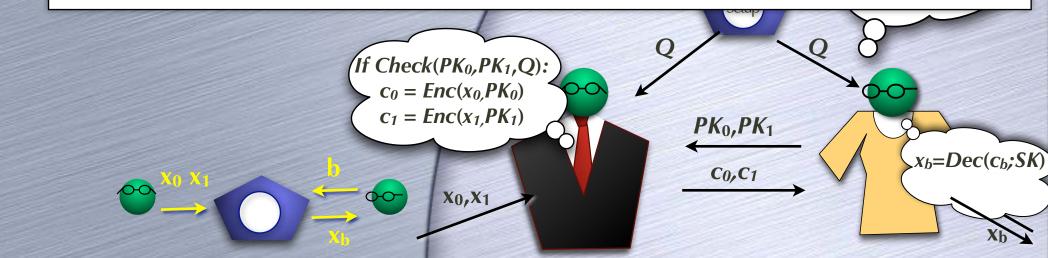
- Algorithms: Setup_{Dec}, Setup_{Ext}, Gen, Check, Enc, Dec
 - Q from Setup_{Dec} and Setup_{Ext} indistinguishable
 - **o** If (PK_0,PK_1,SK) ← Gen(Q,b), then $Check(PK_0,PK_1,Q)=True$, and $Dec(Enc(x,PK_b), SK) = x$
 - If PK lossy, then Enc(x,PK) statistically hides x
- Two more algorithms required to exist by security property: FindLossy and TrapKeyGen
 - Given trapdoor from Setup_{Ext}, and a pair PK₀, PK₁ which passes the Check, FindLossy can find a lossy PK out of the two
 - Given trapdoor from Setup_{Dec}, TrapKeyGen can generate PK_0 , PK_1 which will pass the Check, along with decryption keys SK_0 , SK_1

OT from DME

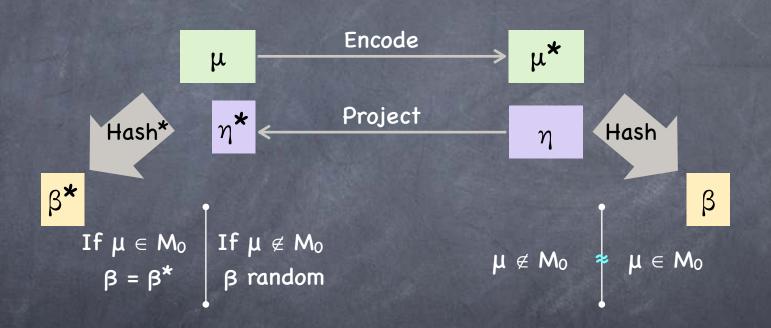


OT from DME

- Simulation for corrupt sender:
 - $0. (Q,T) \leftarrow \text{Setup}_{Dec}$, send Q.
 - 1. Send $(PK_0, PK_1, SK_0, SK_1) \leftarrow \text{TrapKeyGen}(T)$
 - 2. On getting (c_0,c_1) , extract (x_0,x_1) using (SK_0,SK_1) and send to F_{OT}
- For corrupt receiver:
 - $0. (Q,T) \leftarrow \text{Setup}_{\text{Ext}}, \text{ send } Q.$
 - 1. On getting (PK_0, PK_1) , send b := 1-FindLossy (PK_0, PK_1, T) to F_{OT} , get x_b
 - 2. Send $c_b = \text{Enc}(x_b, PK_b)$ and $c_{1-b} = \text{Enc}(0, PK_{1-b})$



Smooth Projective Hash (SPH)



Smooth Projective Hash (SPH)

- Public parameters θ. Trapdoor parameters τ .
- Messages $\mu \in M$. Efficient Encode θ : $\mu \mapsto \mu^*$, a group homom. $M \to M^*$
 - Subgroup M₀ ⊆ M. Given τ and μ *, can efficiently check if $\mu \in M_0$
- Hash key η with efficient Project₀: $\eta \mapsto \eta^*$
- Efficient Hash(μ^*,η) and Hash*(μ,η^*) s.t. $\forall \mu$, for random η :
 - If $\mu \in M_0$, then $Hash(\mu^*, \eta) = Hash^*(\mu, \eta^*)$
 - If $\mu \not\in M_0$, Hash (μ^*, η) statistically close to uniform, even given η^*
- To Distributions $\{\mu^*\}_{\mu \leftarrow M_0} \approx \{\mu^*\}_{\mu \leftarrow M \setminus M_0}$
- Hash output is in a group too

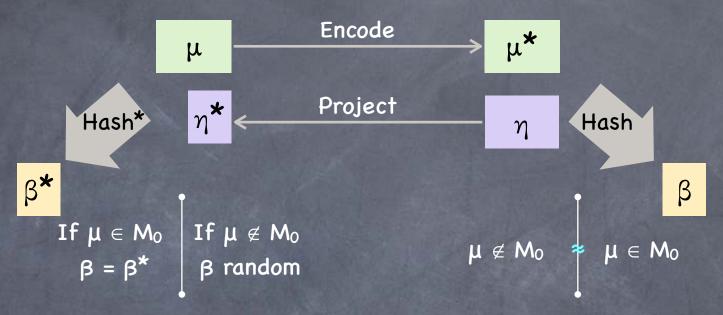
Groups

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: $\mathbb{Z} = (\text{integers}, +)$ (this is an infinite group), $\mathbb{Z}_N = (\text{integers modulo N}, + \text{mod N}),$ $G^n = (\text{Cartesian product of a group G, coordinate-wise operation})$
- Order of a group G: |G| = number of elements in G
- For any a∈G, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - Prototype: \mathbb{Z}_N (additive group), with g=1. Corresponds to arithmetic in the exponent.

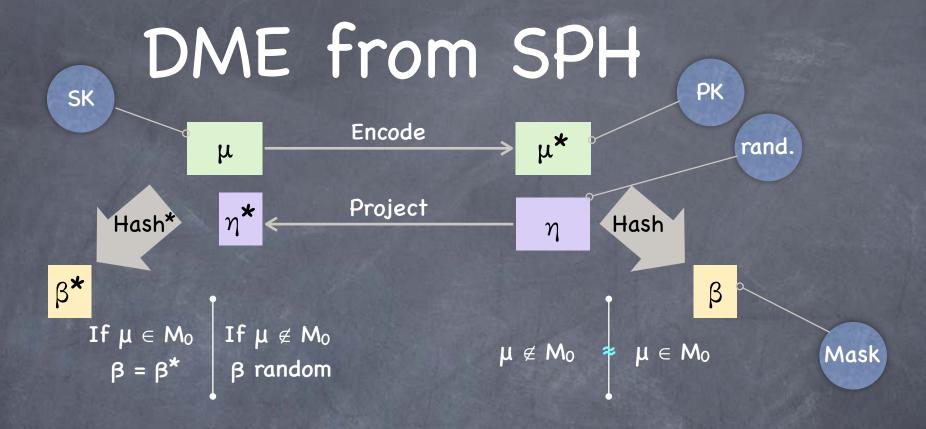
Decisional Diffie-Hellman (DDH) Assumption

- Assumption about a distribution of finite cyclic groups and generators
- {(G, g, g^x , g^y , g^{xy})}(G,g) \(Gen; x,y \([|G|] \(\approx \) {(G, g, g^x , g^y , g^y)}(G,g) \(Gen; x,y,r \([|G|] \)
- Note: Requires that it is hard to find x from gx
- Typically, G required to be a prime-order group. So arithmetic in the exponent is in a field.
- Formulation equivalent to DDH in prime-order groups:
 - - o If can distinguish the above, then can break DDH: map (G, g, g^x , g^y , h) \mapsto (G, g, g^a , g^x , $g^{y,a}$, h)

SPH from DDH Assumption



- SPH from DDH assumption on a prime order group G
- $\theta = (G,g,g^{a},g^{b}), \ \tau = (a,b)$ $\eta = (s,t) \text{ and } \eta^{*} = g^{as+bt}.$ $\mu = (u,v) \text{ and } \mu^{*} = (g^{a.u}, g^{b.v}). \ \mu \in M_{0} \text{ iff } u=v.$ $\mu = (u,v) = g^{a.u.s} \cdot g^{b.v.t} \text{ and } \mu = (g^{as+bt}).u$



- SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec
- How to check that at least one of two PKs μ_0^* , μ_1^* is lossy?
 - Lossy means not in M₀*
 - Setup contains μ^* ∉ M₀*, and require that $\mu_0^* \cdot \mu_1^* = \mu^*$

DME from SPH

- Setup: Sample SPH params (θ,τ). Let μ←M. Let Q=(μ*,θ), T=(μ,τ)
 - Setup_{Dec}: $\mu \in M_0$. Setup_{Ext}: $\mu \not\in M_0$.
- Gen(Q,b): (PK₀,PK₁) = (μ₀*,μ₁*) where μ_b ← M₀ and μ_{1-b}* = μ* μ_b*-1 Check (PK₀,PK₁,Q): check μ₀*·μ₁* = μ*.
 - o If $\mu \notin M_0$, given (μ_0^*, μ_1^*) s.t. $\mu_0^* \cdot \mu_1^* = \mu^*$, at least one of μ_0, μ_1 not in M_0 . Can find using τ . (FindLossy)
 - If $\mu \in M_0$, using μ can find (μ_0, μ_1) s.t. $\mu_0^* \cdot \mu_1^* = \mu^*$ and both $\mu_0, \mu_1 \in M_0$ (TrapKeyGen)
- Enc(x, μ_b *): (η *, x·Hash(μ_b *, η)) where η random
 - x assumed to be in the group of Hash output
- Dec(c, μ_b) where c=(η^* , α) and $\mu_b \in M_0$: Ouput α .(Hash*(μ_b , η^*))⁻¹

OT from DME

