
Advanced Tools from  

 Modern Cryptography

Lecture 12

MPC: UC-secure OT

UC-Secure OT

UC-secure OT is impossible (even against PPT adversaries) in the
“plain model” (i.e., without the help of another functionality)

But possible from simple setups

e.g., noisy channel (without computational assumptions)

e.g., random coins (needs computational assumptions)

Today: from Common random string

Like random coins, but reusable across multiple sessions

Using (a special) encryption

PKE in which one can
sample a public-key
without knowing secret-key

c1-b inscrutable to a  
passive corrupt receiver

Sender learns nothing  
about b

An OT Protocol
(passive corruption)

x0 x1

F

(SKb, PKb) ← KeyGen
Sample PK1-b

b

xb

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1

x0,x1 b

xb

xb=Dec(cb;SKb)

Towards Active Security
Should not let the receiver pick PK0 and PK1 independently!

(PK0,PK1) tied together, in which at most one can be decrypted

(PK0,PK1,SK) ← Gen(b) s.t. check(PK0,PK1) = True

(PK0,PK1) hides b. SK decrypts Enc(m;PKb), but not Enc(m;PK1-b)

But a simulator should be able to extract b from (PK0,PK1) (if
Receiver corrupt) and m from Enc(m;PK1-b) (if Sender corrupt)

Scheme will use a common random string Q (to be
generated by a trusted party)

During simulation Simulator can generate (Q,T) where T is a
Trapdoor that can be used for extraction

Towards Active Security
Need: (PK0,PK1,SK) ← Gen(Q,b) s.t. check(PK0,PK1,Q) = True.

(PK0,PK1) hides b. Enc(m;PKc) hides m for some c (even if (PK0,PK1)
maliciously generated). Simulator should have trapdoors.

Suppose two different types of setups possible such that:  
Type 1 setup: For honest (PK0,PK1), b statistically hidden.  
 Trapdoor decrypts both Enc(m;PK0) and Enc(m;PK1).  
Type 2 setup: Honest Enc(m;PKc) statistically hides m for some c.  
 Trapdoor extracts a “lossy” c from any (PK0,PK1).  
Type 1 setup ≈ Type 2 setup (computationally)

(PK0,PK1) computationally hides b in Type 2 setup too.  
Enc(m;PKc) hides m for some c in Type 1 setup too.

Simulation when Sender corrupt: Use Type 1 setup

Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

Algorithms: SetupDec, SetupExt, Gen, Check, Enc, Dec

Q from SetupDec and SetupExt indistinguishable

If (PK0,PK1,SK) ← Gen(Q,b), then Check(PK0,PK1,Q)=True, and  
Dec(Enc(x,PKb), SK) = x

If PK lossy, then Enc(x,PK) statistically hides x

Two more algorithms required to exist by security property:  
FindLossy and TrapKeyGen

Given trapdoor from SetupExt, and a pair PK0, PK1 which passes
the Check, FindLossy can find a lossy PK out of the two

Given trapdoor from SetupDec, TrapKeyGen can generate PK0, PK1
which will pass the Check, along with decryption keys SK0, SK1

Protocol could use either
SetupDec or SetupExt

OT from DME

x0 x1

F

(PK0,PK1,SK) ← 
 Gen(Q,b)

b

xb

PK0,PK1

If Check(PK0,PK1,Q): 
c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1

x0,x1 b

xb

xb=Dec(cb;SK)

FSetup

Q Q

OT from DME

x0 x1

F

(PK0,PK1,SK) ← 
 Gen(Q,b)

b

xb

PK0,PK1

If Check(PK0,PK1,Q): 
c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1

x0,x1 b

xb

xb=Dec(cb;SK)

FSetup

Q Q

Simulation for corrupt sender:  
 

 

For corrupt receiver:  

0. (Q,T) ← SetupDec, send Q. 

1. Send (PK0,PK1,SK0,SK1) ← TrapKeyGen(T)  
2. On getting (c0,c1), extract (x0,x1) using (SK0,SK1) and send to FOT

0. (Q,T) ← SetupExt, send Q. 

1. On getting (PK0,PK1), send b:=1-FindLossy(PK0,PK1,T) to FOT, get xb  

2. Send cb = Enc(xb, PKb) and c1-b = Enc(0, PK1-b)

Smooth Projective Hash (SPH)

ƴ

μ*

ƴ*

μ
Project

Encode

Hash* Hash

Ư* Ư
μ ∉ M0 μ ∈ M0≈

If μ ∈ M0  

 β = β*
If μ ∉ M0  

 β random

Smooth Projective Hash (SPH)

Public parameters Ƶ. Trapdoor parameters τ.

Messages μ ∈ M. Efficient EncodeƵ: μ ↦ μ*, a group homom. M → M*

Subgroup M0 ⊆ M. Given τ and μ*, can efficiently check if μ ∈ M0

Hash key ƴ with efficient ProjectƵ: ƴ ↦ ƴ*

Efficient Hash(μ*,ƴ) and Hash*(μ,ƴ*) s.t. ∀μ, for random ƴ:

If μ ∈ M0, then Hash(μ*,ƴ) = Hash*(μ,ƴ*)

If μ ∉ M0, Hash(μ*,ƴ) statistically close to uniform, even given ƴ*

Distributions {μ*}μ ← M0 ≈ {μ*}μ ← M\M0

Hash output is in a group too

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and
(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Prototype: ZN (additive group), with g=1.  

Corresponds to arithmetic in the exponent.

Groups

g0

g2

g3

g1

gN-2
gN-1

. .
.
...

Decisional Diffie-Hellman
(DDH) Assumption

Assumption about a distribution of finite cyclic groups and
generators

{(G, g, gx, gy, gxy)}(G,g)←Gen; x,y←[|G|] ≈ {(G, g, gx, gy, gr)}(G,g)←Gen; x,y,r←[|G|]

Note: Requires that it is hard to find x from gx

Typically, G required to be a prime-order group. So arithmetic in
the exponent is in a field.

Formulation equivalent to DDH in prime-order groups:

{(G, g, ga, gb, gau, gbu)}(G,g),a,b,u ≈ {(G, g, ga, gb, gau, gbv)}(G,g),a,b,u,v

If can distinguish the above, then can break DDH:  
map (G, g, gx, gy, h) ↦ (G, g, ga, gx, gy.a, h)

SPH from DDH Assumption

SPH from DDH assumption on a prime order group G

{(G, g, ga, gb, gau, gbu)}(G,g),a,b,u ≈ {(G, g, ga, gb, gau, gbv)}(G,g),a,b,u,v

 Ƶ = (G,g,ga,gb), τ = (a,b) 
 ƴ = (s,t) and ƴ* = gas+bt.  
 μ = (u,v) and μ* = (ga.u, gb.v). μ ∈ M0 iff u=v.  
 Hash(μ*,ƴ) = ga.u.s⋅gb.v.t and Hash*(μ,ƴ*) = g(as+bt).u

ƴ

μ*

ƴ*

μ
Project

Encode

Hash* Hash

μ ∉ M0 μ ∈ M0

Ư* Ư
≈

If μ ∈ M0  

 β = β*
If μ ∉ M0  

 β random

DME from SPH

ƴ

μ*

ƴ*

μ
Project

Encode

Hash* Hash

μ ∉ M0 μ ∈ M0

Ư* Ư
≈

If μ ∈ M0  

 β = β*
If μ ∉ M0  

 β random

PKSK

Mask

rand.

SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec

How to check that at least one of two PKs μ0*, μ1* is lossy?

Lossy means not in M0*

Setup contains μ* ∉ M0*, and require that μ0*⋅μ1* = μ*

DME from SPH
Setup: Sample SPH params (Ƶ,τ). Let μ←M. Let Q=(μ*,Ƶ), T=(μ,τ)

SetupDec: μ ∈ M0. SetupExt: μ ∉ M0.

Gen(Q,b): (PK0,PK1) = (μ0*,μ1*) where μb ← M0 and μ1-b* = μ* μb*-1  
Check (PK0,PK1,Q): check μ0*⋅μ1* = μ*.

If μ∉ M0, given (μ0*,μ1*) s.t. μ0*⋅μ1* = μ*, at least one of μ0,μ1
not in M0. Can find using τ. (FindLossy)

If μ ∈ M0, using μ can find (μ0,μ1) s.t. μ0*⋅μ1* = μ* and both
μ0,μ1 ∈ M0 (TrapKeyGen)

Enc(x,μb*): (ƴ*, x⋅Hash(μb*,ƴ)) where ƴ random

x assumed to be in the group of Hash output

Dec(c,μb) where c=(ƴ*,Ʈ) and μb ∈ M0 : Ouput Ʈ.(Hash*(μb,ƴ*))-1

Protocol could use either
SetupDec or SetupExt

OT from DME

x0 x1

F

(PK0,PK1,SK) ← 
 Gen(Q,b)

b

xb

PK0,PK1

If Check(PK0,PK1,Q): 
c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1

x0,x1 b

xb

xb=Dec(cb;SK)

FSetup

Q Q

