Advanced Tools from
Modern Cryptography

Lecture 12
MPC: UC-secure OT

UC-Secure OT

@ UC-secure OT is impossible (even against PPT adversaries) in the
"plain model” (i.e., without the help of another functionality)

@ But possible from simple setups
@ e.g., noisy channel (without computational assumptions)
@ e.g., random coins (needs computational assumptions)
@ Today: from Common random string

@ Like random coins, but reusable across multiple sessions

An OT Protocol

(passive corruption)
@ Using (a special) encryption

® PKE in which one can
sample a public-key
without knowing secret-key

31 inscrutable to a

S = (SKb, PKp) < KeyGen
passive corrupt receiver

Sample PKi.p

®Sender learns nothing
about b

xp=Dec(ch; SKp

®_. — @

Towards Active Security

@ Should not let the receiver pick PKo and PK; independently!
@ (PKo,PK)) tied together, in which at most one can be decrypted
a (PKo,PK;,SK) < Gen(b) s.t. check(PKo,PK:) = True
@ (PKo,PK1) hides b. SK decrypts Enc(m;PKy), but not Enc(m;PKib)

@ But a simulator should be able to extract b from (PKo,PK:) (if
Receiver corrupt) and m from Enc(m;PKi) (if Sender corrupt)

@ Scheme will use a common random string Q (to be
generated by a trusted party)

@ During simulation Simulator can generate (Q,T) where T is a
Trapdoor that can be used for extraction

Towards Active Security

@ Need: (PKo,PK1,SK) == Gen(Q,b) s.t. ChQCk(pKo,pK1,Q) = True.

@ (PKo,PK;) hides b. Enc(m;PK.) hides m for some c (even if (PKo,PK))
maliciously generated). Simulator should have trapdoors.

@ Suppose two different types of setups possible such that:
Type 1 setup: For honest (PKo,PKi), b statistically hidden.
Trapdoor decrypts both Enc(m;PKo) and Enc(m;PK;).
Type 2 setup: Honest Enc(m;PK.) statistically hides m for some c.
Trapdoor extracts a “lossy” ¢ from any (PKo,PK)).
Type 1 setup =~ Type 2 setup (computationally)

@ (PKo,PKi) computationally hides b in Type 2 setup too.
Enc(m;PK.) hides m for some c in Type 1 setup too.

@ Simulation when Sender corrupt: Use Type 1 setup
@ Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

@ Algorithms: Setuppec, Setupext, Gen, Check, Enc, Dec
@ Q from Setuppec and Setupext indistinguishable

a If (PKo,PK1,SK) < Gen(Q,b), then Check(PKo,PKi,Q)=True, and
Dec(Enc(x,PKp), SK) = x

@ If PK lossy, then Enc(x,PK) statistically hides x

@ Two more algorithms required to exist by security property:
FindLossy and TrapKeyGen

@ Given frapdoor from Setupext, and a pair PKo, PK; which passes
the Check, FindLossy can find a lossy PK out of the two

@ Given trapdoor from Setuppec, TrapKeyGen can generate PKo, PK;
which will pass the Check, along with decryption keys SKo, SK;

OT from DME

® Protocol could use either
Setuppec Or Setupext

(PKo,PK1,SK) +
Gen(Q,b)

co = Enc(xo,PKo)
c1 = Enc(x1,PK7)

B O O R R O R R R R R R R R R R R R R R R RRRRRRRRRRERRRRRRRRRRI RO IEERRERRREEO ..

OT from DME

®Simulation for corrupt sender:

0. (Q,T) « Setuppec, send Q.

1. Send (PKo,PK1,5K0,5K1) < TrapKeyGen(T)
2. On getting (co,c1), extract (xo,x1) using (5Ko,5K1) and send to For

@ For corrupt receiver:

£

—=

0. (Q,T) « Setupex, send Q.

1. On getting (PKo,PK1), send b:=1-FindLossy(PKo,PK1,T) to For, get xp
2. Send cp = Enc(xs, PKb) and c1.» = Enc(0, PKi.p) i

— g

® —
—’

co = Enc(xo,PKo)
_ Cr = EnC(X1,PK1)

e -

Smooth Projective Hash (SPH)

Encode
K
-

Project

-

IFPGMO
B =pB*

If u € Mo
B random

Smooth Projective Hash (SPH)

o

Public parameters 6. Trapdoor parameters -.

Messages i € M. Efficient Encodes: p — p* a group homom. M — M*
@ Subgroup Mo € M. Given t and u*, can efficiently check if u e Mo
Hash key n with efficient Projecto: n = n*

Efficient Hash(n*n) and Hash*(p,n*) s.t. vp, for random n:

@ If p € Mo, then Hash(p*n) = Hash*(u,n™)

@ If p ¢ Mo, Hash(u*n) statistically close to uniform, even given n*

Distributions {4} —mo = {0 e — Mo

Hash output is in a group too

Groups

@ A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and
(for us) commutative

@ Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G
@ For any aeG, al® =a*a*.. *a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {¢°, ¢!, g% ... g'°}

@ Prototype: Zn (additive group), with g=1.
Corresponds to arithmetic in the exponent.

Decisional Diffie-Hellman
(DDH) Assumption

Assumption about a distribution of finite cyclic groups and
generators

(G, g, g%, 9", g)}Gg)1—Gen; xy<licll * UG, 9, §%, 9, g")}(G.g)—Gen; xy,rIiGl]
Note: Requires that it is hard fo find x from g~

Typically, G required to be a prime-order group. So arithmetic in
the exponent is in a field.

Formulation equivalent to DDH in prime-order groups:

e {(G, g, 9% g° g* g”Meaiabu = G, g, g%G° g% 9°“)}G.g).abuy

@ If can distinguish the above, then can break DDH:
map (G, g, g, @, h) » (G, g, g% g%, g”% h)

SPH from DDH Assumption

Encode
>
@ Project - @
LI < 7
If M€ Mo

B =B

I
fue Mo U & Mo ’LpEMO

B random

@ SPH from DDH assumption on a prime order group G
e {(G, g, g% g° g™ 9" Negrabu = UG, g g% 9% g™ 9")}Ggrabuy

e 0=(G4g49%g%, t = (a,b)
= (s,}) and n* = gos+bt.
= (u,v) and p* = (g%%, g*). u € Mo iff u=v.
HClSh([J-*,Y]) o ga.u.s.gb.v.’r and HGSh*(M,Tl*) . g(as+b’r).u

. DME from SPH _
\“ Encode >m/ A
n* B

@ B

If yue Mo |If ug Mo
B = B* B random ke % S MaRK

S

Project

@ SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec
@ How to check that at least one of two PKs uo*, ™ is lossy?

@ Lossy means not in Mo*
@ Setup contains p* ¢ Mo*, and require that po™*-p* = p*

DME from SPH

@ Setup: Sample SPH params (0,7). Let p<—M. Let Q=(p*0), T=(i,7)
@ Sefuppec: 1 € Mo. Setupext: B € Mo.
@ Gen(Q,b): (PKo,PK1) = (ho*,u1™) where w, < Mo and mip™ = p* pp™*!
Check (PKo,PKi,Q): check po* m™* = p*
@ If pg Mo, given (po*um™) s.t. wo™ - w™ = p* at least one of wo,m
not in Mo. Can find using . (FindLossy)
@ If p e Mo, using u can find (po,i1) s.1. o™ W™ = p* and both
po, k1 € Mo (TrapKeyGen)
@ Enc(x,m*): (n* x-Hash(ww*n)) where n random
@ x assumed to be in the group of Hash output
@ Dec(c,up) where c=(n*a) and pp € Mo : Ouput a.(Hash*(ub,n*))!

OT from DME

® Protocol could use either
Setuppec Or Setupext

(PKo,PK1,SK) +
Gen(Q,b)

co = Enc(xo,PKo)
c1 = Enc(x1,PK7)

B O O R R O R R R R R R R R R R R R R R R RRRRRRRRRRERRRRRRRRRRI RO IEERRERRREEO ..

