Advanced Tools from Modern Cryptography

Lecture 16 Encryption & Homomorphic Encryption

Public-Key Encryption

Syntax

a.k.a. asymmetric-key encryption

- KeyGen outputs (PK,SK) $\leftarrow PK \times SK$
- Enc: $\mathcal{M} \times \mathcal{P} \mathcal{K} \times \mathcal{R} \rightarrow \mathcal{C}$
- Dec: $C \times S \ll M$
- Correctness
 - Ø ∀(PK,SK) ∈ Range(KeyGen), Dec(Enc(m,PK), SK) = m
- Security
 - Against Chosen-Plaintext Attack: IND-CPA security
 - (Stronger notions of security exist: e.g., IND-CCA security)

SIM-CPA

Diffie-Hellman Key-exchange

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve

Why DH-Key-exchange could be secure

- Given g^x, g^y for random x, y, g^{xy} should be "hidden"
 - i.e., could still be used as a pseudorandom element
 - I.e., (g[×], g^y, g^{×y}) ≈ (g[×], g^y, R)
- Is that reasonable to expect?
- Decisional DH Assumption: A family of cyclic groups, with {(g^x, g^y, g^{xy})}(G,g) GroupGen; x,y [IGI] ~ {(g^x, g^y, g^r)}(G,g) GroupGen; x,y,r [IGI] where (G,g) s.t. G is generated by g (and typically |G| prime, so that operations in exponent are in a field)

El Gamal Encryption

- Based on DH key-exchange
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the message masked with this key together form a single ciphertext

Random x $X=g^{\times}$ $K=Y^{\times}$ C=MK $K=X^{y}$ $M=CK^{-1}$

Random y

KeyGen: PK=(G,g,Y), SK=(G,g,y) $Enc_{(G,g,Y)}(M) = (X=g^{X}, C=MY^{X})$ $Dec_{(G,g,Y)}(X,C) = CX^{-Y}$

- KeyGen uses GroupGen to get (G,g)
 x, y uniform from [|G|]
- Message encoded into group element, and decoded

Homomorphic Encryption

- Group Homomorphism: Two groups G and G' are homomorphic if there exists a function (homomorphism) f:G \rightarrow G' such that for all x,y \in G, f(x) +_{G'} f(y) = f(x +_G y)
- Homomorphic Encryption: A CPA secure (public-key) encryption s.t. $Dec(C) +_M Dec(D) = Dec(C +_C D)$ for ciphertexts C, D
 - i.e. $Enc(x) +_{C} Enc(y)$ is like $Enc(x +_{M} y)$
 - Interesting when $+_c$ doesn't require the decryption key
- e.g. El Gamal: $(g^{\times 1}, m_1 Y^{\times 1}) \times (g^{\times 2}, m_2 Y^{\times 2}) = (g^{\times 3}, m_1 m_2 Y^{\times 3})$

Rerandomization

 Often (but not always) another property is required of a homomorphic encryption scheme

- Onlinkability
 - For any two ciphertexts c_x=Enc(x) and c_y=Enc(y),
 Add(c_x,c_y) should be <u>identically distributed</u> as Enc(x +_M y).
 Add is a randomized operation
 - Alternately, a ReRand operation s.t. for all valid ciphertexts
 c_x, ReRand(c_x) is identically distributed as Enc(x)
 - Then, we can let Add(c_x,c_y) = ReRand(c_x +_c c_y) where +_c may be deterministic
 - Rerandomization useful even without homomorphism

- Considers only passive corruption
- Functionality gives "handles" to messages posted; accepts requests for posting fresh messages, or derived messages
- Unlinkability: Above, receiver gets only the message m₁+m₂ in IDEAL. Even if A & Recv collude, can't tell if it is a fresh message or derived from other messages

An OT Protocol (for passive corruption)

 $z_0 = x_0 * c_0$ $z_1 = x_1 * c_1$

X0,X1

Using an (unlinkable) rerandomizable encryption scheme

Receiver picks (PK,SK). Sends PK and E(0), E(1) in suitable order

Sender "multiplies" c_i with x_i: 1*c:=ReRand(c), 0*c:=E(0)

• Simulation for passive-corrupt receiver: set $z_b = E(x_b)$ and $z_{1-b} = E(0)$

Simulation for passive-corrupt sender: set c₀,c₁ to be say E(1)

	$c_{b}=E(1),$ $c_{1-b}=E(0)$
	000
PK, c ₀ , c ₁	$x_b = D(z_b)$
Z ₀ , Z ₁	→ b
	Xb

Homomorphic Encryption for MPC

- Recall GMW (passive-secure): each input was secret-shared among the parties, and computed on shares (using OTs for × gates)
- Alternate approach: each wire value is kept encrypted, publicly, and the key is kept shared
 - All parties encrypt their inputs and publish
 - Evaluate each wire using homomorphism (coming up)
 - Finally decrypt the output wire value using threshold decryption
 - Threshold decryption: KeyGen protocol so that PK is public and SK shared; Decryption protocol that lets the parties decrypt a ciphertext keeping their SK shares private

Threshold El Gamal (Passive Security)

Goal: n parties to generate a PK for El Gamal, so that SK is shared amongst them. Can decrypt messages only if all n parties come together. Will require security against passive corruption.

Distributed Key-Generation:

- (G,g) ← Groupgen publicly (possible in many candidates)
 Each Party_i picks random exponent y_i and publishes Y_i = g^{y_i}
 All parties compute Y = Π_i Y_i. Public-key = (G,g,Y)
- Secret-key = (G,g,y), where $y := \Sigma_i y_i$ (secret). Note: $Y = g^y$
- Encryption as in El Gamal
- Distributed Decryption: Given ciphertext (X,C), each party publishes $K_i^{-1} = X^{-y_i}$. All parties compute $K^{-1} = \prod_i K_i^{-1}$ and $M = CK^{-1}$

Homomorphic Encryption for MPC Passive-securely computing using homomorphism

Notation: Encrypted values shown as [m] etc.

Operations available: [x]+[y] = [x+y], and a*[x] = [ax]

e.g., in GF(2), O*[x] = Enc(0), 1*[x] = ReRand([x])

Addition directly, without communication

0

Multiplication: All parties have [x] and [y]. Need [xy].
Each party P_i picks a_i,b_i and publishes [a_i], [b_i], [a_iy], [b_ix]
All compute [x+a], [y+b], [ay], [bx] where a = ∑_i a_i and b = ∑_i b_i
Each P_i publishes [a_ib] = ∑_j a_i*[b_j], and all compute [ab]
Threshold decrypt (x+a),(y+b). Compute [z] where z=(x+a)(y+b).
All compute [xy] = [z] - [ay] - [bx] - [ab]