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"Homomorphic Encryption

@ Group Homomorphism: Two groups G and G’ are homomorphic
if there exists a function (homomorphism) f:G—G’ such that
for all x,y € G, f(x) +¢ f(y) = f(x +c V)

@ Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +m Dec(D) = Dec (C +¢ D) for ciphertexts C, D

@ i.e. Enc(x) +c Enc(y) is like Enc(x +m V)
@ Interesting when +¢c doesnt require the decryption key
@ e.g., El Gamal: (gx,miY*l) x (gx2,maY*2) = (g*3,mm2Y*3)

@ e.g., Paillier: gninn x gm2rani = gmitm2rsn



Homomorphic Encryption

@ Ring Homomorphism: Two rings A and A are homomorphic if
there exists a function (homomorphism) f:A—A s.t. vx,y € A,

f(x) +a fly) = f(x +a y) and f(x) xx fly) = f(x xa y)

@ Fully Homomorphic Encryption: A CPA secure (public-key)
encryption s.t. Enc(x) +c Enc(y) is like Enc(x +m Yy) and
Enc(x) xc Enc(y) is like Enc(x xm V)

@ Candidate solutions since 2009 using "lattice” problems

@ Today: a simpler Kkind of encryption, which supports only
one multiplication (and any number of additions before and
after the multiplication)

@ Uses “bilinear pairings”



Bilinear Pairing

@ Two (or three) groups with an efficient pairing operation,
e: G x G — Gy that is “bilinear”

@ Typically, prime order (cyclic) groups
o e(ge,gb) = e(g,g)®

@ Multiplication (once) in the exponent!

o e(ge,gb) e(ge,gb) = elgera,gb) ; elge,gbe) = e(gec,gb) ; ..
@ Not degenerate: e(g,g,) # 1

@ D-BDH Assumption: For random (a,b,c,z), the distributions of
(ge,g°,g¢,g°b¢) and (ge,gb,g¢,g?) are indistinguishable



o

3-Party Key Exchange

A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

@ Generalizes Diffie-Hellman key-exchange
Let e: G x G — Gt be bilinear and g a generator of G

Alice broadcasts g, Bob broadcasts gb, and Carol
broadcasts g¢

Each party computes e(g,g)ebe
@ e.g. Alice computes e(g,g)ec = e(gP,gc)e

@ By D-BDH the key e(g,g)ebc = e(g,gebc) is pseudorandom
given eavesdroppers view (g¢,gb,gc)



Some More Assumptions

Computational-BDH Assumption: For random (a,b,c), given (g¢,g°,g¢)
infeasible to find gabe

Decision-Linear Assumption: (h1,hz,g,h1x,hzy,gx+y) and (h1,hz,g,h1x,hzy,gz)
are indistinguishable

Strong DH Assumption: For random X, given (g,g*) infeasible to find
g!/x or even (y,g/&x+). (Note: can check e(gxgY, g/x+V)) = e(g,g).)

@ g-SDH: Given (g,g*,...,g~"), infeasible to find (y,g/(x+)

Subgroup-Decision Assumption: Indistinguishability of random
elements in G from those in a large subgroup of G (requires G to
have composite order)

DDH when e:G1xG>,—Gt: DDH could hold in G; and/or G-



BGN Encryption

@ Boneh-Goh-Nissim Encryption scheme

@ Supports one multiplication and any number of additions through
a layer of encryption

@ Based on the Subgroup-Decision Assumption

@ e: G xG — Gt where G is a cyclic group with a large non-trivial
subgroup

@ |G| = pq, a product of two (similar-sized) primes
@ H C G generated by h=qg4, where g generates G, has |H|=p

@ Assumption: A random element in H are indistinguishable from
a random element in G (cf. DCR)



BGN Encryption

@ e: G xG — Gy where G is a cyclic group with |Gl=pg, and
Subgroup-Decision assumption holds for H C G, |H|=p

@ Message space = Ring of integers modulo n

@ But efficient decryption will be provided only for a small subset
of messages

@ In fact, correct decryption will be possible only up to G/H (e.q.,
{0,..,.9-1}) even inefficiently

@ Idea: Encgn(m;r) = gmhr, where g generates G and h=gd generates H,
so that encrypted messages can be added by multiplying
ciphertexts, multiplied by plaintext by exponentiating, and
multiplied fogether by pairing ciphertexts

@ e(gmtar,gm+ar) = g™ +a” where g; = e(g,g) generates Gr



BGN Encryption

Key generation: Sample n = pq, G s.t. |Gl=n, and generator g for H.
Public key includes (G,g,h) and secret-key is (G,g,p)-

Encgn(m;r) = gmhr, where g generates G and h=gd generates H
Decgp(c) : Find m s.t. gmp = cP (by brute force, when m is from a
small set) ]

@ cp= gmPhrP = g™p since hp = g" = 1 Quadratic speedup using “Pollards
Kangaroo method” for discrete log

Homomorphic operations (in group G):
Ci1 +¢c C2 = C1-C2, @*C = ¢ and ¢; X¢ c2 = e(cy,C2)

@ But xc results in a ciphertext in Gt! Decryption and homomorphic
addition and multiplication by plaintext (but not multiplication of
two encrypted values) are defined for these ciphertexts too

CPA secure under Subgroup-Decision assumption on G and H (which
implies the same for Gr and Hr): Encryption using a random element
in G instead of hr (random element in H) has no information about
message.



2-DNF Computation using
BGN Encryption

@ Consider a passive-secure 2-party computation problem where Bob
has an input bit-vector x and Alice has a secret "2-DNF formula” f.
Bob should get f(x) only, and Alice should learn nothing.

@ Disjunctive Normal Form: OR (disjunction) of ANDs

@ 2-DNF: Viaiton (Vi A Zi) where Vi, z; are literals (input variables or

their negations) Full-fledged decryption not
needed in the protocol

@ Passive-secure protocol:

@ Bob generates keys for BGH encryption, enclypts each bit using
it, and sends the PK and ciphertexts to Alice

degree-2 polynomial version of f, using + forr v and x for A and

@ Alice homomorphically computes c:=Enc(r-F'(J')) where f’' is a
(1-x) for -x, and r random. Bob can (only) check if f'(x)=0 or not.



2-DNF Computation using
BGN Encryption

@ In some applications, want to protect against encryption of illegal
values

@ Can protect against revealing information by blinding encrypted
outputs

@ Instead of returning a ciphertext c, return ¢ +c Enc(«), where
«=0 if all given values are valid, and random otherwise

@ SR f‘i‘Xi'(l-Xi)

@ Enc(x) can be computed from § Enc(xi) }



Beyond One Multiplication?

@ Instead of bilinear maps, if n-linear maps are available, can support
up to degree n polynomials

@ Open problem to construct good candidates for multi-linear maps
@ Somewhat Homomorphic Encryption

@ Homomorphic encryption supporting an a priori upper bound on
the degree of the polynomials to be evaluated

@ Ciphertexts live at different levels, and multiplication leads to
higher levels (say, levels add up)

@ Fully Homomorphic Encryption: No a priori bound on the degree of
the polynomials that can be homomorphically evaluated



