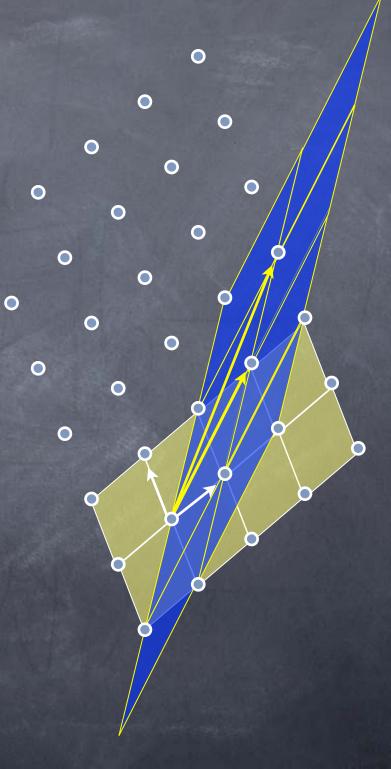
Lattice Cryptography

Lecture 19

Lattices

- $oldsymbol{\circ}$ A infinite set of points in \mathbb{R}^n obtained by tiling with a "basis"
 - Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications
 - Hardness assumptions are "milder" (worst-case hardness)
 - Believed to hold even against quantum computation: "Post-Quantum Cryptography"



Lattices

- ø Given a basis $\{\underline{b_1},...,\underline{b_m}\}$ in ℝⁿ, lattice has points $\{\Sigma_i \times_i \underline{b_i} \mid x_i \text{ integers }\}$
- \bullet An interesting case: lattices in \mathbb{Z}^n
 - Two n-dim lattices in \mathbb{Z}^n associated with an mxn matrix A over \mathbb{Z}_q
 - LA: Vectors "spanned" by rows of A
 - LA[⊥]: Vectors "orthogonal" to rows of A
 - \bullet Here, L_A , L_A^{\perp} in \mathbb{Z}^n , but above operations mod q (i.e., over \mathbb{Z}_q)
- Dual lattice L*: { v | <v,u> is an integer, u ∈ L }
 - e.g. $(L_A)^* = 1/q L_{A^{\perp}}$ and $(L_{A^{\perp}})^* = 1/q L_{A^{\perp}}$

Lattices in Cryptography

- Several problems related to lattices (lattice given as a basis) are believed to be computationally hard in <u>high dimensions</u>
- Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Find the shortest non-zero vector in the lattice
 - SVP $_{\gamma}$: find one within a factor γ of the shortest
 - GapSVP $_{\gamma}$: decide if the length of the shortest vector is < 1 or $\geq \gamma$ (promised to be one of the two)
 - o uniqueSVP $_{\gamma}$: SVP, when guaranteed that the next (non-parallel) shortest vector is longer by a factor γ or more
- Shortest Independent Vector Problem (SIVP): Find n independent vectors minimizing the longest of them

Lattices in Cryptography

Worst-case hardness of lattice problems (e.g. GapSVP)

		IP-hard		in co-NP	in P
γ:	1	2 (log n)^(1-ε)	√n	n (crypto regime)	2 ⁿ

- Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness
 - Crypto requires average-case hardness
 - For many lattice problems average-case hardness implied by worst-case hardness of related problems

Average-Case/Worst-Case Connection

- Worst-case hardness: Hard to solve every instance of the problem (holds even if most instances are easy)
- Crypto typically needs average case hardness assumption: Random instance of a problem is hard to solve (broken if an algorithm can solve many instances)
- Worst-case connection: Show that solving random instances of Problem 1 is as hard as solving another (hard) problem Problem 2 in the worst case
- Connection shows that if a few instances (of the second problem) are hard, most instances (of the first problem) are
- For many lattice problems average-case hardness assumptions are implied by worst-case hardness of related problems (but at regimes not known to be NP-hard)

Hash Functions and OWF

- CRHF: $f(\underline{x}) = A^T\underline{x} \pmod{q}$
 - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)

Short Integer Solution Problem

A^T is an n x m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)

Has a
worst-case
connection
to lattice
problems

- Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $\mathbf{A}^{\mathsf{T}}\mathbf{z}$ = 0: i.e., a short vector in the lattice $\mathbf{L}_{\mathsf{A}}^{\perp}$
- Simple to compute: if d small (say, d=2, i.e., x binary), f(x) can be computed using O(n m) additions mod q
- If sufficiently compressing (say by half), a CRHF is also a OWF

Succinct Keys

- The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n
 - Large key and correspondingly large number of operations
- Using "ideal lattices" which have more structure:
 - $m{\circ}$ A random basis for such a lattice can be represented using just m elements of \mathbb{Z}_q (instead of mn)
 - Matrix multiplication can be carried out faster (using FFT) with $\tilde{O}(m)$ operations over \mathbb{Z}_q (instead of O(mn))
- Security depends on worst-case hardness of same problems as before, but when restricted to ideal lattices

Public-Key Encryption

- NTRU approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis
 - To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v
- Use lattices with succinct basis (defined over the ring of degree N TRUncated polynomials)
- Conjectured to be CPA secure for appropriate lattices. No security reduction known to simple lattice problems

Learning With Errors

- LWE (computational version): given noisy inner-products of random vectors with a hidden vector, find the hidden vector
 - Given $\langle \underline{a_1}, \underline{s} \rangle + \underline{e_1}$, ..., $\langle \underline{a_m}, \underline{s} \rangle + \underline{e_m}$ and $\underline{a_1}, ..., \underline{a_m}$ find \underline{s} . $\underline{a_i}$ uniform, $\underline{e_i}$ Gaussian noise (rounded, in \mathbb{Z}_q)
- If m fixed a priori: Given $(A\underline{s}+\underline{e}, A)$ find \underline{s} where $A \in \mathbb{Z}_q^{m \times n}$
- Decision version: distinguish between such an input and a random input
- Assumed to be hard (note: average-case hardness). Has been connected with worst-case hardness of GapSVP
 - Turns out to be a very useful assumption

Learning With Errors

- (Decision) LWE is a fairly strong assumption that subsumes some other (more traditional) lattice assumptions
- ullet Hardness of (Decision) LWE \Rightarrow Hardness of Short Integer Solution
- Given algorithm for SIS, an algorithm for D-LWE: i.e, given (A,b), to check if b=As+e for a short e:
 - Find a short solution $\underline{\mathbf{x}}$ for $A^T\underline{\mathbf{x}} = 0$. Check if $\langle \underline{\mathbf{x}},\underline{\mathbf{b}}\rangle$ is short
 - o If $\underline{b} = A\underline{s} + \underline{e}$ then, $\langle \underline{x}, \underline{b} \rangle = \langle \underline{x}, \underline{e} \rangle$, which is short. If \underline{b} random, then $\langle \underline{x}, \underline{b} \rangle$ random (for non-zero \underline{x}), and unlikely to be short.

Learning With Errors

- A simple Worst-case/Average-case connection of (Decision) LWE
- Worst- \underline{s} hardness \Rightarrow Average- \underline{s} hardness
 - Note: A is still random
 - Given arbitrary instance (A,\underline{b}) , define $\underline{b}^* = \underline{b} + A\underline{r}$ for a random vector \underline{r} . If $\underline{b} = A\underline{s} + \underline{e}$, then $\underline{b}^* = A\underline{s}^* + \underline{e}$, for random $\underline{s}^* = \underline{s} + \underline{r}$. If \underline{b} random, \underline{b}^* random
 - So, run algorithm for average \underline{s} on (A,\underline{b}^*) and output its decision

Public-Key Encryption

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_{q^n} ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$
 - Dec($(\underline{\mathbf{u}},\underline{\mathbf{c}})$,S): recover $\underline{\mathbf{v}}$ by "rounding" $\underline{\mathbf{c}} S^{\mathsf{T}}\underline{\mathbf{u}} = \underline{\mathbf{v}} + E^{\mathsf{T}}\underline{\mathbf{a}}$
 - Allows a small error probability; can be made negligible by first encoding the message using an error correcting code
 - CPA security: By (Decision) LWE assumption, the public-key is indistinguishable from random; and, encryption under random (A,P) loses essentially all information about the message
 - \bullet If P uniform, (P,P^Ta) is statistically close to uniform

Today

- Lattice based cryptography
 - Candidate for post-quantum cryptography
 - Security typically based on worst-case hardness of problems
 - Several problems: SVP and variants, LWE
 - Applications: Hash functions, PKE, ...
- Next: Fully Homomorphic Encryption