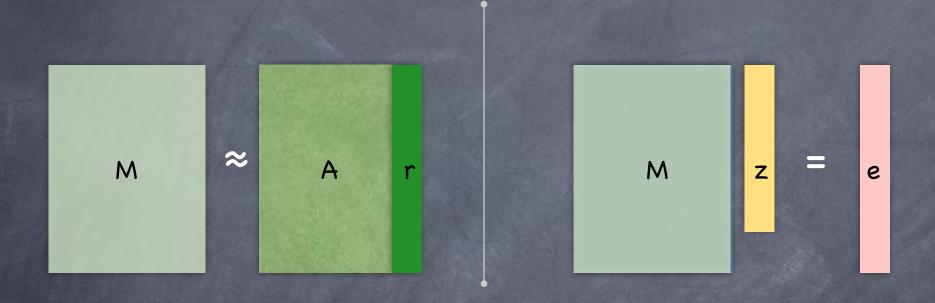
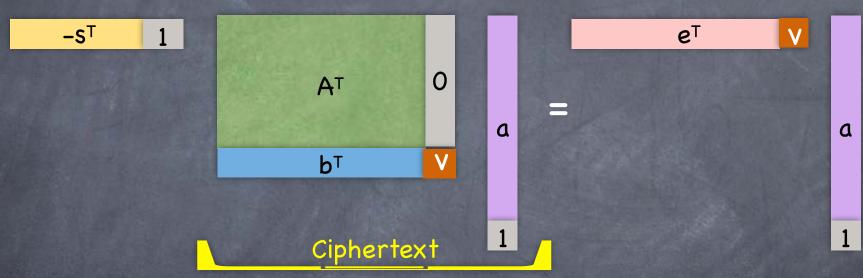

Lattice Cryptography: Towards Fully Homomorphic Encryption Lecture 20

Learning With Errors


- LWE (decision version): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.
- Average-case solution for LWE ⇒ Worst-case solution for GapSVP (for appropriate choice of parameters)

Learning With Errors


- LWE (decision version): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.
- Average-case solution for LWE ⇒ Worst-case solution for GapSVP (for appropriate choice of parameters)

Learning With Errors

• i.e., a pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and $\mathbf{z} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\mathbf{z}$ are all small (n'=n+1)

PKE from LWE

- Ciphetext = [M^T|m] a where m encodes the message, a ∈ $\{0,1\}^m$
- Decryptng: From $\mathbf{z}^{\mathsf{T}}[\mathsf{M}^{\mathsf{T}}|\mathbf{m}]\mathbf{a} = \mathbf{e}^{\mathsf{T}}\mathbf{a} + \mathbf{z}^{\mathsf{T}}\mathbf{m}$ where $\mathbf{e}^{\mathsf{T}}\mathbf{a}$ is small. Encoding should allow decoding from this.
- CPA security: M^Ta is pseudorandom
 - Claim: If $M \in \mathbb{Z}_q^{m \times n'}$ is uniform, $\mathbf{a} \in \{0,1\}^m$, and $m >> n' \log q$, then $M^T \mathbf{a}$ is very close to being uniform

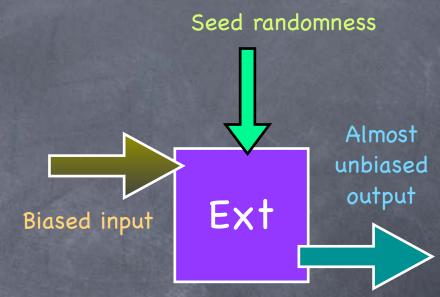
Randomness Extraction

- Entries in \underline{a} are not uniformly random over \mathbb{Z}_{q^m} , but concentrated on a small subset $\{0,1\}^m$. We need $M^T\underline{a}$ to be uniform over $\mathbb{Z}_q^{n'}$
- Follows from two more generally useful facts:
 - $H_M(a) = M^T a$ is a 2-Universal Hash Function (for non-zero a)
 - If H is a 2-UHF, then it is a good randomness extractor
 - If m >> n' log q, the entropy of \underline{a} (m bits) is significantly more than that of a uniform vector in $\mathbb{Z}_q^{n'}$ and a good randomness extractor will produce an almost uniform output

Universal Hashing

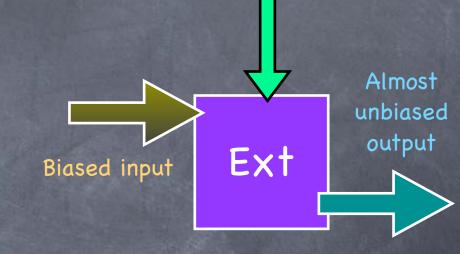
- Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - - $\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$
- e.g. $h_{a,b}(x) = ax+b$ (in a finite field, X=Z)


×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

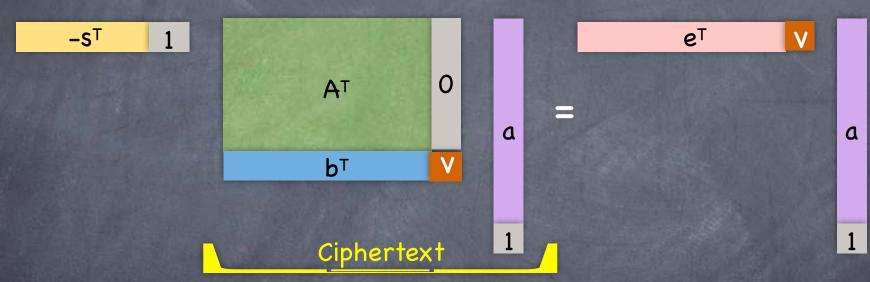
Negligible collision-probability if super-polynomial-sized range

- $Pr_{a,b}[ax+b=z] = Pr_{a,b}[b=z-ax] = 1/|Z|$
- Pr_{a,b} [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for x≠y)
 - $Pr_{a,b} [ax+b = w, ay+b = z] = 1/|Z|^2$
- Exercise: Mx (M random matrix) is a 2-UHF for non-zero vectors x

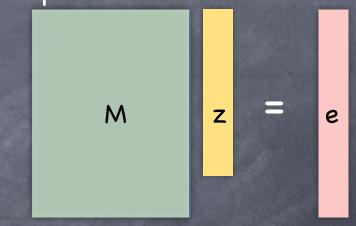

Randomness Extractor

- Input has high "min-entropy"
 - i.e., probability of any particular input string is very low
- Seed uniform and independent of input
- Output vector is shorter than the input
- Ext(inp,seed)) ≈ Uniform
 - Statistical closeness
- A <u>strong extractor</u>: (seed, Ext(inp, seed)) ≈ (seed, Uniform)
 - i.e., for any input distribution, most choices of seed yield a good deterministic extractor

Randomness Extractor


- Leftover Hash Lemma:
 - Any 2-UHF is a strong extractor that can extract almost all of the min-entropy in the input

Seed randomness


- A very useful result
 - Much stronger than what we need today:
 - Only for a particular 2-UHF $(H_M(\mathbf{x}) = M\mathbf{x})$
 - ø Only for a particular input distribution (x uniform over {0,1}m)

PKE from LWE

- Ciphetext = $[M^T|\underline{m}]$ a where \underline{m} encodes the message, $\mathbf{a} \in \{0,1\}^m$
- Decryptng: From $\mathbf{z}^{\mathsf{T}}[\mathsf{M}^{\mathsf{T}}|\mathbf{m}]\mathbf{a} = \mathbf{e}^{\mathsf{T}}\mathbf{a} + \mathbf{z}^{\mathsf{T}}\mathbf{m}$ where $\mathbf{e}^{\mathsf{T}}\mathbf{a}$ is small. Encoding should allow decoding from this.
- CPA security: M^Ta is pseudorandom
 - Claim: If $M \in \mathbb{Z}_q^{m \times n'}$ is uniform, $\mathbf{a} \in \{0,1\}^m$, and m >> n' log q, then $M^T\underline{\mathbf{a}}$ is very close to being uniform

- Want to allow homomorphic operations on the ciphertext
- Rough plan: Ciphertext is a matrix. Addition and multiplication of messages by addition and multiplication of ciphertexts
- Recall from LWE: $M \in \mathbb{Z}_q^{m \times n}$ and $\underline{z} \in \mathbb{Z}_q^n$ s.t. $\underline{z}^T M^T$ has small entries

- First attempt: Public-Key = M, Secret-key = Z
 - Enc(μ) = M^TR + μ I where $\mu \in \{0,1\}$, R $\leftarrow \{0,1\}^{m \times m}$, and I_{m×m} identity
 - Security: LWE (and LHL) \Rightarrow MTR is pseudorandom
 - Dec_z(C) : $z^TC = e^TR + \mu z^T$ has "error" $\delta^T = e^TR$. Can recover m since error has small entries (w.h.p.)

- First attempt:
 - Enc(μ) = M^TR + μ I
 - Dec_z(C): $z^TC = e^TR + \mu z^T$ has error $\delta^T = e^TR$
 - $C_1+C_2 = M^T(R_1+R_2) + (\mu_1+\mu_2) I$ has error $\delta^T = \delta_1^T + \delta_2^T$
 - Error adds up with each operation
 - OK if there is an a priori bound on the <u>depth</u> of computation: Levelled Homomorphic Encryption (a.k.a. Somewhat HE)
 - $C_1 \times C_2$: Error = ?
 - σ $\mathbf{z}^{\mathsf{T}}C_1C_2 = (\underline{\delta}_1^{\mathsf{T}} + \mu_1\mathbf{z}^{\mathsf{T}})C_2 = \underline{\delta}_1^{\mathsf{T}}C_2 + \mu_1(\underline{\delta}_2^{\mathsf{T}} + \mu_2\mathbf{z}^{\mathsf{T}})$
 - Error = $\delta_1^T C_2 + \mu_1 \delta_2^T$
 - Problem: Entries in δ_1^TC may not be small! (Since $\mu_1 \in \{0,1\}$ the other vector has small entries)

- Problem: Entries in $\delta_1^TC_2$ may not be small
- Solution Idea: Represent ciphertext as bits!
 - But homomorphic operations will be affected
 - Observation: Reconstructing a number from bits is a linear operation
 - If $\alpha \in \mathbb{Z}_q^m$ has bit-representation $B(\alpha) \in \{0,1\}^{km}$ (k=O(log q)), then $G(\alpha) = \alpha$, where $G \in \mathbb{Z}_q^{m \times km}$ (all operations in \mathbb{Z}_q)
 - B can be applied to matrices also as B : $\mathbb{Z}_q^{m \times n} \to \mathbb{Z}_q^{km \times n}$ and we have G B(α) = α

- The actual scheme:
 - Will only support messages $\mu \in \{0,1\}$ and NAND operations (could support addition mod q too, but not mod 2) up to an a priori bounded depth
 - Public key $M \in \mathbb{Z}_q^{m \times n}$. Private key \underline{z} s.t. $\underline{z}^T M^T$ has small entries.
 - Enc(μ) = M^TR + μ G where R \leftarrow {0,1}^{m×km} (and G \in $\mathbb{Z}_q^{m×km}$ the matrix to reverse bit-decomposition)
 - Dec_z(C) : $\mathbf{z}^TC = \underline{\delta}^T + \mu \mathbf{z}^TG$ where $\underline{\delta}^T = \mathbf{e}^TR$
 - NAND(C_1, C_2): G $C_1 \cdot B(C_2)$ (G is a (non-random) encryption of 1)
 - $\mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = \mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = (\underline{\delta}_{1}^{\mathsf{T}} + \mu_{1}\mathbf{z}^{\mathsf{T}}G) \; \mathsf{B}(C_{2})$ $= \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\mathbf{z}^{\mathsf{T}}C_{2} = \underline{\delta}^{\mathsf{T}} + \mu_{1}\mu_{2}\mathbf{z}^{\mathsf{T}}G$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\underline{\delta}_{2}^{\mathsf{T}}$ has small entries