
Fully Homomorphic Encryption
Lecture 21

Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

Average-case solution for LWE ⇒ Worst-case solution for

GapSVP (for appropriate choice of parameters)

≈ =
1

-s
A eA Ab r b

Re
ca

ll

Learning With Errors

A pseudorandom matrix M ∈ Zq
m×n’ and z ∈ Zq

n’ s.t. entries of

Mz are all small

≈ =z eMM A r

Re
ca

ll

Want to allow homomorphic operations on the ciphertext

Rough plan: Ciphertext is a matrix. Addition and multiplication of
messages by addition and multiplication of ciphertexts

Recall from LWE: pseudorandom M ∈ Zq
m×n and random z ∈ Zq

n s.t.

zTMT has small entries 
 

 

 

Public key M ∈ Zq
m×n and private key z

Enc(μ) = MTR + μG where R ← {0,1}m×km and G ∈ Zq
n×km the matrix

to reverse bit-decomposition operation B : Zq
n×d → Zq

km×d

Decz(C) : zTC = δT + μzTG where δT =eTR

Gentry-Sahai-Waters

=
zT eT

MT

Supports messages μ ∈ {0,1} and NAND operations up to an a priori
bounded depth of NANDs

Public key M ∈ Zq
m×n and private key z s.t. zTM has small entries

Enc(μ) = MTR + μG where R ← {0,1}m×km (and G ∈ Zq
n×km the matrix

to reverse bit-decomposition)

Decz(C) : zTC = δT + μzTG where δT =eTR

NAND(C1,C2) : G - C1⋅B(C2) (G is a (non-random) encryption of 1)

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

 = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG  
where δT = δ1TB(C2) + μ1δ2T has small entries

In general, error gets multiplied by km. Allows depth ≈ logkm q

Gentry-Sahai-Waters

Only “left depth”
counts, since 
δ ≤ k⋅m⋅δ1 + δ2

Removing the need for an a priori bound

Main idea: Can “refresh” the ciphertext to reduce noise

Refresh: homomorphically decrypt the given ciphertext under a
fresh layer of encryption

cf. Degree reduction via share-switching: Homomorphically
reconstruct under a fresh layer of sharing

But here, we have a secret-key (and there is only one party
who knows the ciphertext fully)

Ciphertext is known, but secret-key should be kept encrypted

Consider decryption of a given ciphertext as a function applied
to the secret-key: DC(sk) := Dec(C,sk)

Bootstrapping

Given a ciphertext C and hence the decryption function DC s.t.  
DC(sk) := Dec(C,sk)

Also given: an encryption of sk (beware: circularity!)

Goal: a fresh ciphertext with message DC(sk) 
 

 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic
evaluation in the
ciphertext spaceFresh encryption of

sk, provided along
with the public key

Refreshed: Doesn’t depend
on how unfresh C was, but
only on the depth of DC

If depth of DC s.t. DC(sk) := Dec(C,sk) is strictly less than the depth
allowed by the homomorphic encryption scheme, a ciphertext C
can be strictly refreshed

Then can carry out at least one more operation on  
such ciphertexts (before refreshing again)  
 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic
evaluation in the
ciphertext spaceFresh encryption of

sk, provided along
with the public key

Refreshed: Doesn’t depend
on how unfresh C was, but
only on the depth of DC

Circularity: Encrypting the secret-key of a scheme under the
scheme itself

Can break security in general!

LWE does not by itself imply security

Stronger assumption: “Circular Security of LWE” 
 

 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic
evaluation in the
ciphertext spaceFresh encryption of

sk, provided along
with the public key

Refreshed: Doesn’t depend
on how unfresh C was, but
only on the depth of DC

Supports log(k) depth computation with poly(k) complexity

Need low depth decryption (as a function of secret-key)

Decz(C) : zTC = δT + μzTG where δT =eTR

And then check if the result is close to 0T or zTG

How?

Multiply by B(w) where last coordinate of w is ⌊q/2⌋ and other
coordinates 0

zTC B(w) = δT B(w) + μzTw = ε + μ ⌊q/2⌋

Has most significant bit = μ (since error |ε| << q/4)

 Decz(C) : MSB(zTC B(w)). All operations mod q.

If q were small (poly(k)) this would be small depth (log(k))

Problem: q is super-polynomial in security parameter k

Idea: Can change modulus for decryption!

Bootstrapping GSW

Decz(C) : MSB(zTY mod q), where Y = C B(w)

zTY = ε0 + μ (q/2) + aq (for some a∈Z)

To switch to a smaller modulus p < q:

Consider Y’ = ⌈(p/q) Y⌋. Let Δ = Y’-(p/q)Y.

zTY’ = (p/q) zTY + zTΔ  
 = ε1 + μ (p/2) + ap where ε1 = (p/q)ε0 + zTΔ

Need zTΔ to be small. But zT = [-sT 1] for s uniform in Zq

n.

Fix: LWE with small s is as good as with uniform s [Exercise]

Final bootstrapping:

Given C, let Y’ = ⌈(p/q) C B(w)⌋ where p small (poly(k)). Define
function DY’ which does decryption mod p. Homomorphically

evaluate DY’ on encryption of z mod p (encryption is mod q).

Modulus Switching for GSW

Several implementations in recent years

Prominent ones based on schemes of Fan-Vercauteren (FV) and
Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent
optimisations

BGV implementations: HELib (IBM), Λ o λ

FV implementations: SEAL (Microsoft), FV-NFLlib
(CryptoExperts), HomomorphicEncryption R Package …

Both based on “Ring LWE”

Moderately fast

E.g., HELib can apply AES (encipher/decipher) to about 200
plaintext blocks using an encrypted key in about 20 minutes (a
bit faster without bootstrapping, if no need to further compute
on the ciphertext)

FHE in Practice

