
Fully Homomorphic Encryption
Lecture 21



Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random 

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a 

Gaussian distribution, and r uniform.


Average-case solution for LWE ⇒ Worst-case solution for 

GapSVP (for appropriate choice of parameters)
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Learning With Errors

A pseudorandom matrix M ∈ Zq
m×n’ and z ∈ Zq

n’  s.t. entries of 

Mz are all small
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Want to allow homomorphic operations on the ciphertext


Rough plan: Ciphertext is a matrix. Addition and multiplication of 
messages by addition and multiplication of ciphertexts


Recall from LWE: pseudorandom M ∈ Zq
m×n and random z ∈ Zq

n s.t. 

zTMT has small entries 
 

 

 

Public key M ∈ Zq
m×n and private key z


Enc(μ) = MTR + μG where R ← {0,1}m×km and G ∈ Zq
n×km the matrix 

to reverse bit-decomposition operation B : Zq
n×d → Zq

km×d



Decz(C) : zTC =  δT + μzTG where δT =eTR

Gentry-Sahai-Waters
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Supports messages μ ∈ {0,1} and NAND operations up to an a priori 
bounded depth of NANDs


Public key M ∈ Zq
m×n and private key z s.t. zTM has small entries


Enc(μ) = MTR + μG where R ← {0,1}m×km (and G ∈ Zq
n×km the matrix 

to reverse bit-decomposition)


Decz(C) : zTC =  δT + μzTG where δT =eTR


NAND(C1,C2) : G - C1⋅B(C2)  (G is a (non-random) encryption of 1)


zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

            = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG  
where δT = δ1TB(C2) + μ1δ2T has small entries


In general, error gets multiplied by km. Allows depth ≈ logkm q

Gentry-Sahai-Waters

Only “left depth” 
counts, since 
δ ≤ k⋅m⋅δ1 + δ2



Removing the need for an a priori bound


Main idea: Can “refresh” the ciphertext to reduce noise


Refresh: homomorphically decrypt the given ciphertext under a 
fresh layer of encryption


cf. Degree reduction via share-switching: Homomorphically 
reconstruct under a fresh layer of sharing


But here, we have a secret-key (and there is only one party 
who knows the ciphertext fully)


Ciphertext is known, but secret-key should be kept encrypted


Consider decryption of a given ciphertext as a function applied 
to the secret-key: DC(sk) := Dec(C,sk)

Bootstrapping



Given a ciphertext C and hence the decryption function DC s.t.  
DC(sk) := Dec(C,sk)


Also given: an encryption of sk (beware: circularity!)


Goal: a fresh ciphertext with message DC(sk) 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Homomorphic 
evaluation in the 
ciphertext spaceFresh encryption of 

sk, provided along 
with the public key

Refreshed: Doesn’t depend 
on how unfresh C was, but 
only on the depth of DC



If depth of DC s.t. DC(sk) := Dec(C,sk) is strictly less than the depth 
allowed by the homomorphic encryption scheme, a ciphertext C 
can be strictly refreshed


Then can carry out at least one more operation on  
such ciphertexts (before refreshing again)  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Circularity: Encrypting the secret-key of a scheme under the 
scheme itself


Can break security in general!


LWE does not by itself imply security


Stronger assumption: “Circular Security of LWE” 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Supports log(k) depth computation with poly(k) complexity


Need low depth decryption (as a function of secret-key)


Decz(C) : zTC =  δT + μzTG where δT =eTR


And then check if the result is close to 0T or zTG 


How?


Multiply by B(w) where last coordinate of w is ⌊q/2⌋ and other 
coordinates 0


zTC B(w) = δT B(w) + μzTw  =  ε + μ ⌊q/2⌋

Has most significant bit = μ (since error |ε| << q/4)


 Decz(C) : MSB( zTC B(w) ). All operations mod q.


If q were small (poly(k)) this would be small depth (log(k))


Problem: q is super-polynomial in security parameter k


Idea: Can change modulus for decryption!

Bootstrapping GSW



Decz(C) : MSB( zTY mod q), where Y = C B(w)


zTY = ε0 + μ (q/2) + aq (for some a∈Z)


To switch to a smaller modulus p < q:


Consider Y’ = ⌈(p/q) Y⌋. Let Δ = Y’-(p/q)Y.


zTY’ = (p/q) zTY + zTΔ  
      = ε1 + μ (p/2) + ap where ε1 = (p/q)ε0 + zTΔ

Need zTΔ to be small. But zT = [ -sT 1 ] for s uniform in Zq

n.


Fix: LWE with small s is as good as with uniform s [Exercise]


Final bootstrapping: 


Given C, let Y’ = ⌈(p/q) C B(w)⌋ where p small (poly(k)). Define 
function DY’ which does decryption mod p. Homomorphically 

evaluate DY’ on encryption of z mod p (encryption is mod q).

Modulus Switching for GSW



Several implementations in recent years


Prominent ones based on schemes of Fan-Vercauteren (FV)  and 
Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent 
optimisations


BGV implementations: HELib (IBM), Λ o λ

FV implementations: SEAL (Microsoft), FV-NFLlib 
(CryptoExperts), HomomorphicEncryption R Package …


Both based on “Ring LWE”


Moderately fast


E.g., HELib can apply AES (encipher/decipher) to about 200 
plaintext blocks using an encrypted key in about 20 minutes (a 
bit faster without bootstrapping, if no need to further compute 
on the ciphertext)

FHE in Practice


