Fully Homomorphic Encryption Lecture 21

Learning With Errors

Recall

- LWE (decision version): $(A, A\underline{s} + \underline{e}) \approx (A, \underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.

Learning With Errors

Recall

• A pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and $\underline{z} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\underline{z}$ are all small

Gentry-Sahai-Waters

Want to allow homomorphic operations on the ciphertext

- Rough plan: Ciphertext is a matrix. Addition and multiplication of messages by addition and multiplication of ciphertexts
- Recall from LWE: pseudorandom $M \in \mathbb{Z}_q^{m \times n}$ and random $\underline{z} \in \mathbb{Z}_q^n$ s.t.

 $\mathbf{Z}^{\mathsf{T}}\mathsf{M}^{\mathsf{T}}$ has small entries

• Public key $M \in \mathbb{Z}_q^{m \times n}$ and private key \underline{z}

Enc(μ) = M^TR + μG where R ← {0,1}^{m×km} and G ∈ Z_q^{n×km} the matrix to reverse bit-decomposition operation B : Z_q^{n×d} → Z_q^{km×d}
 Dec_z(C) : z^TC = δ^T + μz^TG where δ^T =e^TR

Gentry-Sahai-Waters

- ${\it o}$ Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- Public key $M \in \mathbb{Z}_q^{m \times n}$ and private key \underline{z} s.t. $\underline{z}^T M$ has small entries
- Enc(µ) = M^TR + µG where R ← {0,1}^{m×km} (and G ∈ Z_q^{n×km} the matrix to reverse bit-decomposition)
- $Dec_z(C) : \underline{z}^T C = \underline{\delta}^T + \mu \underline{z}^T G$ where $\underline{\delta}^T = e^T R$
- NAND(C_1, C_2) : G $C_1 \cdot B(C_2)$ (G is a (non-random) encryption of 1)

• $\mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = \mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = (\underline{\delta}_1^{\mathsf{T}} + \mu_1 \mathbf{Z}^{\mathsf{T}}G) \mathbf{B}(C_2)$ $= \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \mathbf{Z}^{\mathsf{T}}C_2 = \underline{\delta}^{\mathsf{T}} + \mu_1 \mu_2 \mathbf{Z}^{\mathsf{T}}G$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \underline{\delta}_2^{\mathsf{T}}$ has small entries The general error gets multiplied by km Allow

Only "left depth" counts, since <u>δ</u> ≤ k·m·δ₁ + δ₂

In general, error gets multiplied by km. Allows depth ≈ log_{km} q

- Removing the need for an a priori bound
- Main idea: Can "refresh" the ciphertext to reduce noise
 - Refresh: homomorphically decrypt the given ciphertext under a fresh layer of encryption
 - cf. Degree reduction via share-switching: Homomorphically reconstruct under a fresh layer of sharing
 - But here, we have a secret-key (and there is only one party who knows the ciphertext fully)
 - Ciphertext is known, but secret-key should be kept encrypted
 - Consider decryption of a given ciphertext as a function applied to the secret-key: D_c(sk) := Dec(C,sk)

Given a ciphertext C and hence the decryption function D_c s.t.
 D_c(sk) := Dec(C,sk)

μ

Also given: an encryption of sk (beware: circularity!)

Goal: a fresh ciphertext with message D_c(sk)

If depth of D_c s.t. D_c(sk) := Dec(C,sk) is strictly less than the depth allowed by the homomorphic encryption scheme, a ciphertext C can be strictly refreshed

 D_{C}

 Then can carry out at least one more operation on such ciphertexts (before refreshing again)

μ

 D_{C}

Circularity: Encrypting the secret-key of a scheme under the scheme itself

Can break security in general!

• LWE does not by itself imply security

Stronger assumption: "Circular Security of LWE"

Bootstrapping GSW

Supports log(k) depth computation with poly(k) complexity
Need low depth decryption (as a function of secret-key)

- $Dec_z(C) : \underline{z}^T C = \underline{\delta}^T + \mu \underline{z}^T G$ where $\underline{\delta}^T = e^T R$
 - And then check if the result is close to <u>O</u>^T or <u>z</u>^TG
 How?
 - Multiply by B(<u>w</u>) where last coordinate of <u>w</u> is Lq/2 and other coordinates 0
 - $\mathbf{z}^{\mathsf{T}} \mathbf{C} \ \mathbf{B}(\mathbf{w}) = \underline{\delta}^{\mathsf{T}} \ \mathbf{B}(\mathbf{w}) + \mu \mathbf{z}^{\mathsf{T}} \mathbf{w} = \varepsilon + \mu \lfloor q/2 \rfloor$
 - Has most significant bit = μ (since error $|\varepsilon| \ll q/4$)
- Dec_z(C) : MSB(<u>z</u>^TC B(<u>w</u>)). All operations mod q.
 If q were small (poly(k)) this would be small depth (log(k))
 Problem: q is super-polynomial in security parameter k
 Idea: Can change modulus for decryption!

Modulus Switching for GSW • $Dec_z(C)$: MSB($\underline{z}^T Y \mod q$), where $Y = C B(\underline{w})$ **z**^TY = ε₀ + μ (q/2) + aq (for some a∈ℤ) • To switch to a smaller modulus p < q: • Consider Y' = $\lceil (p/q) Y \rfloor$. Let $\triangle = Y' - (p/q) Y$. $\mathbf{z}^{\mathsf{T}} \mathbf{Y}' = (\mathbf{p}/\mathbf{q}) \mathbf{z}^{\mathsf{T}} \mathbf{Y} + \mathbf{z}^{\mathsf{T}} \Delta$ = ε_1 + μ (p/2) + ap where ε_1 = (p/q) ε_0 + $\mathbf{z}^{\mathsf{T}}\Delta$ • Need $\underline{z}^T \Delta$ to be small. But $\underline{z}^T = [-\underline{s}^T 1]$ for \underline{s} uniform in \mathbb{Z}_q^n . Fix: LWE with small **s** is as good as with uniform **s** [Exercise] Final bootstrapping: • Given C, let $Y' = \lceil (p/q) C B(w) \rfloor$ where p small (poly(k)). Define

Given C, let $Y = \lceil (p/q) C B(\underline{w}) \rfloor$ where p small (poly(K)). Define function $D_{Y'}$ which does decryption mod p. Homomorphically evaluate $D_{Y'}$ on encryption of \underline{z} mod p (encryption is mod q).

FHE in Practice

Several implementations in recent years

- Prominent ones based on schemes of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent optimisations
 - BGV implementations: HELib (IBM), Λ o λ
 - FV implementations: SEAL (Microsoft), FV-NFLlib (CryptoExperts), HomomorphicEncryption R Package ...
- Both based on "Ring LWE"
- Moderately fast
 - E.g., HELib can apply AES (encipher/decipher) to about 200 plaintext blocks using an encrypted key in about 20 minutes (a bit faster without bootstrapping, if no need to further compute on the ciphertext)