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Functional Encryption




Functional Encryption

@ Key SKf allows the decrypting party to learn f(x) from Enc(x)
@ cf. FHE, can compute Enc(f(x)) from Enc(x), but cannot decrypt

@ Obtaining multiple keys for f, g, h etc. should not let one learn
more than f(x), g(x), h(x) etc.

@ Should not allow pooling keys to learn more information



Single-Key FE
@ In which key for only one function will be ever be released

@ Function is not known when ciphertexts are created
(otherwise trivial [Why?])

@ A single-key FE scheme supporting arbitrary functions (with
circuits of a priori bounded size)

@ Encryption of x is a Garbled circuit encoding the universal
function: F(x,f) = f(x), with x being the garblers input

@ Plus, 2n encrypted wire labels for the n input wires of f
(using 2n public-keys in the master public-key)

@ Key for f: n secret-keys corresponding to the n bits of f

@ Can decrypt the labels of f — can evaluate F(x,f)



No Unbounded Sim-FE

Suppose we require simulation-based security for FE

Then there are function families which have no FE scheme that
supports releasing an unbounded number of keys

e.g., The message x is the seed of a PRF. The function f;
evaluates the PRF on the input z: f,(x) = PRF«(2).

o {PRF.(z) | j=1 to N, i=l to N } are N2k-bit pseudorandom
strings

@ Simulation should encode them into an (LN+L'N)-bit string
(i.e., the simulated ciphertexts and keys)

@ If Nk >»> L+L, not possible for truly random strings, and
hence for pseudorandom strings too (even if simulator
knows all z; and all N2k bits, but not any xj, a priori)



Indistinguishability-Based FE

@ (Weaker) Security definitions using a game between an
adversary and a challenger

@ Challenger gets (PK,SK) < KeyGen, and gives PK to Adv

@ Adv can ask for SK¢ for any number of f of its choice

@ Adv sends (mo,m;) to Challenger

@ If f(mo)=f(m:) for all f for which Adv received SKy, Challenger
picks b < {0,1} and sends Enc(ms) to Adv

@ Adv outputs b’ (as a guess for b)

@ Security: Vv PPT Ady, Pr[b'=b] = %

@ Selective security: Adversary has to send (mo,m;) at first (before
KeyGen is run)



Index-Payload Functions

@ Message x=(x,m), and functions f; s.t. fa(x)=(x, m iff m(x)=1)

@ « is the index which is public, and m is output iff m(x)=1,
where 1 is a predicate

@ Identity-Based Encryption (IBE): ma(a) = 1 iff a=p
@ Attribute-Based Encryption (ABE)

@ Key-Policy ABE: « € {0,1}" and 1 a circuit (policy) over n
Boolean variables

@ Ciphertext-Policy ABE: « a circuit (policy) over n Boolean
variables, and 1 evaluates an input circuit on a fixed
assignment

@ Predicate Encryption: x=(«,m) and function f; contains a
predicate 1 s.t. fo(x) = m iff m(x)=1 (L otherwise).

@ Note: Not public-index, as o« remains hidden



Identity-Based Encryption

@ Identity-Based Encryption: fg(a,m) = («,m) iff a=3 (else («,L))
@ Useful as a public-key encryption scheme within an enterprise

@ A key-server (with a master secret-key MSK and a master
public-key PK) that can generate SKip for any given ID

@ Encryption will use PK, and the receivers ID (e.g., email)
@ Receiver has to obtain SKip from the key-server



IBE from Pairing

MPK: g,h, Y=e(g,h)Y, T = (u,uy,...,un)

T[(ID) =u II y
MSK: hY i:ID;=1
Enc(m;ID) = ( g7, m(ID)", m.Yr)
SK for ID: ( g, hv.m(ID)) = (di, d2)
Dec(a, b, c;dy,dz)=c/ [ elad:) / elbd) ]

@ Full security based on Decisional-BDH



ABE schemes

@ Easy solution for Single-Key CP-ABE, using secret-sharing
@ The policy defines an access structure over the set of attributes

@ Secret-share the message for this access structure, and encrypt
individual shares using attribute-specific keys PKq

@ Key for an attribute set A, SKa ={ SKs| a € A }
@ Note: cannot issue SKa and SKx as it allows computing SKaua

@ Will see how to use bilinear pairings for CP/KP-ABE to allow
multiple keys when restricted to “linear policies”

@ Linear policies (a.k.a. Monotone Span Programs): the access
structure (which sets of attributes allow decryption) is the
access structure for a linear secret-sharing scheme



Linear Secref-Sharing

@ Reconstruct(si,...,0i,): pool together available coordinates TC[N].

Can reconstruct if there are enough equations to solve for m.
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@ Can work with any non-zero target vector a instead of [1 O ... O]
(by encoding m into ¢ so that <a,c)=m)

@ [Exercise] An access structure has a linear secret-sharing scheme
using [1 O ... O] iff it has one with vector a (for any vector a+0)



Example of a Linear Policy

@ Consider this policy, over 7 attributes

OR
@ W (with target vector [1 11 1]):
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@ Can generalize AND/OR to threshold gates



CP-ABE For Linear Policies

@ PK: g, Y=e(g.g), Q=g9, (Ty,...,Tn) = (g™,.., gin) (n attributes)
@ MSK: g¥

@ Enc(mW;s,r,....m) = (W, § QTa®, g }acinl, g5, m.Ys ) where
(o1,...,0n) is a secret-sharing of s for access structure W

@ SK for attribute set A: Let u be random. SKa = (K,L,{ Kq }acn)
where K=gv.QY, L=g¥, Kq = Ta
@ Dec ( (W4Za,Ra}aea,S,C); (KL, Ka bacn)) : Get Ys as

e(S,K)/ Tlaca [ e(Za,L)-e(Rg,Ks) JVa where v = [vi ... vn] s.t. vo=0 if
a¢A and vo=5s Thenm = C/Ys

@ Note: a random u for each key to prevent collusion

@ Selective (attribute) security under strong assumptions



KP-ABE For Linear Policies

PK: g, Y=e(g,9)7, T = (g',..., g™) (n attributes)
MSK: vy and t, for each attribute a
Enc(m,A;s) = (A, §{ Ta }aca, mYs)

SK for policy W (with n rows): Let u=(u; ... up) s.t. Zg uq = .
For each row a, let X, = (Wq,w/t.. Let Key X = { g%a }acin)

Dec ( (A,{Za}aeA,C); {Xa}ae[n]) : Get Ys = HaeA e(Za,Xi)VO
where v = [vi ... vn] 5.1. vo=0 if a ¢ A, and vW = [1...1]. m = C/Ys

@ A random vector u for each key fo prevent collusion

Selective (attribute) security based on Decisional-BDH



