
Functional Encryption
Lecture 23

ABE from LWE

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKg

x g(x)

g
f

h

SKf

SKh

h(x)

f(x)

PK SK

Message x=(Ʈ,m), and functions fπ s.t. fπ(x)=(Ʈ, m iff π(Ʈ)=1)

Ʈ is the index which is public, and m is output iff π(Ʈ)=1,
where π is a predicate

Identity-Based Encryption (IBE): πƯ(Ʈ) = 1 iff Ʈ=Ư

Attribute-Based Encryption (ABE)

Key-Policy ABE: Ʈ ∈ {0,1}n and π a circuit (policy) over n
Boolean variables

Ciphertext-Policy ABE: Ʈ a circuit (policy) over n Boolean
variables, and π evaluates an input circuit on a fixed
assignment

Predicate Encryption: x=(Ʈ,m) and function fπ contains a
predicate π s.t. fπ(x) = m iff π(Ʈ)=1 (⊥ otherwise).

Note: Not public-index, as Ʈ remains hidden

Index-Payload Functions

KP-ABE For Linear Policies

PK: g, Y=e(g,g)y, T = (gt1,..., gtn) (n attributes)

MSK: y and ta for each attribute a

Enc(m,A;s) = (A, { Ta
s }a∈A, m.Ys)

SK for policy W (with n rows): Let u=(u1 ... un) s.t. Σa ua = y.
For each row a, let xa = ⟨Wa,u⟩/ta. Let Key X = { gxa }a∈[n]

Dec ((A,{Za}a∈A,C); {Xa}a∈[n]) : Get Ys = Πa∈A e(Za,Xi)va  
where v = [v1 ... vn] s.t. va=0 if a ∉ A, and v W = [1…1]. m = C/Ys

A random vector u for each key to prevent collusion

Selective (attribute) security based on Decisional-BDH

Today: KP-ABE From LWE

Policy given as an arithmetic circuit f: Zqt → Zq and a value y.  

Key SKf,y decrypts ciphertext with attribute Ʈ iff f(Ʈ) = y.

Very expressive policy ⇒ no conceptual distinction between  

CP-ABE and KP-ABE

Can implement CP-ABE also as KP-ABE: Ʈ encodes a policy (as
bits representing a circuit) and f implements evaluating this
policy on attributes hardwired into it

KP-ABE From IBE?

Policy is (f,y) where f comes from a very large function family

But suppose we had a small number of functions f

Then enough to have a set of IBE instances one for each f

PK = { Kf } one for each f

SKf,y = SK for ID y under scheme for f

EncPK(Ʈ,m) = (Ʈ, { EncKf(m;f(Ʈ)) }f)

At a high level, will emulate this idea. But will allow constructing
Kf and EncKf(m;y) for any function f using a circuit for f from a

few components (corresponding to the inputs to f)

Key-Homomorphism

Overview:

PK consists of keys Ki, i=1,…,t (for t attributes)

K1,…, K1 can be transformed into a public key Kf

Ciphertext will have the message masked with mask(s), where
s is randomly chosen

Ciphertext also includes Qi,Ʈi(s) using key Ki and attribute Ʈi

Qi,Ʈi can be combined into an encoding Qf,f(Ʈ)(s) under key Kf

MSK can be used to compute SKf,y that can transform Qf,y(s)
into mask(s).

KP-ABE From LWE

 

 

Enc

KeyGen

 

 

Dec
(Ʈ,m)

If f(Ʈ)=y, decode Qf,f(Ʈ) 
using SKf,y to get  
Mask(s;Kmask)

SKf,y can transform 

Qf,y(s) into Mask(s;Kmask)

CT = [Ʈ, Q1,Ʈ1(s),…, Qt,Ʈt(s),  

 m + Mask(s;Kmask)]

(f,y)

PK = (K1,…,Kt,Kmask)
K1 … Kt

PKEvalf

Kf

Q1,Ʈ1 … Qt,Ʈt

CTEvalf

Qf,f(Ʈ)

PK: Ki = [A0 | Ai] and Kmask = D, where A0, Ai ← Zqn×m, D ← Zqn×d

m >> n log q so that Ar is statistically close to uniform even

when r has small entries (e.g., bits)

Fact: Can pick A along with a trapdoor TA (a “good” basis for the

lattice LA
⊥) so that, given for any u ∈ Zqn, one can use TA to

sample r with small Zq entries (from a discrete Gaussian) that

satisfies Ar = u

Also sample R with small entries so that AR=D for D ∈ Zqn×d

Also can sample such an R so that [A | B]R = D for any B

Need [A | B] [R1 | R2]T = D. Sample R2. Then use TA to
sample R1T s.t. AR1T = D - BR2T

MSK: Trapdoor TA0

KP-ABE From LWE

PK: Ki = [A0 | Ai] and Kmask = D, where A, Ai ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0

Kf = [A0 | Af] where Af = PKEval(f,A1,…,At) (To be described)

For a key A and x ∈ Zq let A⊞x denote [A0 | A + xG], where G is

the matrix to invert bit decomposition

Qi,Ʈi(s) ≈ (Ai⊞Ʈi)Ts where s ← Zqn and ≈ stands for adding a small

noise (as in LWE). (Only one copy ≈ A0Ts included.)

Mask(s;D) ≈ DTs. Include Mask(s;D) + ⌊q/2⌋ m.

Qf,f(Ʈ)(s) = CTEval(f,Ʈ,Q1,Ʈ1(s)…,Qt,Ʈt(s)) ≈ (Af⊞f(Ʈ))Ts (To be described)

SKf,y: Compute Af. Use TA0 to get Rf,y s.t. (Af⊞y) Rf,y = D

Decryption: If f(Ʈ)=y, then Rf,yT⋅Qf,f(Ʈ)(s) ≈ DTs. Recover m ∈ {0,1}d.

KP-ABE From LWE

Af1⋅f2

KP-ABE From LWE
Kf = [A0 | Af] where Af = PKEval(f,A1,…,At) (To be described)

Qf,f(Ʈ)(s) = CTEval(f,Ʈ,Q1,Ʈ1(s)…,Qt,Ʈt(s)) ≈ (Af⊞f(Ʈ))Ts (To be described)

CTEval computed gate-by-gate

Enough to describe CTEval(f1+f2, (y1,y2), Qf1,y1(s), Qf2,y2(s)) and

CTEval(f1⋅f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))

Recall Qf1,y1(s) ≈ (Af1⊞y1)Ts = [A0 | Af1 + y1G]Ts

Keep ≈ A0Ts aside. To compute [Ag(f1,f2) + g(y1,y2)G]Ts for g=+,⋅

[Af1+y1G]Ts + [Af2+y2G]Ts = [Af1+f2 + (y1 + y2) G]Ts with  

Af1+f2 = Af1 + Af2 (errors add up)

y2 ⋅ [Af1+y1G]Ts - B(Af1)T [Af2+y2G]Ts = [-Af2B(Af1) + y1y2G]Ts

err = y2⋅err1 + B(Af1)Terr2. Need y2 to be small.

KP-ABE From LWE

Security?

Sanity check: Is it secure when no function keys SKf,y are given to
the adversary?

Security from LWE

All components in the ciphertext are LWE samples of the form

⟨a,s⟩+noise, for the same s and random a.

Hence all pseudorandom, including the mask DTs + noise

Do the secret keys SKf,y make it easier to break security?

Claim: No!

KP-ABE From LWE

Scheme is selective-secure (under LWE)

Recall selective security: Adversary first outputs (x0,x1) s.t.
F(x0)=F(x1) for all F for which it receives keys. Challenge = Enc(xb)

ABE: x=(Ʈ,m) and Ff,y(x) = (Ʈ, m iff f(Ʈ)=y)

F(x0)=F(x1) ⇒ same Ʈ* and f(Ʈ*) ≠ y

Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKf,y for all f and
all y ≠ f(Ʈ*)

Breaking encryption for Ʈ* will still need breaking LWE!

Next time

