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Message x=(Ʈ,m), and functions fπ s.t. fπ(x)=(Ʈ, m iff π(Ʈ)=1)

Ʈ is the index which is public, and m is output iff π(Ʈ)=1, 
where π is a predicate


Identity-Based Encryption (IBE): πƯ(Ʈ) = 1 iff Ʈ=Ư

Attribute-Based Encryption (ABE)


Key-Policy ABE: Ʈ ∈ {0,1}n and π a circuit (policy) over n 
Boolean variables


Ciphertext-Policy ABE: Ʈ a circuit (policy) over n Boolean 
variables, and π evaluates an input circuit on a fixed 
assignment


Predicate Encryption: x=(Ʈ,m) and function fπ contains a 
predicate π s.t. fπ(x) = m iff π(Ʈ)=1 (⊥ otherwise). 


Note: Not public-index, as Ʈ remains hidden

Index-Payload Functions



KP-ABE For Linear Policies

PK: g, Y=e(g,g)y, T = (gt1,..., gtn) (n attributes)


MSK: y and ta for each attribute a


Enc(m,A;s) = ( A, { Ta
s }a∈A, m.Ys )


SK for policy W (with n rows): Let u=(u1 ... un) s.t. Σa ua = y.    
For each row a, let xa = ⟨Wa,u⟩/ta.  Let Key X = { gxa }a∈[n]


Dec ( (A,{Za}a∈A,C); {Xa}a∈[n]) : Get Ys = Πa∈A e(Za,Xi)va    
where v = [v1 ... vn] s.t. va=0 if a ∉ A, and v W = [1…1]. m = C/Ys


A random vector u for each key to prevent collusion


Selective (attribute) security based on Decisional-BDH



Today: KP-ABE From LWE

Policy given as an arithmetic circuit f: Zqt → Zq and a value y.  

Key SKf,y decrypts ciphertext with attribute Ʈ iff f(Ʈ) = y.

Very expressive policy ⇒ no conceptual distinction between  

CP-ABE and KP-ABE


Can implement CP-ABE also as KP-ABE: Ʈ encodes a policy (as 
bits representing a circuit) and f implements evaluating this 
policy on attributes hardwired into it



KP-ABE From IBE?

Policy is (f,y) where f comes from a very large function family


But suppose we had a small number of functions f 


Then enough to have a set of IBE instances one for each f


PK = { Kf } one for each f


SKf,y = SK for ID y under scheme for f


EncPK(Ʈ,m) = (Ʈ, { EncKf(m;f(Ʈ)) }f )

At a high level, will emulate this idea. But will allow constructing 
Kf and EncKf(m;y) for any function f using a circuit for f from a 

few components (corresponding to the inputs to f)



Key-Homomorphism

Overview: 


PK consists of keys Ki, i=1,…,t (for t attributes)


K1,…, K1 can be transformed into a public key Kf


Ciphertext will have the message masked with mask(s), where 
s is randomly chosen


Ciphertext also includes Qi,Ʈi(s) using key Ki and attribute Ʈi

Qi,Ʈi can be combined into an encoding Qf,f(Ʈ)(s) under key Kf


MSK can be used to compute SKf,y that can transform Qf,y(s) 
into mask(s).



KP-ABE From LWE

 

 

Enc

KeyGen

 

 

Dec
(Ʈ,m)

If f(Ʈ)=y, decode Qf,f(Ʈ) 
using SKf,y to get  
Mask(s;Kmask)

SKf,y can transform 

Qf,y(s) into Mask(s;Kmask)

CT = [ Ʈ, Q1,Ʈ1(s),…, Qt,Ʈt(s),  

        m + Mask(s;Kmask) ]
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PK = (K1,…,Kt,Kmask) 
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PK: Ki = [ A0 | Ai ] and Kmask = D, where A0, Ai ← Zqn×m, D ← Zqn×d


m >> n log q so that Ar is statistically close to uniform even 

when r has small entries (e.g., bits)


Fact: Can pick A along with a trapdoor TA (a “good” basis for the 

lattice LA
⊥) so that, given for any u ∈ Zqn, one can use TA to 

sample r with small Zq entries (from a discrete Gaussian) that 

satisfies Ar = u


Also sample R with small entries so that AR=D for D ∈ Zqn×d


Also can sample such an R so that [ A | B ]R = D for any B


Need [ A | B ] [ R1 | R2 ]T = D. Sample R2. Then use TA to 
sample R1T s.t. AR1T = D - BR2T


MSK: Trapdoor TA0

KP-ABE From LWE



PK: Ki = [ A0 | Ai ] and Kmask = D, where A, Ai ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0


Kf = [ A0 | Af ] where Af = PKEval(f,A1,…,At) (To be described)


For a key A and x ∈ Zq let A⊞x denote [A0 | A + xG], where G is 

the matrix to invert bit decomposition 


Qi,Ʈi(s) ≈ (Ai⊞Ʈi)Ts where s ← Zqn and ≈ stands for adding a small 

noise (as in LWE). (Only one copy ≈ A0Ts included.)


Mask(s;D) ≈ DTs. Include Mask(s;D) + ⌊q/2⌋ m.


Qf,f(Ʈ)(s) = CTEval(f,Ʈ,Q1,Ʈ1(s)…,Qt,Ʈt(s)) ≈ (Af⊞f(Ʈ))Ts (To be described)


SKf,y: Compute Af. Use TA0 to get Rf,y s.t. (Af⊞y) Rf,y = D


Decryption: If f(Ʈ)=y, then Rf,yT⋅Qf,f(Ʈ)(s) ≈ DTs. Recover m ∈ {0,1}d.

KP-ABE From LWE



Af1⋅f2

KP-ABE From LWE
Kf = [ A0 | Af ] where Af = PKEval(f,A1,…,At) (To be described)


Qf,f(Ʈ)(s) = CTEval(f,Ʈ,Q1,Ʈ1(s)…,Qt,Ʈt(s)) ≈ (Af⊞f(Ʈ))Ts (To be described)


CTEval computed gate-by-gate


Enough to describe CTEval(f1+f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))  and 

CTEval(f1⋅f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))


Recall Qf1,y1(s) ≈ (Af1⊞y1)Ts = [ A0 | Af1 + y1G ]Ts


Keep ≈ A0Ts aside. To compute [ Ag(f1,f2) + g(y1,y2)G ]Ts for g=+,⋅


[ Af1+y1G ]Ts + [ Af2+y2G ]Ts = [ Af1+f2 + (y1 + y2) G ]Ts with  

Af1+f2 = Af1 + Af2 (errors add up)


y2 ⋅ [ Af1+y1G ]Ts - B(Af1)T [ Af2+y2G ]Ts = [-Af2B(Af1) + y1y2G]Ts


err = y2⋅err1 + B(Af1)Terr2. Need y2 to be small.



KP-ABE From LWE

Security?


Sanity check: Is it secure when no function keys SKf,y are given to 
the adversary?


Security from LWE


All components in the ciphertext are LWE samples of the form 

⟨a,s⟩+noise, for the same s and random a.


Hence all pseudorandom, including the mask DTs + noise


Do the secret keys SKf,y make it easier to break security?


Claim: No!



KP-ABE From LWE

Scheme is selective-secure (under LWE)


Recall selective security: Adversary first outputs (x0,x1) s.t. 
F(x0)=F(x1) for all F for which it receives keys. Challenge = Enc(xb)


ABE: x=(Ʈ,m) and Ff,y(x) = (Ʈ, m iff f(Ʈ)=y)

F(x0)=F(x1) ⇒ same Ʈ* and f(Ʈ*) ≠ y


Simulated execution (indistinguishable from real) where PK* is 
designed such that without MSK* can generate SKf,y for all f and 
all y ≠ f(Ʈ*)


Breaking encryption for Ʈ* will still need breaking LWE!


Next time


