Functional Encryption

Lecture 23 ABE from LWE

Functional Encryption $\int_{F} \frac{f}{g} dt$

SK

PK 8

X

Enc

Ciphertext

ΡK

Dec g(x) h(x)

Dec

Dec

f(x)

0

0

0

SKF

SKg

SKh

Index-Payload Functions

- Message x=(α ,m), and functions f_{π} s.t. f_{π}(x)=(α , m iff $\pi(\alpha)$ =1)

 - Identity-Based Encryption (IBE): $\pi_{\beta}(\alpha) = 1$ iff $\alpha = \beta$
 - Attribute-Based Encryption (ABE)
 - Key-Policy ABE: $\alpha \in \{0,1\}^n$ and π a circuit (policy) over n Boolean variables
 - Ciphertext-Policy ABE: α a circuit (policy) over n Boolean variables, and π evaluates an input circuit on a fixed assignment
- Predicate Encryption: $x=(\alpha,m)$ and function f_{π} contains a predicate π s.t. $f_{\pi}(x) = m$ iff $\pi(\alpha)=1$ (\perp otherwise).
 - Note: Not public-index, as α remains hidden

KP-ABE For Linear Policies

- PK: g, Y=e(g,g)^y, T = (g^{t1},..., g^{tn}) (n attributes)
- MSK: y and t_a for each attribute a
- Enc(m,A;s) = (A, { T_a^s }_{a \in A}, m.Y^s)
- SK for policy W (with n rows): Let $u=(u_1 \dots u_n)$ s.t. $\Sigma_a u_a = y$. For each row a, let $x_a = \langle W_a, u \rangle / t_a$. Let Key X = { g^{x_a} } $_{a \in [n]}$
- Dec ((A,{Z_a}_{a∈A},C); {X_a}_{a∈[n]}) : Get Y^s = $\prod_{a∈A} e(Z_a,X_i)^{v_a}$ where v = [v₁ ... v_n] s.t. v_a=0 if a \notin A, and v W = [1...1]. m = C/Y^s
- A random vector u for each key to prevent collusion
- Selective (attribute) security based on Decisional-BDH

Today: KP-ABE From LWE

- Policy given as an arithmetic circuit f: Z_q⁺ → Z_q and a value y. Key SK_{f,y} decrypts ciphertext with attribute α iff f(α) = y.
 Very expressive policy ⇒ no conceptual distinction between <u>CP-ABE and KP-ABE</u>
 - Can implement CP-ABE also as KP-ABE: α encodes a policy (as bits representing a circuit) and f implements evaluating this policy on attributes hardwired into it

KP-ABE From IBE?

- Policy is (f,y) where f comes from a very large function family
 But suppose we had a small number of functions f
 Then enough to have a set of IBE instances one for each f
 PK = { K_f } one for each f
 - $SK_{f,y} = SK$ for ID y under scheme for f
 - Enc_{PK}(α ,m) = (α , { Enc_{Kf}(m;f(α)) }_f)

At a high level, will emulate this idea. But will allow constructing K_f and Enc_{K_f}(m;y) for any function f using a circuit for f from a few components (corresponding to the inputs to f)

Key-Homomorphism

Ø Overview:

- PK consists of keys K_i , i=1,...,t (for t attributes)
- K₁,..., K₁ can be transformed into a public key K_f
- Ciphertext will have the message masked with mask(s), where s is randomly chosen
- Ciphertext also includes $Q_{i,\alpha_i}(s)$ using key K_i and attribute α_i
- Q_{i,α_i} can be combined into an encoding $Q_{f,f(\alpha)}(s)$ under key K_f
- MSK can be used to compute SK_{f,y} that can transform Q_{f,y}(s) into mask(s).

(f,y)

 $PK = (K_1, ..., K_t, K_{mask})$

KeyGen

SK_{f,y} can transform Q_{f,y}(s) into Mask(s;K_{mask})

 $CT = [\alpha, Q_{1,\alpha_{1}}(s), ..., Q_{t,\alpha_{t}}(s),$ $m + Mask(s;K_{mask})]$

> If $f(\alpha)=y$, decode $Q_{f,f(\alpha)}$ using SK_{f,y} to get Mask(s;K_{mask})

Dec

 $Q_{f,f(\alpha)}$ \uparrow $CTEval_{f}$ $Q_{1,\alpha_{1}} \dots Q_{t,\alpha_{t}}$

Kf

PKEvalf

K₁ ... K_t

PK: K_i = [A₀ | A_i] and K_{mask} = D, where A₀, A_i ← Z_q^{n×m}, D ← Z_q^{n×d}
m >> n log q so that A<u>r</u> is statistically close to uniform even when <u>r</u> has small entries (e.g., bits)
Fact: Can pick A along with a trapdoor T_A (a "good" basis for the lattice L_A[⊥]) so that, given for any <u>u</u> ∈ Z_qⁿ, one can use T_A to sample <u>r</u> with small Z_q entries (from a discrete Gaussian) that satisfies A<u>r</u> = <u>u</u>

. Also sample R with small entries so that AR=D for $D \in \mathbb{Z}_q^{n \times d}$

- Also can sample such an R so that [A | B]R = D for any B
 - Need [A | B] [R_1 | R_2]^T = D. Sample R_2 . Then use T_A to sample R_1^T s.t. AR_1^T = D BR_2^T

MSK: Trapdoor T_{A0}

- PK: K_i = [A₀ | A_i] and K_{mask} = D, where A, A_i ← ℤ_q^{n×m}, D ← ℤ_q^{n×d} and MSK: Trapdoor T_{A₀}
- $K_f = [A_0 | A_f]$ where $A_f = PKEval(f, A_1, ..., A_t)$ (To be described)
- For a key A and $x \in \mathbb{Z}_q$ let $A \boxplus x$ denote $[A_0 \mid A + xG]$, where G is the matrix to invert bit decomposition
- Q_{i,αi}(<u>s</u>) ≈ (A_i⊞α_i)^T<u>s</u> where <u>s</u> ← \mathbb{Z}_q^n and ≈ stands for adding a small noise (as in LWE). (Only one copy ≈ A₀^T<u>s</u> included.)
- Mask(s;D) ≈ D^Ts. Include Mask(s;D) + $\lfloor q/2 \rfloor$ m.
- Q_{f,f(\alpha)}(<u>s</u>) = CTEval(f, α, Q_{1,α1}(<u>s</u>)..., Q_{t,αt}(<u>s</u>)) ≈ (A_f⊞ f(α))^T<u>s</u> (To be described)
- SK_{f,y}: Compute A_f. Use T_{A₀} to get R_{f,y} s.t. (A_f ⊕ y) R_{f,y} = D
- Decryption: If $f(\alpha)=y$, then $R_{f,y}^{T} \cdot Q_{f,f(\alpha)}(\underline{s}) \approx D^{T}\underline{s}$. Recover $m \in \{0,1\}^{d}$.

• $K_f = [A_0 | A_f]$ where $A_f = PKEval(f, A_1, ..., A_t)$ (To be described)

- Q_{f,f(\alpha)}(<u>s</u>) = CTEval(f, α, Q_{1,α1}(<u>s</u>)..., Q_{t,αt}(<u>s</u>)) ≈ (A_f⊞ f(α))^T<u>s</u> (To be described)
- CTEval computed gate-by-gate
 - Senough to describe CTEval($f_1 + f_2$, (y_1, y_2), $Q_{f_1, y_1}(\underline{s})$, $Q_{f_2, y_2}(\underline{s})$) and CTEval($f_1 \cdot f_2$, (y_1, y_2), $Q_{f_1, y_1}(\underline{s})$, $Q_{f_2, y_2}(\underline{s})$)
 - Recall Q_{f1,y1}(<u>s</u>) ≈ (A_{f1}⊞y1)^T<u>s</u> = [A₀ | A_{f1} + y1G]^T<u>s</u>
 - Seep ≈ A₀^Ts aside. To compute [A_{g(f1,f2)} + g(y1,y2)G]^Ts for g=+,[·]
 - [$A_{f_1} + y_1G]^T \underline{s} + [A_{f_2} + y_2G]^T \underline{s} = [A_{f_1+f_2} + (y_1 + y_2) G]^T \underline{s}$ with
 $A_{f_1+f_2} = A_{f_1} + A_{f_2}$ (errors add up)
 $A_{f_1+f_2}$

• $y_2 \cdot [A_{f_1}+y_1G]^T \underline{s} - B(A_{f_1})^T [A_{f_2}+y_2G]^T \underline{s} = [-A_{f_2}B(A_{f_1}) + y_1y_2G]^T \underline{s}$

• err = $y_2 \cdot err_1 + B(A_{f_1})^T err_2$. Need y_2 to be small.

Security?

- Sanity check: Is it secure when <u>no</u> function keys SK_{f,y} are given to the adversary?
- Security from LWE
 - All components in the ciphertext are LWE samples of the form (<u>a</u>,<u>s</u>)+noise, for the same <u>s</u> and random <u>a</u>.
 - Hence all pseudorandom, including the mask $D^{T}s$ + noise
- Do the secret keys SK_{f,y} make it easier to break security?
- Claim: No!

- Scheme is <u>selective-secure</u> (under LWE)
- Recall selective security: Adversary first outputs (x₀,x₁) s.t. F(x₀)=F(x₁) for all F for which it receives keys. Challenge = Enc(x_b)
 - ABE: $x=(\alpha,m)$ and $F_{f,y}(x) = (\alpha, m \text{ iff } f(\alpha)=y)$
 - $F(x_0)=F(x_1) \Rightarrow \text{ same } \alpha^* \text{ and } f(\alpha^*) \neq \gamma$
- Simulated execution (indistinguishable from real) where PK* is designed such that without MSK* can generate SK_{f,y} for all f and all y ≠ f(α*)
 - Breaking encryption for α* will still need breaking LWE!
 Next time