
Functional Encryption
Lecture 24

ABE from LWE (ctd.)

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

x G(x)

G
F

H

SKF

SKG

H(x)

F(x)

PK SK

ABE: x = (α,m)  
 Ff,y(x) = (α, m iff f(α)=y)

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

b’

G
F

H

SKF

SKG

PK SK

ABE: x = (α,m)  
 Ff,y(x) = (α, m iff f(α)=y)

Security

x*0,x*1

x*b

F etc. adaptively chosen by
adversary. Need F(x*0) = F(x*1) etc.  

 

PK

ABE: α*0 = α*1 = α*, and  
 Ff,y s.t. f(α*) ≠ y

Selective: (x*0, x*1)
output before PK

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

b’

G
F

H

SKF

SKG

PK SK

ABE: x = (α,m)  
 Ff,y(x) = (α, m iff f(α)=y)

Selective Security

x*0,x*1

x*b

PK

ABE: Only α* is
output initially

KP-ABE From LWE

 

 

Enc

KeyGen

 

 

Dec
(α,m)

If f(α)=y, decode Qf,f(α) 
using SKf,y to get  
Mask(s;Kmask)

SKf,y can transform 

Qf,y(s) into Mask(s;Kmask)

CT = [α, Q1,α1(s),…, Qt,αt(s),  

 m + Mask(s;Kmask)]

(f,y)

PK = (K1,…,Kt,Kmask)
K1 … Kt

PKEvalf

Kf

Q1,α1 … Qt,αt

CTEvalf

Qf,f(α)

PK: Ki = [A0 | Ai] and Kmask = D, where A, Ai ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0 to sample small R s.t. [A0|A]R = D

Kf = [A0 | Af] where Af = PKEval(f,A1,…,At)

For a key A and x ∈ Zq let A⊞x denote [A0 | A + xG], where G is

the matrix to invert bit decomposition

Qi,αi(s) ≈ (Ai⊞αi)Ts where s ← Zqn and ≈ stands for adding a small

noise (as in LWE). (Only one copy ≈ A0Ts included.)

Mask(s;D) ≈ DTs. Include Mask(s;D) + ⌊q/2⌋ m.

Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Af⊞f(α))Ts

SKf,y: Compute Af. Use TA0 to get Rf,y s.t. (Af⊞y) Rf,y = D

Decryption: If f(α)=y, then Rf,yT⋅Qf,f(α)(s) ≈ DTs. Recover m ∈ {0,1}d.

KP-ABE From LWE

Af1⋅f2

KP-ABE From LWE
Kf = [A0 | Af] where Af = PKEval(f,A1,…,At)

Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Af⊞f(α))Ts

CTEval computed gate-by-gate

Enough to describe CTEval(f1+f2, (y1,y2), Qf1,y1(s), Qf2,y2(s)) and

CTEval(f1⋅f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))

Recall Qf1,y1(s) ≈ (Af1⊞y1)Ts = [A0 | Af1 + y1G]Ts

Keep ≈ A0Ts aside. To compute [Ag(f1,f2) + g(y1,y2)G]Ts for g=+,⋅

[Af1+y1G]Ts + [Af2+y2G]Ts = [Af1+f2 + (y1 + y2) G]Ts with  

Af1+f2 = Af1 + Af2 (errors add up)

y2 ⋅ [Af1+y1G]Ts - B(Af1)T [Af2+y2G]Ts = [-Af2B(Af1) + y1y2G]Ts

err = y2⋅err1 + B(Af1)Terr2. Need y2 to be small.

KP-ABE From LWE

Security?

Sanity check: Is it secure when no function keys SKf,y are given to
the adversary?

Security from LWE

All components in the ciphertext are LWE samples of the form

⟨a,s⟩+noise, for the same s and random a.

Hence all pseudorandom, including the mask DTs + noise

Do the secret keys SKf,y make it easier to break security?

Claim: No!

KP-ABE From LWE

Scheme is selective-secure (under LWE)

Recall selective security: Adversary first outputs (x0,x1) s.t.
F(x0)=F(x1) for all F for which it receives keys. Challenge = Enc(xb)

ABE: x=(α,m) and Ff,y(x) = (α, m iff f(α)=y)

F(x0)=F(x1) ⇒ same α* and f(α*) ≠ y

Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKf,y for all f and
all y ≠ f(α*)

Breaking encryption for α* will still need breaking LWE!

KP-ABE From LWE

Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKf,y for all (f,y)
s.t. y ≠ f(α*)

D, A0 as before but without trapdoor (i.e., given from outside)

Other keys Ai are (differently) trapdoored: Ai* = A0Si - α*iG
where Si have small entries

A0Si close to uniform (like Ai) by extraction argument

Consider a query (f,y) where y ≠ f(α*) =: y*

Need to give Rf,y s.t. (Af⊞y) Rf,y = D

Do not have a the trapdoor for [A0 | Af - y*G]

Will use a trapdoor for Af - y*G instead!

Two Trapdoors
Given A0, A ∈ Zqn×m of rank n, and D, can find small R s.t.  

[A0 | A] R = D if we have:

Either the trapdoor TA0 for sampling small R0 s.t. A0R0 = U

Or (S,TA-A0S) s.t. A - A0S has full rank and S “small”

E.g., small S s.t. A = A0S + zG for z ≠ 0 and G has a known
trapdoor TG (which is also a trapdoor for zG)

In the actual construction, we used the fact that (A0, TA0) can be
generated together, to be able to give out function keys Rf,y.  
(Ai picked randomly, and Af random).

In the security proof, given an A0 from outside, will construct  
Ai = A0Si - αi*G and maintain Af = A0Sf - f(α*)G. Then, can sample
Rf,y if y ≠ f(α*) and hence Af +yG = A0Sf + zG for z = y-f(α*) ≠ 0.

a “small” basis TA0 for Λ⊥
A0

Simulation of Keys

PK: A0, D (externally given) and Ai* = A0Si - α*iG

Sf defined so that:

Af* = A0Sf - f(α*)G where Af* from PKEval

Q*f,y(s) = [Af*⊞y]Ts from CTEval

Verify:

Sf1+f2 = Sf1 + Sf2

Sf1⋅f2 = -Sf2 B(Af1) + f2(α*) Sf2

Sf remains small if f2(α*) is small

Simulation of Keys
Simulated KeyGen which produces keys which are statistically
close to the original keys

Accepts A0 from outside

Picks Ai* = A0Si - α*iG where Si have small entries

Keys Af* and ciphertexts Q*f,y(s) defined by EvalPK and

EvalCT. Af* = A0Sf - f(α*)G and Q*f,y(s) = [Af*⊞y]Ts

Given (f,y) s.t. y ≠ f(α*), to create Rf,y s.t. (Af*⊞y) Rf,y = D :

Af*⊞y = [A0 | Af* + yG] = [A0 | A0Sf - f(α*)G + yG] 
 = [A0 | A0Sf + zG] where z≠0

So can sample small Rf,y as required

Simulated keys (including function keys) are statistically
indistinguishable from the keys in the real experiment

Simulation

In the simulated experiment, challenge ciphertext can be derived

from ≈ A0Ts and ≈ DTs (given externally) and {Si}i

(Ai* + αiG)Ts = (A0Si)Ts = SiTA0Ts (and SiT⋅noise is fresh noise)

By LWE, in the simulated experiment, adversary has negligible
advantage

View of the adversary in the simulated experiment is statistically
close to that in the real experiment

Hence the advantage of the adversary in the real experiment is
also negligible

