
Functional Encryption
Lecture 24


ABE from LWE (ctd.)
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Selective: (x*0, x*1) 
output before PK
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KP-ABE From LWE
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(α,m)

If f(α)=y, decode Qf,f(α) 
using SKf,y to get  
Mask(s;Kmask)

SKf,y can transform 

Qf,y(s) into Mask(s;Kmask)

CT = [ α, Q1,α1(s),…, Qt,αt(s),  

        m + Mask(s;Kmask) ]

(f,y)

PK = (K1,…,Kt,Kmask) 
K1 … Kt

PKEvalf

Kf 

Q1,α1 … Qt,αt

CTEvalf

Qf,f(α) 



PK: Ki = [ A0 | Ai ] and Kmask = D, where A, Ai ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0 to sample small R s.t. [A0|A]R = D


Kf = [ A0 | Af ] where Af = PKEval(f,A1,…,At)


For a key A and x ∈ Zq let A⊞x denote [A0 | A + xG], where G is 

the matrix to invert bit decomposition 


Qi,αi(s) ≈ (Ai⊞αi)Ts where s ← Zqn and ≈ stands for adding a small 

noise (as in LWE). (Only one copy ≈ A0Ts included.)


Mask(s;D) ≈ DTs. Include Mask(s;D) + ⌊q/2⌋ m.


Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Af⊞f(α))Ts

SKf,y: Compute Af. Use TA0 to get Rf,y s.t. (Af⊞y) Rf,y = D


Decryption: If f(α)=y, then Rf,yT⋅Qf,f(α)(s) ≈ DTs. Recover m ∈ {0,1}d.

KP-ABE From LWE



Af1⋅f2

KP-ABE From LWE
Kf = [ A0 | Af ] where Af = PKEval(f,A1,…,At)


Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Af⊞f(α))Ts

CTEval computed gate-by-gate


Enough to describe CTEval(f1+f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))  and 

CTEval(f1⋅f2, (y1,y2), Qf1,y1(s), Qf2,y2(s))


Recall Qf1,y1(s) ≈ (Af1⊞y1)Ts = [ A0 | Af1 + y1G ]Ts


Keep ≈ A0Ts aside. To compute [ Ag(f1,f2) + g(y1,y2)G ]Ts for g=+,⋅


[ Af1+y1G ]Ts + [ Af2+y2G ]Ts = [ Af1+f2 + (y1 + y2) G ]Ts with  

Af1+f2 = Af1 + Af2 (errors add up)


y2 ⋅ [ Af1+y1G ]Ts - B(Af1)T [ Af2+y2G ]Ts = [-Af2B(Af1) + y1y2G]Ts


err = y2⋅err1 + B(Af1)Terr2. Need y2 to be small.



KP-ABE From LWE

Security?


Sanity check: Is it secure when no function keys SKf,y are given to 
the adversary?


Security from LWE


All components in the ciphertext are LWE samples of the form 

⟨a,s⟩+noise, for the same s and random a.


Hence all pseudorandom, including the mask DTs + noise


Do the secret keys SKf,y make it easier to break security?


Claim: No!



KP-ABE From LWE

Scheme is selective-secure (under LWE)


Recall selective security: Adversary first outputs (x0,x1) s.t. 
F(x0)=F(x1) for all F for which it receives keys. Challenge = Enc(xb)


ABE: x=(α,m) and Ff,y(x) = (α, m iff f(α)=y)

F(x0)=F(x1) ⇒ same α* and f(α*) ≠ y


Simulated execution (indistinguishable from real) where PK* is 
designed such that without MSK* can generate SKf,y for all f and 
all y ≠ f(α*)


Breaking encryption for α* will still need breaking LWE!



KP-ABE From LWE

Simulated execution (indistinguishable from real) where PK* is 
designed such that without MSK* can generate SKf,y for all (f,y) 
s.t. y ≠ f(α*)


D, A0 as before but without trapdoor (i.e., given from outside)


Other keys Ai are (differently) trapdoored: Ai* = A0Si - α*iG 
where Si have small entries


A0Si close to uniform (like Ai) by extraction argument


Consider a query (f,y) where y ≠ f(α*) =: y*

Need to give Rf,y s.t. (Af⊞y) Rf,y = D


Do not have a the trapdoor for [ A0 | Af - y*G ]


Will use a trapdoor for Af - y*G instead!



Two Trapdoors
Given A0, A ∈ Zqn×m of rank n, and D, can find small R s.t.  

[ A0 | A ] R = D if we have:


Either the trapdoor TA0 for sampling small R0 s.t. A0R0 = U


Or (S,TA-A0S) s.t. A - A0S has full rank and S “small”


E.g., small S s.t. A = A0S + zG for z ≠ 0 and G has a known 
trapdoor TG (which is also a trapdoor for zG)


In the actual construction, we used the fact that (A0, TA0) can be 
generated together, to be able to give out function keys Rf,y.  
(Ai picked randomly, and Af random).


In the security proof, given an A0 from outside, will construct  
Ai = A0Si - αi*G and maintain Af = A0Sf - f(α*)G. Then, can sample 
Rf,y if y ≠ f(α*) and hence Af +yG = A0Sf + zG for z = y-f(α*) ≠ 0.

a “small” basis TA0 for Λ⊥
A0



Simulation of Keys

PK: A0, D (externally given) and Ai* = A0Si - α*iG


Sf defined so that:


Af* = A0Sf - f(α*)G where Af* from PKEval 


Q*f,y(s) = [Af*⊞y]Ts from CTEval


Verify:


Sf1+f2 = Sf1 + Sf2


Sf1⋅f2 = -Sf2 B(Af1) + f2(α*) Sf2


Sf remains small if f2(α*) is small



Simulation of Keys
Simulated KeyGen which produces keys which are statistically 
close to the original keys


Accepts A0 from outside


Picks Ai* = A0Si - α*iG where Si have small entries


Keys Af* and ciphertexts Q*f,y(s) defined by EvalPK and 

EvalCT. Af* = A0Sf - f(α*)G and Q*f,y(s) = [Af*⊞y]Ts


Given (f,y) s.t. y ≠ f(α*), to create Rf,y s.t. (Af*⊞y) Rf,y = D :


Af*⊞y = [ A0 | Af* + yG] = [ A0 | A0Sf - f(α*)G + yG] 
        = [ A0 | A0Sf + zG] where z≠0 


So can sample small Rf,y as required


Simulated keys (including function keys) are statistically 
indistinguishable from the keys in the real experiment



Simulation

In the simulated experiment, challenge ciphertext can be derived 

from ≈ A0Ts and ≈ DTs (given externally) and {Si}i


( Ai* + αiG)Ts =  (A0Si)Ts = SiTA0Ts (and SiT⋅noise is fresh noise)


By LWE, in the simulated experiment, adversary has negligible 
advantage


View of the adversary in the simulated experiment is statistically 
close to that in the real experiment


Hence the advantage of the adversary in the real experiment is 
also negligible


