Functional Encryption

Lecture 24
ABE from LWE (ctd.)

Functional Encryption

ABE: x = (a,m)
Fey(X) = («, m iff fa)=y)

F etc. adaptively chosen by
adversary. Need F(x3) = F(x?) etc.
ABE: of = of = «*, and

o Fry s.1. f(0*) 2 y

ABE: x = (a,m)
Fey(X) = («, m iff fa)=y)

Functional Encrypt
Selective Security

ABE: x = (a,m)
Fey(X) = («, m iff fa)=y)

Selective: (x%, x¥)
output before PK

ABE: Only «* is
output initially

KP-ABE From LWE

(fy) N;
® — |
KeyGen pK EVCl l F
SK¢y can fransform
Qry(s) into Mask(s;Kmask)
8 [[X, QI,OCI(S)I"'/ Qi‘,oq-(s)l fo{:(o‘)
m + MGSK(S}Kmask)] T
—l
— W CTEvals
(Oczm) Enc Dec
! 1
Ql,ocl vor (11',%r

If f(x)=y, decode Qf ()
using SK¢y to gef
MGSK(S;Kmqsk)

KP-ABE From LWE

PK: Ki = [Ao | Ai] and Kmask = D, where A, Ai < Zqv™, D < Z "
and MSK: Trapdoor Ta, to sample small R s.t. [AolA]R = D

Ke = [Ao | Ar] where As = PKEval(f Ay,...,At)

For a key A and x € Zq let AEX denote [Ao | A + xG], where G is
the matrix to invert bit decomposition

Qii(s) = (AiBwi)Ts where s <— Z" and = stands for adding a smaill

noise (as in LWE). (Only one copy = AoTs included.)
Mask(s;D) =~ DTs. Include Mask(s:;D) + [q/2] m.

Qs,f)(8) = CTEval(f,o,Q1,0.(S)....Qt:(8)) = (ArEFf(x))TS

SKfy: Compute Af. Use Ta, to get R¢y s.t. (AfBY) Rgy = D

Decryption: If f(x)=y, then Ry Qf,fx)(S) = DTs. Recover m € {0,1}4.

KP-ABE From LWE

@ Ke=[Ao | Ar] where As = PKEval(f Ay,...,At)

@ Qf,fx)(8) = CTEval(f,a,Q1,4(8)... Qtx4(8)) = (ArBFf(x))Ts
@ CTEval computed gate-by-gate
@ Enough to describe CTEval(fi+f2, (YinY2), Qv (S), Qf,y,(8)) and

CTEval(fi-f2, (YuY2), Qfyi(S), Qfypy,(S))
o Recall Qfy(s) = (ArBY)Ts = [Ao | Af + Y1G ITs
@ Keep = AoTs aside. To compute [Agr,.f) + glY1,y2)G ITs for g=+,

o [AntyiG I's + [Arty2G ITs = [Arur, + (Y1 + y2) G I's with

Ar+f, = A + Ar (errors add up) \%'&Q‘ﬂ‘f
a Y2 ' [Ap+y1G 1ITs - B(Ag)T [Ar,+y2G ITs = [-Ang(Aﬁ) + y1y2G]'s

@ err = yz-err; + B(Af)Terrz. Need y2 to be small.

KP-ABE From LWE

@ Security?

@ Sanity check: Is it secure when no function keys SK¢, are given to
the adversary?

@ Security from LWE

@ All components in the ciphertext are LWE samples of the form
(a,8)+noise, for the same s and random a.

@ Hence all pseudorandom, including the mask DTs + noise
@ Do the secret keys SK¢y make it easier to break security?

@ Claim: No!

KP-ABE From LWE

@ Scheme is selective-secure (under LWE)

@ Recall selective security: Adversary first outputs (xo,x1) s.t.
F(xo)=F(x1) for all F for which it receives keys. Challenge = Enc(xp)

@ ABE: x=(a,m) and Ffy(x) = (x, m iff f(x)=y)
@ F(xo0)=F(x1) = same o* and f(«*) £ v

@ Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKg¢y for all f and

all v # f(o«*)

@ Breaking encryption for «* will still need breaking LWE!

KP-ABE From LWE

@ Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKg¢y for all (fy)
s.t.y # f(o«®)

@ D, Ao as before but without trapdoor (i.e., given from outside)

@ Other keys Ai are (differently) trapdoored: Ai* = AoSi - «*iG
where S; have small entries

@ AoSi close to uniform (like Ai) by extraction argument
@ Consider a query (fy) where y # f(«*) =: y*

@ Need to give Rfy s.t. (AfBY) Ry = D

@ Do not have a the trapdoor for [Ao | As - y*G]

@ Will use a trapdoor for As - y*G instead!

Two Trapdoors

a Given Ao, A € Z;m™ of rank n, and D, can find small R s.t.
[Ao | A]R =D if we have: {a “small” basis Ta, for Ata,

@ Either the trapdoor Ta, for sampling small Ro s.t. AoRo = U
@ Or (S,Ta-a.s) s.t. A - AoS has full rank and S “small”

@ E.g., small S s.t. A =AeS + zG for z # 0 and G has a known
trapdoor Te (which is also a trapdoor for zG)

@ In the actual construction, we used the fact that (Ao, Ta,) can be

generated fogether, to be able to give out function keys Rgy.
(Ai picked randomly, and A¢ random).

@ In the security proof, given an Ao from outside, will construct
Ai = AoSi - «¥G and maintain Ar = AoSt - f(«*)G. Then, can sample
Rey if v # f(«*) and hence Ar +yG = A0St + 2G for z = y-f(«*) # O.

Simulation of Keys

PK: Ao, D (externally given) and A = AoSi - «*iG
S¢ defined so that:

@ A = ApSt - f(o*)G where A¢* from PKEval

@ Q*:y(s) = [Af*mY]'s from CTEval

Verify:

@ Sfuf, = S + Sty

@ St.f, = =-S5, B(Ar) + fo(a™) St,

S¢ remains small if fa(«*) is small

Simulation of Keys

@ Simulated KeyGen which produces keys which are statistically
close to the original keys

@ Accepts Ao from outside

@ Picks A* = ApSi - «*iG where S; have small entries

@ Keys Af* and ciphertexts Q*¢,(s) defined by EvalPK and
EvalCT. Af* = AoSt - f(«*)G and Q*ry(s) = [A*EY]TS
@ Given (fy) s.t. y # f(«*), to create R¢y s.t. (AFBY) Rey = D :
@ AFEY = [Ao | A7 + yG] = [Ao | AoSr - f(«*)G + yGl]
= [Ao | A0St + zG] where z#0
@ So can sample small Rfy as required

@ Simulated keys (including function keys) are statistically
indistinguishable from the keys in the real experiment

Simulation

In the simulated experiment, challenge ciphertext can be derived
from = AoTs and = DTs (given externally) and {Si};

a (A™ + «iG)Ts = (AoSi)Ts = SiTAo™s (and SiT-noise is fresh noise)
By LWE, in the simulated experiment, adversary has negligible
advantage

View of the adversary in the simulated experiment is statistically
close to that in the real experiment

Hence the advantage of the adversary in the real experiment is
also negligible

