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Flavours of Obfuscation

Indistinguishability Obf.

PC Differing Inputs Obf.

Differing Inputs Obf.

VBB Obf.

VGB Obf.

XIO

Adaptive DIO



IND-PRE Security
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     is IDEAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

     is REAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 
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Different variants of the definition in this framework

IND-PRE secure if ∀ PPT    in Test-Family 
  IDEAL-hiding ⇒     REAL-hiding




Indistinguishability Obf. (iO)
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Test picks functionally equivalent C0, C1 (hardwired into it)


Guaranteed to be IDEAL-hiding

iO if ∀ PPT    in Test-Family 
  IDEAL-hiding ⇒     REAL-hiding


     is IDEAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

     is REAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 



Inefficient iO
Write down the truth table of the function? But evaluation not 
efficient.


Better solution: Find a canonical circuit for the given circuit (e.g., 
smallest, lexicographically first)


Meets every requirement except that of the obfuscator being 
efficient


Fact: Can find the canonical circuit in polynomial time if P=NP


i.e., P=NP ⇒ iO (with efficient obfuscator) exists


Cannot rule out the possibility that iO exists but there is no 
OWF (say), unless we prove P≠NP

XIO: Allows 
inefficient evaluation, 
slightly better than 

truth table



Best-Possible Obfuscation

iO as good at hiding information as any obfuscation


(aux,iO(O(P))) ≈ (aux,iO(P)), where O is any compiler that 
perfectly preserves functionality


i.e., Any information that can be efficiently learned from 
(aux,iO(P)) can be efficiently learned from (aux,iO(O(P)))


In turn, efficiently learned from (aux,O(P))


Note: Only holds when iO is efficient (so not applicable to 
the canonical encoding construction)



Is iO Any Good?

iO does not promise to hide anything about the function 
(only its representation)


Can we use iO in cryptographic constructions?


Yes (combined with other cryptographic primitives)


e.g. PKE from SKE using iO


In fact, can get FE (from PKE and NIZK) using iO


Recent results: iO “essentially” equivalent to FE for 
general functions (note: FE doesn’t hide function)

With 
different 
levels of 
security



Is iO Any Good?
PKE from SKE using iO


Recall SKE:  Enc(m) = ( r, PRFK(r) ⊕ m )


Using obfuscation:  PK = O(PRFK( ⋅ )) ? 


But the same key allows decryption also!


Need the obfuscated program to carry out the entire 
encryption, including picking the randomness


Or at least, should not allow full freedom in choosing r


PK = O( fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)


Problem when using iO: iO may not hide K!



Is iO Any Good?
PKE from SKE using iO


PK = iO( fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)


Problem using iO: iO may not hide K!


But the functionality of fK depends only on PRFK evaluated on 
the range of PRG. So it is plausible that there are alternate 
representations of fK that does not reveal K fully


Idea: Imagine challenge ciphertext is (r, PRFK(r) ⊕ m) where r is 
not in the range of PRG!


Cannot tell the difference by security of PRG


Revealing functionality fK need not reveal PRFK(r) 



Is iO Any Good?
PKE from SKE using iO


PK = iO( fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)


Idea: Imagine challenge ciphertext is CT’ = (r, PRFK(r) ⊕ m) 
where r is not in the range of PRG!


Cannot tell the difference with real CT by security of PRG


Punctured PRF: Key Kr ̅to evaluate PRFK on inputs other than r, 
such that PRFK(r) is pseudorandom given Kr ̅


f’Kr ̅(s,m) = (PRG(s), PRF’Kr ̅(PRG(s)) ⊕ m),  is functionally 
equivalent to fK, where PRF’ is the PRF punctured at input r


Let PK’ = iO(f’Kr ̅(⋅)). Then (CT,PK) ≈ (CT’,PK’)


(CT’,PK’) completely hides m, even if PK’ revealed all of Kr ̅

By modifying 
the standard 
construction

Punctured PRF 
used only in 

proof



Pseudorandom Function 
(PRF)

A PRF can be constructed from any PRG
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Pseudorandom Function 
(PRF)

e.g., PRF punctured at an input 101:
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Constructing IO

Last lecture: iO from (idealized) multi-linear maps


State-of-the-art: Can base on L-linear maps under 
assumptions in the standard model, for L as low as 3


Result does not extend to basing iO on bilinear maps 


Exploits connections with Functional Encryption


iO is quite useful if we can construct it


But stronger obfuscation would be even more powerful



Differing Input Obf.
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Any PPT Test that includes (C0,C1) in aux

C0, C1 need not be functionally equivalent

To be not IDEAL-hiding, need a PPT    which can find a “differing input”

DIO if ∀ PPT    in Test-Family 
  IDEAL-hiding ⇒     REAL-hiding


     is IDEAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

     is REAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

Adaptive DIO 
allows 2-way 
interaction



Implausibility of DIO?
Is DIO (im)possible?


Open


Constructions from multi-linear maps under strong (or idealized) 
assumptions


Implausibility results


If highly secure (“sub-exponentially secure”) one-way 
functions exist, then highly secure DIO for Turing machines 
cannot exist!


Problem is the auxiliary information 


Let aux be an obfuscated program which can extract secrets 
from the obfuscated program. But in the ideal world, aux 
would be useless (as it is obfuscated).



Public-Coin DIO
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Test as in DIO, but aux includes all the randomness used by Test

PC-DIO if ∀ PPT    in Test-Family 
  IDEAL-hiding ⇒     REAL-hiding


     is IDEAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

     is REAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 



Virtual Grey Box Obf.
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Arbitrary PPT Test, with arbitrary aux (C0, C1 not given).

Allow computationally unbounded adversaries in the ideal world.

VGB Obf. if ∀ PPT    in Test-Family 
  IDEAL-hiding ⇒     REAL-hiding


     is IDEAL-Hiding if 


∀      Pr[b’=b] = ½ ± negl. 

     is REAL-Hiding if 


∀ PPT      Pr[b’=b] = ½ ± negl. 

Original definition is simulation-
based a la VBB Obfuscation


