
Obfuscation
Lecture 26

Different Flavours

Note: Considers only corrupt receiver

f ∈ Family

VBB Obfuscation

Env
REAL

Env

IDEAL

FB

f

Secure (and
correct) if:

∀ PPT

 

output of
is distributed
identically in
REAL and IDEAL

O(f)x1

f(x1)
x2

f(x2)
:

∀ PPT

∃ PPT s.t.

bbf ∈ Family

Virtual 

Black-Box 

(VBB)  

Obfuscation

A
single
bit

Flavours of Obfuscation

Indistinguishability Obf.

PC Differing Inputs Obf.

Differing Inputs Obf.

VBB Obf.

VGB Obf.

XIO

Adaptive DIO

IND-PRE Security

REAL
IDEAL

FB

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Different variants of the definition in this framework

IND-PRE secure if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

Indistinguishability Obf. (iO)

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Test picks functionally equivalent C0, C1 (hardwired into it)

Guaranteed to be IDEAL-hiding

iO if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Inefficient iO
Write down the truth table of the function? But evaluation not
efficient.

Better solution: Find a canonical circuit for the given circuit (e.g.,
smallest, lexicographically first)

Meets every requirement except that of the obfuscator being
efficient

Fact: Can find the canonical circuit in polynomial time if P=NP

i.e., P=NP ⇒ iO (with efficient obfuscator) exists

Cannot rule out the possibility that iO exists but there is no
OWF (say), unless we prove P≠NP

XIO: Allows
inefficient evaluation,
slightly better than

truth table

Best-Possible Obfuscation

iO as good at hiding information as any obfuscation

(aux,iO(O(P))) ≈ (aux,iO(P)), where O is any compiler that
perfectly preserves functionality

i.e., Any information that can be efficiently learned from
(aux,iO(P)) can be efficiently learned from (aux,iO(O(P)))

In turn, efficiently learned from (aux,O(P))

Note: Only holds when iO is efficient (so not applicable to
the canonical encoding construction)

Is iO Any Good?

iO does not promise to hide anything about the function
(only its representation)

Can we use iO in cryptographic constructions?

Yes (combined with other cryptographic primitives)

e.g. PKE from SKE using iO

In fact, can get FE (from PKE and NIZK) using iO

Recent results: iO “essentially” equivalent to FE for
general functions (note: FE doesn’t hide function)

With
different
levels of
security

Is iO Any Good?
PKE from SKE using iO

Recall SKE: Enc(m) = (r, PRFK(r) ⊕ m)

Using obfuscation: PK = O(PRFK(⋅)) ?

But the same key allows decryption also!

Need the obfuscated program to carry out the entire
encryption, including picking the randomness

Or at least, should not allow full freedom in choosing r

PK = O(fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)

Problem when using iO: iO may not hide K!

Is iO Any Good?
PKE from SKE using iO

PK = iO(fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)

Problem using iO: iO may not hide K!

But the functionality of fK depends only on PRFK evaluated on
the range of PRG. So it is plausible that there are alternate
representations of fK that does not reveal K fully

Idea: Imagine challenge ciphertext is (r, PRFK(r) ⊕ m) where r is
not in the range of PRG!

Cannot tell the difference by security of PRG

Revealing functionality fK need not reveal PRFK(r)

Is iO Any Good?
PKE from SKE using iO

PK = iO(fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)

Idea: Imagine challenge ciphertext is CT’ = (r, PRFK(r) ⊕ m)
where r is not in the range of PRG!

Cannot tell the difference with real CT by security of PRG

Punctured PRF: Key Kr ̅to evaluate PRFK on inputs other than r,
such that PRFK(r) is pseudorandom given Kr ̅

f’Kr ̅(s,m) = (PRG(s), PRF’Kr ̅(PRG(s)) ⊕ m), is functionally
equivalent to fK, where PRF’ is the PRF punctured at input r

Let PK’ = iO(f’Kr ̅(⋅)). Then (CT,PK) ≈ (CT’,PK’)

(CT’,PK’) completely hides m, even if PK’ revealed all of Kr ̅

By modifying
the standard
construction

Punctured PRF
used only in

proof

Pseudorandom Function
(PRF)

A PRF can be constructed from any PRG

K00

K01

K10

K11

G

G

G
K000

K001

G
K010

K011

G
K100

K101

G
K110

K111r

Kr...GK

K0

K1

G is a
length-
doubling

PRG

Pseudorandom Function
(PRF)

e.g., PRF punctured at an input 101:

K00

K01

K10

K11

G

G

G
K000

K001

G
K010

K011

G
K100

K101

G
K110

K111r

Kr...GK

K0

K1

Punctured
Key: K1̅0̅1̅

K0 K11 K100

r≠101

Constructing IO

Last lecture: iO from (idealized) multi-linear maps

State-of-the-art: Can base on L-linear maps under
assumptions in the standard model, for L as low as 3

Result does not extend to basing iO on bilinear maps

Exploits connections with Functional Encryption

iO is quite useful if we can construct it

But stronger obfuscation would be even more powerful

Differing Input Obf.

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Any PPT Test that includes (C0,C1) in aux

C0, C1 need not be functionally equivalent

To be not IDEAL-hiding, need a PPT which can find a “differing input”

DIO if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Adaptive DIO
allows 2-way
interaction

Implausibility of DIO?
Is DIO (im)possible?

Open

Constructions from multi-linear maps under strong (or idealized)
assumptions

Implausibility results

If highly secure (“sub-exponentially secure”) one-way
functions exist, then highly secure DIO for Turing machines
cannot exist!

Problem is the auxiliary information

Let aux be an obfuscated program which can extract secrets
from the obfuscated program. But in the ideal world, aux
would be useless (as it is obfuscated).

Public-Coin DIO

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Test as in DIO, but aux includes all the randomness used by Test

PC-DIO if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Virtual Grey Box Obf.

REAL
IDEAL

FB

Cb b’O(C)

aux

Cb b’

aux

Arbitrary PPT Test, with arbitrary aux (C0, C1 not given).

Allow computationally unbounded adversaries in the ideal world.

VGB Obf. if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Original definition is simulation-
based a la VBB Obfuscation

