Miscellany

Lecture 27
The Importance of
Being Shallow

Circuit Depth

@ Functions f: {0,1}* — {0,1}* are often represented as circuit
families (boolean or arithmetic)

@ Family of circuits C = { C" }ns

@ Each circuit is a DAG, with n input wires. Will restrict
ourselves to circuits with 2-input gates

@ For each input size n there is a separate circuit Cn (w.l.o.g.,
same output size for each fixed input size)

@ Depth of a DAG: length of the longest root-to-leaf path
@ C said to have “constant depth” if depth(Cn) < ¢, for all n
@ C in class NCi if depth(Cn) < c-logi n, for some c

@ Note: In NCO circuits each output wire connected fo a constant
number of input wires

Depth and Interaction

Recall the GMW and BGW protocols
Gate-by-gate evaluation of a circuit (DAG)

Gates can be evaluated in any order as long as we respect a
topological sort

Can parallelise by grouping gates into levels

@ Number of rounds of interaction = number of levels
@ Smallest number of levels = depth of the circuit
Moral: Functions with shallow circuits are quicker to evaluate

Can sometimes do better by working with low-depth “randomized
encoding” of functions than directly with their own circuits

@ e.g., 2-party semi-honest setting

Garbled Circuits

@ Recall: Each wire w has two keys (Kw-o and Ky-1). Each
garbled gate has 4 boxes with keys for the output wire,

locked with keys for input wires) O—E ¢

@ Locki ng: EnCsza(EnCKyzb(Kw=g(a,b)))

@ Information-theoretic garbling: why not just use
information-theoretic encryption?

@ One-time pad: Enck(m) = m@K

@ But Kx-q used to encrypt two values in a gate,
EnCKy=O(Kw=g(a,O)) and EncKy:l(KW=g(0,1))

@ If the wire x fans out to t gates, encrypts 2t values

@ Can we still use a one-time pad? St

Information-Theoretic
Garbled Circuits

@ Recall: Each wire w has two keys (Kw-o and Ky-1). Each
garbled gate has 4 boxes with keys for the output wire,
locked with keys for input wires

d Locking: EnCsza(EnCKyzb(Kw=g(a,b)))
@ Encrypting 2t messages = encrypting a long message

@ Suppose fan-out bounded by t. Then for wires w; at
depth i, enough to have [Kw=dl = 2t |Kw; =l

@ Key-size at depth d = O((21)d) (with 1-bit key at the

output) R
—>
@ Polynomial sized if d is logarithmic and t co/(ls’ran’r e
@ Information-theoretic garbled circuits | ppernate constructions s o
possible for shallow circuits (NC?) avoid bound on t [iy

Gentry-Sahai-Waters

@ Supports messages i € {0,1} and NAND operations up to an a priori
bounded depth of NANDs

@ Public key M € Z;™" and private key z s.t. ZTM has small entries

@ Enc(n) = MTR + pG where R < §0,1}™*" (and G ¢ Zq”ka the matrix
to reverse bit-decomposition)

@ Decy(C) : 27C = 8T + uz'G where 8T =e™R

@ NAND(C1,C2) : G - Ci1-B(C2) (G is a (non-random) encryption of 1)

@ 27C-B(Cz2) = 27Ci'B(C2) = (&iT + mZ2TG) B(C2) | oniy “left depth”
= §1TB(C2) + MmZ7C2 = 8T + wp22'G counts, since
where 87 = §TB(Cz2) + 82" has small entries 8¢ k-m-3 + &2

\
@ In general, error gets multiplied by km. Allows depth = log,,, q

Bootstrapping

@ To refresh a given ciphertext C. Also given an encryption of sk (in
the public-key). Let D¢ be s.t. D¢(sk) := Dec(C,sk).

@ Refresh(C,Enc(sk)) = HomomEval(D¢, Enc(sk)) 5

@ Need depth of D¢ to be strictly less than the depth
allowed by the homomorphic encryption scheme

Refreshed: Doesnt depend Enc(p)
on how unfresh C was, but T
only on the depthof Dc | A4

Homomorphic
evaluation in the

Fresh encryption of 11 \ cipherfext space |

sk, provided along — Enc(sk)
with the public key

Bootstrapping for iO

@ i0O candidate from multi-linear map candidates, using matrix
programs

@ Polynomial sized iO if polynomial-sized matrix programs

@ Barringtons Theorem: NC! functions have polynomial-sized
matrix programs (with 5x5 matrices)

@ Can “bootstrap” from this to all polynomial-sized circuits/
polynomial-time computable functions, assuming Fully
Homomorphic Encryption (with decryption in NC!)

Bootstrapping for iO

@ Idea: Carry out FHE (for polynomial depth) evaluation, and use
obfuscated program to do decryption

@ Ciphertext will encode the function C, and input m can be given
in the clear

@ Let Un denote a (deep) circuit s.t. Un(C) = C(m)
@ Obfuscation: (o,m) where o=FHE-Enc(C) and m=iO(P) where P is
a low-depth program that decrypts an FHE ciphertext ¢*, but

only if it is obtained by evaluating Un homomorphically on o (for
some input m)

@ How can P ensure this without computing Uy, itself?
@ P takes a proof that ¢* = F(m’) := FHE-Eval(Un,c) for some m’
@ Proof: ¢* and all wire values in circuit evaluating F(m’).

Can verify each gate separately (in NC°), and AND the
results (in NC!) to get the full verification result

Bootstrapping for iO

Obfuscation: (PK,o,1m) where o=FHE-Encpx(C) and m=iO(P)
@ P(c%y) = FHE-Decsk(c™) if Verify(c™,p)=1

@ Proof o is for the claim: 3 m’ s.t. ¢* = FHE-Evalpk(Uw',0)

Evaluation: Compute ¢* and ¢ using m. Run m(c*y) to get C(m)
Secure? Need to hide representation of C
But m may not hide the FHE decryption key SK!

Idea: Have multiple representations of P s.t. some representations
dont reveal SK or anything beyond Cs functionality

Will have o=(01,02), with o; < FHE-Encpk,(C). And the claim proven is
am’ s.t. o1 = FHE-Evalpk,(Um',01) A 62* = FHE-Evalpk,(Un,02)

Bootstrapping for iO
Obfuscation: (PKi,PK2,01,02,1m) where oi < FHE-Encpx(C) and m=iO(P;)
@ P1(01*,62*,(.p) = FHE—D6C5K1(01*) if Verify(ol*,cz*,cp)=l

@ Proof ¢ for claim 3 m’ s.t. for i=1,2, 6i* = FHE-Evalpk,(Un',01)

Evaluation: Compute 6:%,62%, v using m. Run m(c1*,02%y) to get C(m)
Consider functionally equivalent C; and C, and following “hybrids”
1. Obfuscation of C; : 6i < FHE-Encp(C1) and m=iO(P;)

4(1) ~ (2): FHE security for SK:]

(2) = (3): By iO. Py, P2 functionally equivalent!]
3. Uses m=iO(P2) where P2 uses SK; to decrypt o,

3) = (4): FHE ity for SK
4. Uses oj < FHE-EncpKi(CZ){() = (4) securiry for %]

!(4) ~ (5): Again by iO. |
5. Uses m=iO(P,). This is an“honest obfruscation ot Co.

2. Uses oi < FHE-Encpk(Ci)

Thats All Folks!

\ :
‘

\5;

\ze

