Miscellany

Lecture 27 The Importance of Being Shallow

Circuit Depth

• Functions f: $\{0,1\}^* \rightarrow \{0,1\}^*$ are often represented as circuit families (boolean or arithmetic)

• Family of circuits $C = \{ C^n \}_{n \ge 1}$

 Each circuit is a DAG, with n input wires. Will restrict ourselves to circuits with 2-input gates

For each input size n there is a separate circuit Cⁿ (w.l.o.g., same output size for each fixed input size)

Depth of a DAG: length of the longest root-to-leaf path

• C said to have "constant depth" if depth(Cⁿ) \leq c, for all n

• C in class NCⁱ if depth(Cⁿ) \leq c · logⁱ n, for some c

Note: In NC^o circuits each output wire connected to a constant number of input wires

Depth and Interaction

- Recall the GMW and BGW protocols
- Gate-by-gate evaluation of a circuit (DAG)
- Gates can be evaluated in any order as long as we respect a topological sort
- Can parallelise by grouping gates into <u>levels</u>
 - Number of rounds of interaction = number of levels
 - Smallest number of levels = depth of the circuit
- Moral: Functions with shallow circuits are quicker to evaluate
- Can sometimes do better by working with low-depth "randomized encoding" of functions than directly with their own circuits
 - e.g., 2-party semi-honest setting

Garbled Circuits

- Recall: Each wire w has two keys (K_{w=0} and K_{w=1}). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
 - Locking: Enc_{Kx=a}(Enc_{Ky=b}(K_{w=g(a,b)}))

Recall

- Information-theoretic garbling: why not just use information-theoretic encryption?
 - One-time pad: Enc_κ(m) = m⊕K
 - But K_{x=a} used to encrypt two values in a gate, Enc_{Ky=0}(K_{w=g(a,0)}) and Enc_{Ky=1}(K_{w=g(a,1)})
 - If the wire x fans out to t gates, encrypts 2t values
 - Can we still use a one-time pad?

Information-Theoretic Garbled Circuits

- Recall: Each wire w has two keys (K_{w=0} and K_{w=1}). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
 - Locking: $Enc_{K_{x=a}}(Enc_{K_{y=b}}(K_{w=g(a,b)}))$
- Encrypting 2t messages = encrypting a long message
 - Suppose fan-out bounded by t. Then for wires w_i at depth i, enough to have |K_{wi=a}| = 2t |K_{wi-1=c}|
 - Key-size at depth d = O((2t)^d) (with 1-bit key at the output)
- Polynomial sized if d is logarithmic and t constant
- Information-theoretic garbled circuits possible for shallow circuits (NC¹)

Alternate constructions avoid bound on t

Gentry-Sahai-Waters

- Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- Public key $M \in \mathbb{Z}_q^{m \times n}$ and private key \mathbf{z} s.t. $\mathbf{z}^T M$ has small entries
- Enc(μ) = M^TR + μ G where R \leftarrow {0,1}^{m×km} (and G $\in \mathbb{Z}_q^{n×km}$ the matrix to reverse bit-decomposition)
- $Dec_z(C)$: $z^TC = \delta^T + \mu z^TG$ where $\delta^T = e^TR$

Recall

• NAND(C_1, C_2) : G - $C_1 \cdot B(C_2)$ (G is a (non-random) encryption of 1)

Only "left depth"

counts, since

 $\underline{\delta} \leq \mathbf{k} \cdot \mathbf{m} \cdot \underline{\delta}_1 + \underline{\delta}_2$

 $\mathbf{z}^{\mathsf{T}}C_1 \cdot B(C_2) = \mathbf{z}^{\mathsf{T}}C_1 \cdot B(C_2) = (\delta_1^{\mathsf{T}} + \mu_1 \mathbf{z}^{\mathsf{T}}G) B(C_2)$ $= \underline{\delta}_1^{\mathsf{T}} \mathbf{B}(\mathbf{C}_2) + \mu_1 \mathbf{Z}^{\mathsf{T}} \mathbf{C}_2 = \underline{\delta}^{\mathsf{T}} + \mu_1 \mu_2 \mathbf{Z}^{\mathsf{T}} \mathbf{G}$ where $\delta^{T} = \delta_{1}^{T}B(C_{2}) + \mu_{1}\delta_{2}^{T}$ has small entries In general, error gets multiplied by km. Allows depth ≈ $\log_{km} q$

Bootstrapping

To refresh a given ciphertext C. Also given an encryption of sk (in the public-key). Let D_c be s.t. D_c(sk) := Dec(C,sk).

μ

Dc

Refresh(C,Enc(sk)) = HomomEval(D_c, Enc(sk))

Recall

 Need depth of D_c to be strictly less than the depth allowed by the homomorphic encryption scheme

Bootstrapping for iO

iO candidate from multi-linear map candidates, using matrix programs

Recall

- Polynomial sized iO if polynomial-sized matrix programs
- Barrington's Theorem: NC¹ functions have polynomial-sized matrix programs (with 5x5 matrices)
- Can "bootstrap" from this to all polynomial-sized circuits/ polynomial-time computable functions, assuming Fully Homomorphic Encryption (with decryption in NC¹)

Bootstrapping for iO

- Idea: Carry out FHE (for polynomial depth) evaluation, and use obfuscated program to do decryption
 - Ciphertext will encode the function C, and input m can be given in the clear
 - Let U_m denote a (deep) circuit s.t. U_m(C) = C(m)
 - Obfuscation: (σ,π) where σ =FHE-Enc(C) and π =iO(P) where P is a low-depth program that decrypts an FHE ciphertext σ^* , but only if it is obtained by evaluating U_m homomorphically on σ (for some input m)
 - How can P ensure this without computing U_m itself?
 - P takes a proof that $\sigma^* = F(m') := FHE-Eval(U_{m'},\sigma)$ for some m'

Proof: σ* and all wire values in circuit evaluating F(m'). Can verify each gate separately (in NC⁰), and AND the results (in NC¹) to get the full verification result

Bootstrapping for iO

- Obfuscation: (PK, σ , π) where σ =FHE-Enc_{PK}(C) and π =iO(P)
 - $P(\sigma^*, \varphi) = FHE-Dec_{SK}(\sigma^*)$ if $Verify(\sigma^*, \varphi)=1$
 - Proof φ is for the claim: \exists m' s.t. $\sigma^* = FHE-Eval_{PK}(U_{m'},\sigma)$
- Evaluation: Compute σ^* and φ using m. Run $\pi(\sigma^*,\varphi)$ to get C(m)
- Secure? Need to hide representation of C
- But π may not hide the FHE decryption key SK!
- Idea: Have multiple representations of P s.t. some representations don't reveal SK or anything beyond C's functionality
- Will have $\sigma = (\sigma_1, \sigma_2)$, with $\sigma_i \leftarrow FHE Enc_{PK_i}(C)$. And the claim proven is
 ∃ m' s.t. $\sigma_1^* = FHE Eval_{PK_1}(U_{m'}, \sigma_1) \land \sigma_2^* = FHE Eval_{PK_2}(U_{m'}, \sigma_2)$

Bootstrapping for iO • Obfuscation: (PK₁,PK₂, σ_1,σ_2,π) where $\sigma_i \leftarrow FHE-Enc_{PK_i}(C)$ and $\pi=iO(P_1)$ • $P_1(\sigma_1^*, \sigma_2^*, \varphi) = FHE-Dec_{SK_1}(\sigma_1^*)$ if $Verify(\sigma_1^*, \sigma_2^*, \varphi)=1$ • Proof φ for claim \exists m' s.t. for i=1,2, $\sigma_i^* = FHE-Eval_{PK_i}(U_{m'},\sigma_1)$ • Evaluation: Compute $\sigma_1^*, \sigma_2^*, \varphi$ using m. Run $\pi(\sigma_1^*, \sigma_2^*, \varphi)$ to get C(m) Consider functionally equivalent C₁ and C₂ and following "hybrids" Objuscation of C₁ : σ_i ← FHE-Enc_{PKi}(C₁) and π=iO(P₁) • 2. Uses $\sigma_i \leftarrow FHE-Enc_{PK_i}(C_i)$ • 3. Uses $\pi=iO(P_2)$ where P_2 uses SK₂ to decrypt σ_2^* • 4. Uses $\sigma_i \leftarrow FHE-Enc_{PK_i}(C_2)$ • 5. Uses $\pi=iO(P_1)$. This is an nonest obtuscation of C_2 .

Discussion

That's All Folks!