
Miscellany
Lecture 27


The Importance of  
Being Shallow



Functions f: {0,1}* → {0,1}* are often represented as circuit 
families (boolean or arithmetic)


Family of circuits C = { Cn }n≥1


Each circuit is a DAG, with n input wires. Will restrict 
ourselves to circuits with  2-input gates


For each input size n there is a separate circuit Cn (w.l.o.g., 
same output size for each fixed input size)


Depth of a DAG: length of the longest root-to-leaf path


C said to have “constant depth” if depth(Cn) ≤ c, for all n


C in class NCi if depth(Cn) ≤ c⋅logi n, for some c


Note: In NC0 circuits each output wire connected to a constant 
number of input wires

Circuit Depth



Recall the GMW and BGW protocols


Gate-by-gate evaluation of a circuit (DAG)


Gates can be evaluated in any order as long as we respect a 
topological sort


Can parallelise by grouping gates into levels


Number of rounds of interaction = number of levels


Smallest number of levels = depth of the circuit


Moral: Functions with shallow circuits are quicker to evaluate


Can sometimes do better by working with low-depth “randomized 
encoding” of functions than directly with their own circuits 


e.g., 2-party semi-honest setting

Depth and Interaction



 

Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 

Information-theoretic garbling: why not just use 
information-theoretic encryption?


One-time pad: EncK(m) = m⊕K


But Kx=a used to encrypt two values in a gate, 
EncKy=0(Kw=g(a,0)) and EncKy=1(Kw=g(a,1))


If the wire x fans out to t gates, encrypts 2t values


Can we still use a one-time pad?
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Information-Theoretic 
Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 

Encrypting 2t messages ≡ encrypting a long message


Suppose fan-out bounded by t. Then for wires wi at 
depth i, enough to have |Kwi=a| = 2t |Kwi-1=c|


Key-size at depth d = O( (2t)d) (with 1-bit key at the 
output)


Polynomial sized if d is logarithmic and t constant


Information-theoretic garbled circuits  
possible for shallow circuits (NC1)

Alternate constructions 
avoid bound on t



Supports messages μ ∈ {0,1} and NAND operations up to an a priori 
bounded depth of NANDs


Public key M ∈ Zq
m×n and private key z s.t. zTM has small entries


Enc(μ) = MTR + μG where R ← {0,1}m×km (and G ∈ Zq
n×km the matrix 

to reverse bit-decomposition)


Decz(C) : zTC =  δT + μzTG where δT =eTR


NAND(C1,C2) : G - C1⋅B(C2)  (G is a (non-random) encryption of 1)


zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

            = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG  
where δT = δ1TB(C2) + μ1δ2T has small entries


In general, error gets multiplied by km. Allows depth ≈ logkm q

Gentry-Sahai-Waters

Only “left depth” 
counts, since 
δ ≤ k⋅m⋅δ1 + δ2
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To refresh a given ciphertext C.  Also given an encryption of sk (in 
the public-key). Let DC be s.t. DC(sk) := Dec(C,sk).


Refresh(C,Enc(sk)) = HomomEval(DC, Enc(sk))


Need depth of DC to be strictly less than the depth 
allowed by the homomorphic encryption scheme  
 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic 
evaluation in the 
ciphertext spaceFresh encryption of 

sk, provided along 
with the public key

Refreshed: Doesn’t depend 
on how unfresh C was, but 
only on the depth of DC
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iO candidate from multi-linear map candidates, using matrix 
programs


Polynomial sized iO if polynomial-sized matrix programs


Barrington’s Theorem: NC1 functions have polynomial-sized 
matrix programs (with 5x5 matrices)


Can “bootstrap” from this to all polynomial-sized circuits/
polynomial-time computable functions, assuming Fully 
Homomorphic Encryption (with decryption in NC1)

Bootstrapping for iORe
ca
ll



Idea: Carry out FHE (for polynomial depth) evaluation, and use 
obfuscated program to do decryption


Ciphertext will encode the function C, and input m can be given 
in the clear


Let Um denote a (deep) circuit s.t. Um(C) = C(m)


Obfuscation:  (σ,π) where σ=FHE-Enc(C) and π=iO(P) where P is 
a low-depth program that decrypts an FHE ciphertext σ*, but 
only if it is obtained by evaluating Um homomorphically on σ (for 
some input m)


How can P ensure this without computing Um itself?


P takes a proof that σ* = F(m’) := FHE-Eval(Um’,σ) for some m’


Proof: σ* and all wire values in circuit evaluating F(m’). 
Can verify each gate separately (in NC0), and AND the 
results (in NC1) to get the full verification result

Bootstrapping for iO



Obfuscation:  (PK,σ,π) where σ=FHE-EncPK(C) and π=iO(P)


P(σ*,φ) = FHE-DecSK(σ*) if Verify(σ*,φ)=1

Proof φ is for the claim: ∃ m’ s.t. σ* = FHE-EvalPK(Um’,σ)


Evaluation: Compute σ* and φ using m. Run π(σ*,φ) to get C(m)


Secure? Need to hide representation of C


But π may not hide the FHE decryption key SK!


Idea: Have multiple representations of P s.t. some representations 
don’t reveal SK or anything beyond C’s functionality


Will have σ=(σ1,σ2), with σi ← FHE-EncPKi(C). And the claim proven is 
∃ m’ s.t. σ1* = FHE-EvalPK1(Um’,σ1) ∧ σ2* = FHE-EvalPK2(Um’,σ2)

Bootstrapping for iO



Obfuscation:  (PK1,PK2,σ1,σ2,π) where σi ← FHE-EncPKi(C) and π=iO(P1)


P1(σ1*,σ2*,φ) = FHE-DecSK1(σ1*) if Verify(σ1*,σ2*,φ)=1

Proof φ for claim ∃ m’ s.t. for i=1,2, σi* = FHE-EvalPKi(Um’,σ1)


Evaluation: Compute σ1*,σ2*, φ using m. Run π(σ1*,σ2*,φ) to get C(m)


Consider functionally equivalent C1 and C2 and following “hybrids”


1. Obfuscation of C1 : σi ← FHE-EncPKi(C1) and π=iO(P1)


2. Uses σi ← FHE-EncPKi(Ci)


3. Uses π=iO(P2) where P2 uses SK2 to decrypt σ2*

4. Uses σi ← FHE-EncPKi(C2)


5. Uses π=iO(P1). This is an honest obfuscation of C2.

Bootstrapping for iO

(1) ≈ (2): FHE security for SK2

(2) ≈ (3): By iO. P1, P2 functionally equivalent!

(3) ≈ (4): FHE security for SK1

(4) ≈ (5): Again by iO.



Discussion



That’s All Folks!


