Homework 3

Advanced Tools From Modern Cryptography CS 758 : Spring 2018

Released: November 17 Friday Due: December 1 Friday

Bi-Linear Pairings

Notation: In this assignment, we consider a bilinear pairing operation $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$ where $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_t$ are prime order groups. We use multiplicative notation for all groups. We write e to also denote a specification of the pairing operation, along with the specification of the groups $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_t)$. Assumptions will refer to an algorithm BiGen to sample (e, g_1, g_2) where g_1, g_2 are generators for $\mathbb{G}_1, \mathbb{G}_2$ respectively.

The naming of the assumptions (other than DDH) are non-standard.

1. Bi-Linear Pairing and DDH - I

[25 pts]

Consider the following assumption for a distribution over groups with bilinear pairings:

xCDH Assumption for BiGen: For any PPT adversary A, the following probability is negligible:

 $\Pr_{\substack{(e,g_1,g_2) \leftarrow \mathsf{BiGen} \\ a \leftarrow \mathbb{Z}_{|\mathsf{G}_1|}}} [(h_1,h_1',h_2,h_2') \leftarrow A(e,g_1,g_2,g_1^a)] \text{s.t.} \ \exists r \in \mathbb{Z}_p \setminus \{0\} \ (h_1,h_1',h_2,h_2') = (g_1^r,g_1^{ar},g_2^r,g_2^{ar})$

- (a) Show that xCDH Assumption is falsifiable. That is, show how to check if a tuple (h₁, h'₁, h₂, h'₂) returned by an adversary meets the requirement that ∃r ∈ Z_p\{0} (h₁, h'₁, h₂, h'₂) = (g^r₁, g^{ar}₁, g^r₂, g^{ar}₂). You should show how to check this given only (e, g₁, g₂, g^a₁) (i.e., only g^a₁ rather than a itself), so that an adversary can itself check its answer.
- (b) Consider the DDH assumption, restated for bilinear groups (essentially the DDH for \mathbb{G}_1 , when the adversary is also given (\mathbb{G}_2, g_2)):

DDH Assumption for BiGen:

$$\{(e,g_1,g_2,g_1^a,g_1^b,g_1^{ab})\}_{\substack{(e,g_1,g_2)\leftarrow \text{BiGen}\\a,b\leftarrow \mathbb{Z}_{|\mathbb{G}_1|}}}\approx \{(e,g_1,g_2,g_1^a,g_1^b,g_1^c)\}_{\substack{(e,g_1,g_2)\leftarrow \text{BiGen}\\a,b,c\leftarrow \mathbb{Z}_{|\mathbb{G}_1|}}}$$

Show that the DDH assumption for BiGen implies the xCDH Assumption for BiGen.

Hint: You need to construct a DDH adversary given an adversary A that breaks the xCDH Assumption. Recall that if $\mathbb{G}_1 = \mathbb{G}_2$, then DDH does not hold. Here, $\mathbb{G}_1 \neq \mathbb{G}_2$, but the adversary that breaks the xCDH Assumption can be used to "transfer" the exponent a from g_1 to g_2 .

2. Bi-Linear Pairing and DDH - II

Consider another assumption for groups with bilinear pairings.

[25 pts]

[Total 50 pts]

Hardness of Orthogonal Pairing (HOP) Assumption for BiGen: For any PPT adversary A, the following probability is negligible (where 1 denotes the identity element in \mathbb{G}_t):

$$\Pr_{\substack{(e,g_1,g_2) \leftarrow \mathsf{BiGen} \\ h_1,h_1' \leftarrow \mathbb{G}_1}} [(h_2,h_2') \leftarrow A(e,g_1,g_2,h_1,h_1')] \text{s.t. } e(h_1,h_2)e(h_1',h_2') = 1 \text{ and } h_2' \neq 1.$$

- (a) Show that DDH for BiGen implies HOP for BiGen.
- (b) Recall vector commitment of group elements. It uses a trusted setup consisting of a bilinear pairing operator e, a vector of generators of G₁, t = (t₀, t₁,...,t_n). To commit to a message m ∈ G₂ⁿ, sample ρ ← G₂ and let Com_{h,t}(m; ρ) = e(t₀, ρ) Πⁿ_{i=1} e(t_i, m_i). Opening the commitment involves revealing (m, ρ).

Show that HOP for BiGen implies binding for the above commitment scheme. That is, a PPT adversary A that produces an equivocation $(c, \mathbf{m}, \rho, \mathbf{m}', \rho')$ such that $c = e(t_0, \rho) \prod_{i=1}^{n} e(t_i, m_i) = e(t_0, \rho') \prod_{i=1}^{n} e(t_i, m'_i)$ and $\mathbf{m} \neq \mathbf{m}'$ can be used to define an adversary that breaks HOP assumption.

Hint: First try a HOP adversary that invokes the commitment adversary with $t_0 = h'_1$ and $t_i = h_1^{\alpha_i}$ for i > 0. Show that an equivocation can be turned into h_2, h'_2 such that $e(h_1, h_2)e(h'_1, h'_2) = 1$. But this leaves open the possibility that $h_2 = h'_2 = 1$, if (somehow) the equivocated messages are appropriately correlated with α_i . To fix this, show that taking $t_i = h_1^{\alpha_i} h'_1^{\beta_i}$ (and keeping h_2 to the same as before, while updating h'_2 suitably), for i > 0 makes the probability of this happening negligible.