Advanced Tools from Modern Cryptography

Lecture 1
Basics: Indistinguishability

Manoj Prabhakaran
IIT Bombay
Outline

- Independence
- Statistical Indistinguishability
- Computational Indistinguishability
A Game

A “dealer” and two “players” Alice and Bob (computationally unbounded)

Dealer has a message, say two bits m_1m_2

She wants to “share” it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it

Bad idea: Give m_1 to Alice and m_2 to Bob

Other ideas?
Sharing a bit

To share a bit m, Dealer picks a uniformly random bit b and gives
$a := m \oplus b$ to Alice and b to Bob

Together they can recover m as $a \oplus b$

Each party by itself learns nothing about m: for each possible
value of m, its share has the same distribution

- $m = 0 \rightarrow (a,b) = (0,0)$ or $(1,1)$ w.p. $1/2$ each
- $m = 1 \rightarrow (a,b) = (1,0)$ or $(0,1)$ w.p. $1/2$ each

i.e., Each party’s “view” is independent of the message
Secrecy

Is the message m really secret?

Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing.

Worse, if they already know something about m, they can do better (Note: we didn’t say m is uniformly random!)

But they could have done this without obtaining the shares.

The shares didn’t leak any additional information to either party.

Typical crypto goal: preserving secrecy

What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori.
Secrecy

What Alice knows about the message a priori: probability distribution over the message

For each message \(m \), \(\Pr[\text{msg}=m] \)

What she knows after seeing her share (a.k.a. her view)

Say view is \(v \). Then new distribution: \(\Pr[\text{msg}=m \mid \text{view}=v] \)

Secrecy: \(\forall v, \forall m, \Pr[\text{msg}=m \mid \text{view}=v] = \Pr[\text{msg}=m] \)

i.e., view is independent of message

Equivalently, \(\forall v, \forall m, \Pr[\text{view}=v \mid \text{msg}=m] = \Pr[\text{view}=v] \)

i.e., for all possible values of the message, the view is distributed the same way

\(\forall m_1, m_2 \) \(\{ \text{Share}_A(m_1; r) \}_r = \{ \text{Share}_A(m_2; r) \}_r \)

Doesn’t involve message distribution at all.
Secrecy

Equivalent formulations:

- For all possible values of the message, the view is distributed the same way:
 \[\forall v, \forall m_1, m_2, \Pr[\text{view}=v | \text{msg}=m_1] = \Pr[\text{view}=v | \text{msg}=m_2] \]

- View and message are independent of each other:
 \[\forall v, \forall m, \Pr[\text{msg}=m, \text{view}=v] = \Pr[\text{msg}=m] \times \Pr[\text{view}=v] \]

- View gives no information about the message:
 \[\forall v, \forall m, \Pr[\text{msg}=m | \text{view}=v] = \Pr[\text{msg}=m] \]

Important: can’t say \(\Pr[\text{msg}=m_1 | \text{view}=v] = \Pr[\text{msg}=m_2 | \text{view}=v] \) (unless the prior is uniform)
Consider the following secret-sharing scheme

Message space = \{ Jan, Feb, Mar \}

Jan → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each

Feb → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or (11,00) w/ prob 1/8 each

Reconstruction possible as the 3 sets of shares are disjoint

Let $\beta_1 \beta_2 = \text{share}_{\text{Alice}} \oplus \text{share}_{\text{Bob}}$. Map $\beta_1 \beta_2$ as follows:

00 → Jan, 01 → Feb, 10 or 11 → Mar

Is it secure?
A Puzzle

Alice and Bob hold secret numbers x and y in $\{0,\ldots,n\}$ resp.

Carol wants to learn $x+y$. Alice and Bob are OK with that.

But they don’t want Carol/each other to learn anything else!

i.e., Alice should learn nothing about y, nor Bob about x. Carol shouldn’t learn anything else about x,y “other than” $x+y$

Can they do it, just by talking to each other (using private channels between every pair of parties)?

How would you formalise this?
Relaxing Secrecy Requirement

- When view is not exactly independent of the message
- Next best: view close to a distribution that is independent of the message
- Two notions of closeness: Statistical and Computational
Given two distributions A and B over the same sample space, how well can a test T distinguish between them?

T given a single sample drawn from A or B

How differently does it behave in the two cases?

$$\Delta(A, B) := \max_T | \Pr_{x \leftarrow A}[T(x) = 0] - \Pr_{x \leftarrow B}[T(x) = 0] |$$

$$\Pr_{x \leftarrow A}[T(x) = 0] - \Pr_{x \leftarrow B}[T(x) = 0] = \sum_x (A(x) - B(x))p(x), \text{ where } p(x) \text{ stands for } \Pr[T(x) = 0], \text{ and } A(x), B(x)$$

Maximised when $p(x) = 1$ for $A(x) > B(x)$ and $p(x) = 0$ for $A(x) < B(x)$

Equals $$\sum_{x : A(x) > B(x)} A(x) - B(x) = \sum_{x : A(x) < B(x)} B(x) - A(x) = \frac{1}{2} \sum_x |A(x) - B(x)|$$
Statistical Difference

Given two distributions A and B over the same sample space, how well can a test T distinguish between them?

T given a single sample drawn from A or B

How differently does it behave in the two cases?

$$\Delta(A,B) := \max_T | \Pr_{x \sim A}[T(x)=0] - \Pr_{x \sim B}[T(x)=0] |$$
Indistinguishability

Two distributions are **statistically indistinguishable** from each other if the statistical difference between them is “negligible”

What is negligible? 2^{-20} ? 2^{-40} ? 2^{-80} ? Let the “user” decide!

Security guarantees will be given **asymptotically** as a function of the **security parameter**

- A knob that can be used to set the security level

Given $\{A_k\}$, $\{B_k\}$, $\Delta(A_k,B_k)$ is a function of the security parameter k

Negligible: reduces “very quickly” as the knob is turned up

“Very quickly”: quicker than $1/poly$ for any polynomial $poly$

- So that if negligible for one sample, remains negligible for polynomially many samples

$v(k)$ is said to be **negligible** if $\forall \ d \geq 0, \ \exists \ N \ s.t. \ \forall \ k>N, \ v(k) < 1/k^d$
Distribution ensembles \{A_k\}, \{B_k\} are statistically indistinguishable if \(\exists\) negligible \(\nu\) s.t. \(\forall k\) \(\Delta(A_k, B_k) \leq \nu(k)\)

where \(\Delta(A_k, B_k) := \max_T |Pr_{x \leftarrow A_k}[T(x) = 0] - Pr_{x \leftarrow B_k}[T(x) = 0]|\)

i.e. if \(\exists\) negligible \(\nu\) s.t. \(\forall\) tests \(T\), \(\forall k\)

\[|Pr_{x \leftarrow A_k}[T_k(x) = 0] - Pr_{x \leftarrow B_k}[T_k(x) = 0]| \leq \nu(k)\]

Equivalently (why?) \(\forall\) tests \(T\), \(\exists\) negligible \(\nu\) s.t. \(\forall k\)

\[|Pr_{x \leftarrow A_k}[T_k(x) = 0] - Pr_{x \leftarrow B_k}[T_k(x) = 0]| \leq \nu(k)\]

Distribution ensembles \{A_k\}, \{B_k\} computationally indistinguishable if \(\forall\) “efficient” tests \(T\), \(\exists\) negligible \(\nu\) s.t.

\[|Pr_{x \leftarrow A_k}[T_k(x) = 0] - Pr_{x \leftarrow B_k}[T_k(x) = 0]| \leq \nu(k)\]
Distribution ensembles \(\{A_k\}, \{B_k\} \) are computationally indistinguishable if for all “efficient” tests \(T \), there exists negligible \(\nu \) such that:

\[
| \Pr_{x \leftarrow A_k}[T_k(x) = 0] - \Pr_{x \leftarrow B_k}[T_k(x) = 0] | \leq \nu(k)
\]

Efficient: Probabilistic Polynomial Time (PPT)

PPT \(T \): a family of randomised programs \(T_k \) (one for each value of the security parameter \(k \)), s.t. there is a polynomial \(p \) with each \(T_k \) running for at most \(p(k) \) time.

(Could restrict to uniform PPT, i.e., a single program which takes \(k \) as an additional input. By default, we’ll allow non-uniform.)
Security Games

Indistinguishability can be defined using a guessing game

- b chosen uniformly at random
- $\Pr[b'=b] = ?$

\[
\Pr[b'=b=0] + \Pr[b'=b=1] \\
= \frac{1}{2} \cdot \Pr[b'=0|b=0] + \frac{1}{2} \cdot \Pr[b'=1|b=1] \\
= \frac{1}{2} \left(\Pr[b'=0|b=0] + 1 - \Pr[b'=0|b=1] \right) \\
= \frac{1}{2} + \frac{1}{2} \left(\Pr[b'=0|b=0] - \Pr[b'=0|b=1] \right) \\
= \frac{1}{2} + \frac{1}{2} \left(\Pr_{x \leftarrow A}[T(x)=0] - \Pr_{x \leftarrow B}[T(x)=0] \right)
\]

Maximum $\Pr[b'=b] = \frac{1}{2} + \Delta(A,B)/2$

- A,B statistically indistinguishable if, for every adversary in the above game, \exists negligible ν s.t. $\forall k$, $\text{Advantage}(k) := \Pr[b'=b] - \frac{1}{2} \leq \nu(k)$
Pseudorandomness Generator (PRG)

- Takes a short seed and (deterministically) outputs a long string
 \[G_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]

- Security definition: Output distribution induced by random input seed should be "pseudorandom"
 i.e., Computationally indistinguishable from uniformly random
 \[\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \approx U_{n(k)} \]

- Note: \(\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \) cannot be statistically indistinguishable from \(U_{n(k)} \) unless \(n(k) \leq k \) (Exercise)
 i.e., no non-trivial PRG against unbounded adversaries