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Basics: Indistinguishability
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A Game

A “dealer” and two “players” Alice and Bob (computationally 

unbounded)

Dealer has a message, say two bits m1m2

She wants to “share” it among the two players so that 

neither player by herself/himself learns anything about the 

message, but together they can find it

Bad idea: Give m1 to Alice and m2 to Bob

Other ideas?



Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b and gives 

a := m·b to Alice and b to  Bob

Together they can recover m as a·b

Each party by itself learns nothing about m: for each possible 

value of m, its share has the same distribution 

 

 

i.e., Each party’s “view” is independent of the message

m = 0 ³ (a,b) = (0,0) or (1,1) w.p. 1/2 each

m = 1  ³ (a,b) = (1,0) or (0,1) w.p. 1/2 each

a = ShareA(m;r) = m·r 

b = ShareB(m;r) = r   . 



Is the message m really secret?

Alice or Bob can correctly find the bit m with probability ½, by 

randomly guessing

Worse, if they already know something about m, they can do 

better (Note: we didn’t say m is uniformly random!)

But they could have done this without obtaining the shares

The shares didn’t leak any additional information to either party

Typical crypto goal: preserving secrecy

What Alice (or Bob) knows about the message after seeing her 

share is the same as what she knew a priori

Secrecy



What Alice knows about the message a priori: probability 

distribution over the message

For each message m, Pr[msg=m]

What she knows after seeing her share (a.k.a. her view)

Say view is v. Then new distribution: Pr[msg=m | view=v]

Secrecy: " v, " m, Pr[msg=m | view = v] = Pr[msg = m]

i.e., view is independent of message

Equivalently, " v, " m, Pr[view=v | msg=m] = Pr[view=v]

i.e., for all possible values of the message, 

the view is distributed the same way

i.e., " m1,m2  { ShareA(m1;r) }r c { ShareA(m2;r) }r 

Secrecy

Doesn’t involve 

message 

distribution at all.



Equivalent formulations:

For all possible values of the message, 

the view is distributed the same way

" v, "m1, m2, Pr[view=v | msg=m1] = Pr[view=v | msg=m2]

View and message are independent of each other

" v, " m, Pr[msg=m, view = v] = Pr[msg = m] × Pr[view = v] 

View gives no information about the message

" v, " m, Pr[msg=m | view=v] = Pr[msg = m]

Important: can’t say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] 

(unless the prior is uniform)

Secrecy

Require a message 
distribution (with full 

support)

Doesn’t involve 

message 

distribution at all.



Consider the following secret-sharing scheme

Message space = { Jan, Feb, Mar }

Jan  ³ (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each

Feb  ³ (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

Mar ³ (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), 

(10,01) or (11,00) w/ prob 1/8 each

Reconstruction possible as the 3 sets of shares are disjoint

Let ³1³2 = shareAlice · shareBob. Map ³1³2 as follows:  

00 ³ Jan, 01 ³ Feb, 10 or 11 ³ Mar

Is it secure?

Exercise



A Puzzle

Alice and Bob hold secret numbers x and y in {0,..,n} resp.


Carol wants to learn x+y. Alice and Bob are OK with that.


But they don’t want Carol/each other to learn anything 
else!


i.e., Alice should learn nothing about y, nor Bob about x. Carol 
shouldn’t learn anything else about x,y “other than” x+y


Can they do it, just by talking to each other (using private 
channels between every pair of parties)?

How would you formalise this?

Ho
m
ew

or
k!



Relaxing  

Secrecy Requirement

When view is not exactly independent of the message

Next best: view close to a distribution that is independent of 

the message

Two notions of closeness: Statistical and Computational



Statistical Difference
Given two distributions A and B over the same sample space, how  

well can a test T distinguish between them?

T given a single sample drawn from A or B

How differently does it behave in the two cases?

�(A,B) := max T | Prx±A[T(x)=0] - Prx±B[T(x)=0] |

a.k.a. Statistical Distance or Total Variation Distance

Prx±A[T(x)=0] - Prx±B[T(x)=0] = !x (A(x)-B(x))p(x), where p(x) 

stands for Pr[T(x)=0], and A(x), B(x) 

Maximised when p(x)=1 for A(x)>B(x) and p(x)=0 for A(x)<B(x)

Equals !x:A(x)>B(x) A(x)-B(x) = !x:A(x)<B(x) B(x)-A(x) = ½ !x |A(x)-B(x)|
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Statistical Difference
Given two distributions A and B over the same sample space, how  
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T given a single sample drawn from A or B
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a.k.a. Statistical Distance or Total Variation Distance



Indistinguishability
Two distributions are statistically indistinguishable from each 
other if the statistical difference between them is “negligible”

What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!

Security guarantees will be given asymptotically as a function of 
the security parameter

A knob that can be used to set the security level

Given {Ak}, {Bk}, �(Ak,Bk) is a function of the security parameter k

Negligible: reduces “very quickly” as the knob is turned up

“Very quickly”: quicker than 1/poly for any polynomial poly

So that if negligible for one sample, remains negligible for 
polynomially many samples

¿(k) is said to be negligible if " d g 0, # N s.t. " k>N, ¿(k) < 1/kd



Distribution ensembles {Ak}, {Bk} are statistically indistinguishable 

if # negligible ¿ s.t. "k �(Ak,Bk) f ¿(k) 

where �(Ak,Bk) := max T | Prx±Ak[T(x)=0] - Prx±Bk[T(x)=0] |

i.e. if  # negligible ¿ s.t. " tests T, "k 

     | Prx±Ak[Tk(x)=0] - Prx±Bk[Tk(x)=0] | f ¿(k)

Equivalently (why?) " tests T, # negligible ¿ s.t "k 

     | Prx±Ak[Tk(x)=0] - Prx±Bk[Tk(x)=0] | f ¿(k)

Distribution ensembles {Ak}, {Bk} computationally indistinguishable 

if " “efficient” tests T, # negligible ¿ s.t. 

     | Prx±Ak[Tk(x)=0] - Prx±Bk[Tk(x)=0] | f ¿(k)

Indistinguishability



Distribution ensembles {Ak}, {Bk} computationally indistinguishable 

if " “efficient” tests T, # negligible ¿ s.t. 

     | Prx±Ak[Tk(x)=0] - Prx±Bk[Tk(x)=0] | f ¿(k)

Efficient: Probabilistic Polynomial Time (PPT)

PPT T: a family of randomised programs Tk (one for each value 

of the security parameter k), s.t. there is a polynomial p with 

each Tk running for at most p(k) time

(Could restrict to uniform PPT, i.e., a single program which takes 

k as an additional input. By default, we’ll allow non-uniform.)

Non-Uniform

Ak j Bk

Indistinguishability

“#¿ "T” makes it as 

strong as statistical 

indistinguishability



B

MUX

A

Security Games
Indistinguishability can be defined using a guessing game

b chosen uniformly at random 

Pr[b’=b] = ?

Pr[b’=b=0] + Pr[b’=b=1] 

= ½çPr[b’=0|b=0] + ½çPr[b’=1|b=1]  

= ½ ( Pr[b’=0|b=0] + 1-Pr[b’=0|b=1] ) 

= ½ + ½ ( Pr[b’=0|b=0] - Pr[b’=0|b=1] ) 

= ½ + ½ ( Prx±A[T(x)=0] - Prx±B[T(x)=0] )

Maximum Pr[b’=b] = ½ + �(A,B)/2

A,B statistically indistinguishable if, for every  

adversary in the above game, # negligible ¿  s.t. "k, 

Advantage(k) := Pr[b’=b] - ½ f ¿(k)

b’

Yes/No

b

b±{0,1}

b’=b?computationally

PPT



Pseudorandomness 

Generator (PRG)
Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k³{0,1}n(k) where n(k) > k

Security definition: Output distribution induced by random input 

seed should be “pseudorandom”

i.e., Computationally indistinguishable from uniformly random

{Gk(x)}x±{0,1}k j Un(k) 

Note: {Gk(x)}x±{0,1}k cannot be statistically indistinguishable 

from Un(k) unless n(k) f k (Exercise)

i.e., no non-trivial PRG against unbounded adversaries


