Advanced Tools from Modern Cryptography

Lecture 3 Secret-Sharing (ctd.)

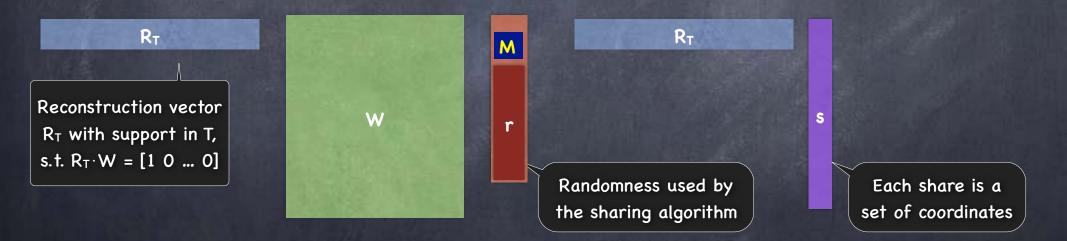
Secret-Sharing

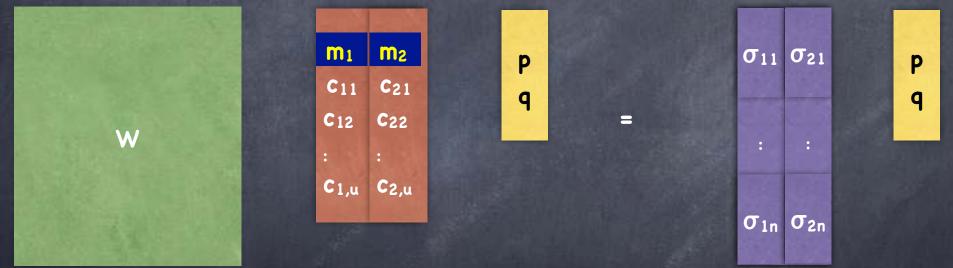
Last time
(n,t) secret-sharing
(n,n) via additive secret-sharing
Shamir secret-sharing for general (n,t)
Shamir secret-sharing is a linear secret-sharing scheme

Linear Secret-Sharing

Inear Secret-Sharing over a field: message and shares are field elements

Reconstruction by a set T ⊆ [n]: solve W_T $\begin{bmatrix} M \\ r \end{bmatrix} = s_T$ for M

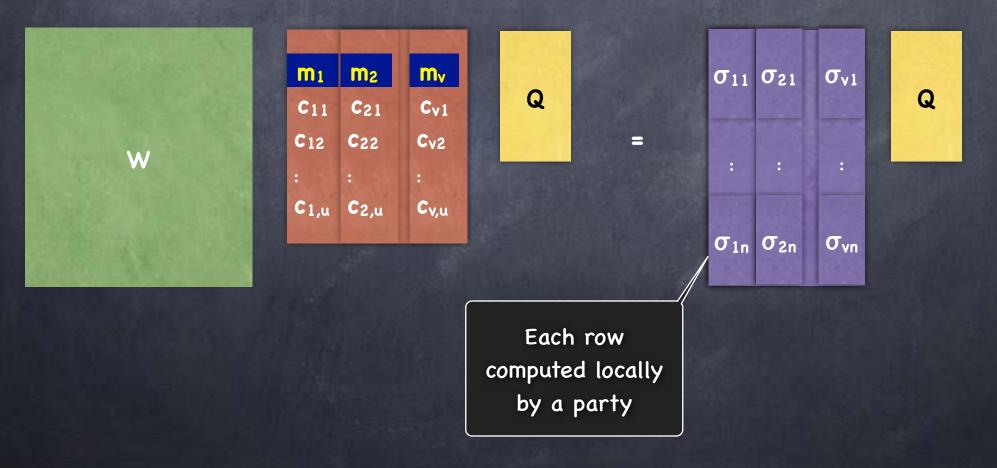




Then for any $p,q \in F$, shares of $p \cdot m_1 + q \cdot m_2$ can be computed <u>locally</u> by each party i as $\sigma_i = p \cdot \sigma_{1i} + q \cdot \sigma_{2i}$

Linear Secret-Sharing: Computing on Shares More generally, can compute shares of any linear

transformation



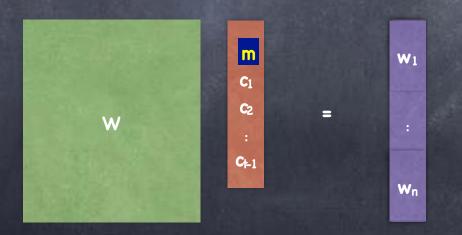
Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"

R

= m

Wn

Given shares (w₁, ..., w_n) ← W.Share(m)
Share each w_i using scheme Z: (σ_{i1},...,σ_{in})← Z.Share(w_i)
Locally each party j reconstructs using scheme W: z_j ← W.Recon (σ_{1j},...,σ_{nj})



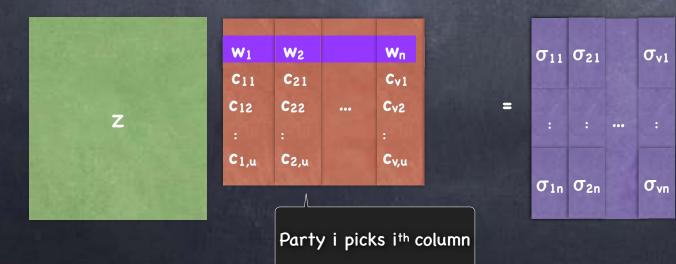
Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"

R

= m

Wn

Given shares (w₁, ..., w_n) ← W.Share(m)
Share each w_i using scheme Z: (σ_{i1},...,σ_{in})← Z.Share(w_i)
Locally each party j reconstructs using scheme W: z_j ← W.Recon (σ_{1j},...,σ_{nj})



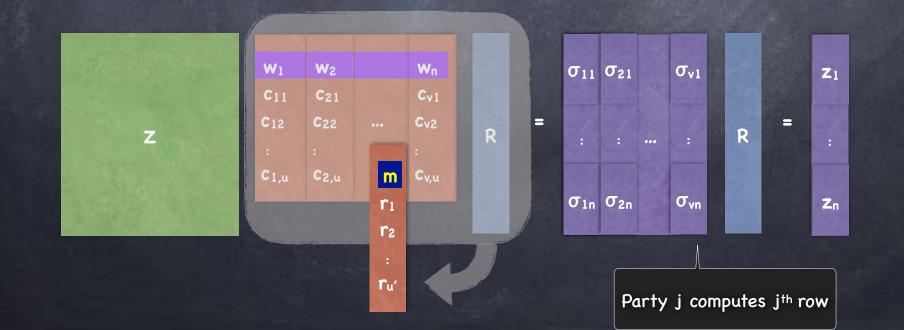
Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"

R

= m

Wn

Given shares (w₁, ..., w_n) ← W.Share(m)
Share each w_i using scheme Z: (σ_{i1},...,σ_{in})← Z.Share(w_i)
Locally each party j reconstructs using scheme W: z_j ← W.Recon (σ_{1j},...,σ_{nj})



Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"

Given shares (w₁, ..., w_n) ← W.Share(m)
 Share each w_i using scheme Z: (σ_{i1},...,σ_{in})← Z.Share(w_i)
 Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})

Note that if a set of parties T⊆[n] is allowed to learn the secret by either W or Z, then T learns m from either the shares it started with or the ones it ended up with

Iclaim: If T⊆[n] is not allowed to learn the secret by both W and Z, then T learns nothing about m from this process

Exercise

Efficiency

Main measure: size of the shares (say, total of all shares)
 Shamir's: each share is as as big as the secret (a single field element)

- cf. Naïve scheme for arbitrary monotonic access structure A, with "basis" B: if a party is in N sets in B, N basic shares
 N can be exponential in n (as B can have exponentially many sets)
- Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret

Ideal: if all shares are only this big (e.g. Shamir's scheme)

- Not all access structures have ideal schemes
- Non-linear schemes can be more efficient than linear schemes

A More General Formulation

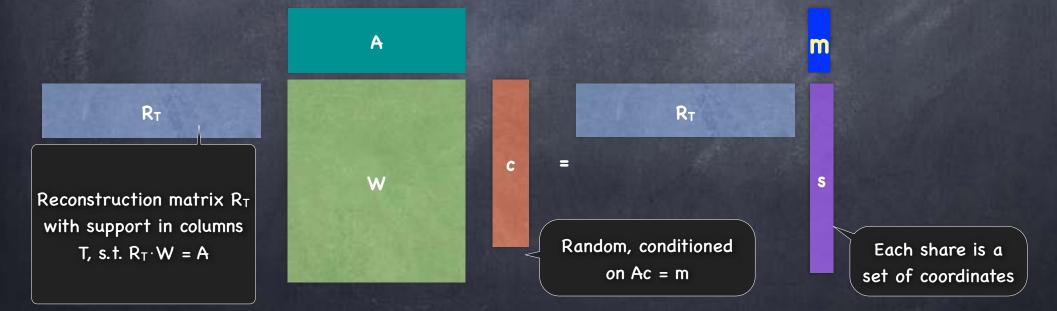
The second second and a secret of secreting the message

 \oslash When s = t-1, a threshold secret-sharing scheme

Packed Secret-Sharing

Shamir's scheme can be generalized to a ramp scheme, such that longer secrets can be shared with the same share size

Access structure: $A = \{ S : |S| ≥ t \}$ and $F = \{ S : |S| ≤ t-k \}$



3 $T \in A$ if A spanned by W_T , and $T \in F$ if every row of A independent of W_T