Advanced Tools from Modern Cryptography

Lecture 3
Secret-Sharing (ctd.)
Secret-Sharing

Last time

- (n,t) secret-sharing
- (n,n) via additive secret-sharing
- Shamir secret-sharing for general (n,t)
- Shamir secret-sharing is a linear secret-sharing scheme
Linear Secret-Sharing

- Linear Secret-Sharing over a field: message and shares are field elements
- Reconstruction by a set $T \subseteq [n]$: solve $W_T \begin{bmatrix} M \\ r \end{bmatrix} = s_T$ for M

Reconstruction vector R_T with support in T, s.t. $R_T \cdot W = [1 \ 0 \ \ldots \ 0]$

Randomness used by the sharing algorithm

Each share is a set of coordinates
Linear Secret-Sharing: Computing on Shares

Suppose two secrets m_1 and m_2 shared using the same secret-sharing scheme.

Then for any $p,q \in \mathbb{F}$, shares of $p \cdot m_1 + q \cdot m_2$ can be computed locally by each party i as $\sigma_i = p \cdot \sigma_{1i} + q \cdot \sigma_{2i}$.

\[\begin{array}{|c|c|} \hline
\ensuremath{p} & \sigma_{11} \\
\ensuremath{q} & \sigma_{21} \\
\vdots & \vdots \\
\end{array} \]

\[\begin{array}{|c|c|} \hline
\sigma_{1n} & \sigma_{2n} \\
\end{array} \]
Linear Secret-Sharing: Computing on Shares

More generally, can compute shares of any linear transformation

$$\begin{align*}
\mathbf{Q} &= \begin{bmatrix}
\sigma_{11} & \sigma_{21} & \ldots & \sigma_{v1} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1n} & \sigma_{2n} & \ldots & \sigma_{vn}
\end{bmatrix} \\
\end{align*}$$

Each row computed locally by a party
Switching Schemes

Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z “securely”

Given shares $(w_1, ..., w_n) \leftarrow W.Share(m)$

Share each w_i using scheme Z: $(\sigma_{i1}, ..., \sigma_{in}) \leftarrow Z.Share(w_i)$

Locally each party j reconstructs using scheme W:

$z_j \leftarrow W.Recon(\sigma_{1j}, ..., \sigma_{nj})$
Switching Schemes

Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z “securely”

Given shares $(w_1, ..., w_n) \leftarrow W.\text{Share}(m)$

Share each w_i using scheme Z: $(\sigma_{i1}, ..., \sigma_{in}) \leftarrow Z.\text{Share}(w_i)$

Locally each party j reconstructs using scheme W: $z_j \leftarrow W.\text{Recon} (\sigma_{1j}, ..., \sigma_{nj})$

Party i picks i^{th} column:
Switching Schemes

Can move from any linear secret-sharing scheme \(W \) to any other linear secret-sharing scheme \(Z \) “securely”

- Given shares \((w_1, \ldots, w_n) \leftarrow W.\text{Share}(m)\)
- Share each \(w_i \) using scheme \(Z \): \((\sigma_{i1}, \ldots, \sigma_{in}) \leftarrow Z.\text{Share}(w_i)\)
- Locally each party \(j \) reconstructs using scheme \(W \): \(z_j \leftarrow W.\text{Recon} (\sigma_{1j}, \ldots, \sigma_{nj})\)
Switching Schemes

- Can move from any linear secret-sharing scheme \(W \) to any other linear secret-sharing scheme \(Z \) “securely”

- Given shares \((w_1, \ldots, w_n) \leftarrow W.\text{Share}(m)\)
- Share each \(w_i \) using scheme \(Z \): \((\sigma_{i1}, \ldots, \sigma_{in}) \leftarrow Z.\text{Share}(w_i)\)
- Locally each party \(j \) reconstructs using scheme \(W \):
 \[z_j \leftarrow W.\text{Recon} (\sigma_{1j}, \ldots, \sigma_{nj}) \]

- Note that if a set of parties \(T \subseteq [n] \) is allowed to learn the secret by either \(W \) or \(Z \), then \(T \) learns \(m \) from either the shares it started with or the ones it ended up with.

- Claim: If \(T \subseteq [n] \) is not allowed to learn the secret by both \(W \) and \(Z \), then \(T \) learns nothing about \(m \) from this process

- Exercise
Efficiency

- Main measure: size of the shares (say, total of all shares)
 - Shamir’s: each share is as big as the secret (a single field element)
 - cf. Naïve scheme for arbitrary monotonic access structure A, with “basis” B: if a party is in N sets in B, N basic shares
 - N can be exponential in n (as B can have exponentially many sets)

- Share size must be at least as big as the secret: “last share” in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir’s scheme)
 - Not all access structures have ideal schemes
 - Non-linear schemes can be more efficient than linear schemes
A More General Formulation

A generalised access structure consists of a monotonically “increasing” family \mathcal{A} (allowed to learn), and a monotonically “decreasing” family \mathcal{F} (forbidden from learning), with $\mathcal{A} \cap \mathcal{F} = \emptyset$.

$T \in \mathcal{A} \Rightarrow \forall S \supseteq T, S \in \mathcal{A}$. $T \in \mathcal{F} \Rightarrow \forall S \subseteq T, S \in \mathcal{F}$.

For $T \notin \mathcal{A} \cup \mathcal{F}$, no requirements of secrecy or learning the message.

E.g., Ramp secret-sharing scheme: $\mathcal{A} = \{ S \subseteq [n] \mid |S| \geq t \}$ and $\mathcal{F} = \{ S \subseteq [n] \mid |S| \leq s \}$, where $s < t$.

When $s = t-1$, a threshold secret-sharing scheme.
Packed Secret-Sharing

Shamir’s scheme can be generalized to a ramp scheme, such that longer secrets can be shared with the same share size.

$m_j = f(z_j)$ and $s_i = f(a_i)$ where $\{z_1, \ldots, z_k\} \cap \{a_1, \ldots, a_n\} = \emptyset$ and f has degree $t-1$ (t being the reconstruction threshold).

Access structure: $\mathcal{A} = \{ S : |S| \geq t \}$ and $\mathcal{F} = \{ S : |S| \leq t-k \}$

Each share is a set of coordinates. $T \in \mathcal{A}$ if A spanned by W_T, and $T \in \mathcal{F}$ if every row of A independent of W_T.

Reconstruction matrix R_T with support in columns T, s.t. $R_T \cdot W = A$