
Advanced Tools from

 Modern Cryptography

Lecture 4

Secure Multi-Party Computation:

Passive Corruption,

Linear Functions

Can we have an auction without
an auctioneer?!

Declared winning bid should
be correct

Only the winner and winning
bid should be revealed

Must We Trust ?

Hospitals which can’t share their
patient records with anyone

But want to data-mine on
combined data

Using data without sharing?

Data
Mining

Tool

A general problem

To compute a function of private
inputs without revealing
information about the inputs

Beyond what is
revealed by the
function

X1
X4

X3X2

f(X1, X2, X3, X4)

Secure Function Evaluation

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

No “cheating” by
players, even if
they collude

No universally trusted
dealer

Poker With No Dealer?

Without any trusted party,
securely do

Distributed Data mining

E-commerce

Network Games

E-voting

Secure function evaluation

....

The Ambitious Goal

Any task that

uses a trusted

party!

Secure
Multi-Party Computation

(MPC)

Emulating Trusted

Computation
Encryption/Authentication allow us to emulate a

trusted channel

Secure MPC: to emulate a source of trusted

computation

Trusted means it will not “leak” a party’s

information to others

And it will not cheat in the computation

A tool for mutually distrusting parties to collaborate

Is it for Real?

Getting there!

Many implementations/platforms

Fairplay, VIFF, Sharemind, SCAPI, Obliv-C,

JustGarble, SPDZ/MASCOT, ObliVM, …

See multipartycomputation.com

http://www.multipartycomputation.com

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments (since

2008)

sugar beet auction, electricity auction, spectrum auction,

key management

A prototype for credit rating, supported by Danish banks

A proposal to the Estonian Tax & Customs Board

A proposal for Satellite Collision Analysis

Legislation in the US to use MPC for applications like a

“higher education data system”

MPC Alliance

…

MPC

Several dimensions

Passive (Semi-Honest) vs. Active corruption

Passive: corrupt parties still follow the protocol

Honest-Majority vs. Unrestricted corruption

Information-theoretic vs. Computational security

…

Security Definition

Simplest case: Passive corruption, Information-theoretic security

In general, need honest-majority (or similar restriction)

In passive corruption, the adversary can see the internals of all

the corrupt parties, but cannot control their actions

Main concern will be secrecy (correctness is automatic,

provided the protocol is correct in the absence of corruption)

Will ask for Perfect Secrecy

Similar to secret-sharing

Security Definition

Multiple parties in a protocol could be corrupt

Collusion

Modelled using a single adversary who corrupts the parties

Its view contains all the corrupt parties’ views

Security guarantee given against an “adversary structure”

Sets of parties that could be corrupt together

Security Definition

For secret sharing we needed to formalise “x is secret”

Now want to say: x is secret except for f(x) which is revealed

" x, x’ s.t. f(x)=f(x’), { view | input=x} c { view | input=x’ }

Here f(x) consists of the coordinates of input as well as the

coordinates of outputs that correspond to corrupted parties

i.e., what the collusion is allowed to learn about x

Later: More complicated when considering active corruption

and/or computational security

MPC for Linear Functions
Client-server setting

Clients with inputs

Clients with outputs

Servers

May be
same

parties

x3x1 x2 x4 x5

f1(x1,…,x5) f2(x1,…,x5)

Share

Linearly

Combine

Reconstruct

Clients with inputs

Clients with outputs

Servers

MPC for Linear Functions:

Using Linear Secret-Sharing

f1(x1,…,x5) f2(x1,…,x5)

x3x1 x2 x4 x5

W

 x1

 c11

 c12

 :

 c1,u

=

 x2

 c21

 c22

 :

 c2,u

 xv

 cv1

 cv2

 :

 cv,u

Q Q

:

Ã1n

Ã11

:

Ãvn

Ãv1

:

Ã2n

Ã21

Each row given to

a server

Ã11

:

Ã1n

=

Ã21

:

Ã2n

Each column sent

to an output client

Each column with

an input client

MPC for Linear Functions:

Using Linear Secret-Sharing

W

 x1

 c11

 c12

 :

 c1,u

=

 x2

 c21

 c22

 :

 c2,u

 xv

 cv1

 cv2

 :

 cv,u

Q Q

:

Ã1n

Ã11

:

Ãvn

Ãv1

:

Ã2n

Ã21

Each row given to

a server

Ã11

:

Ã1n

=

Ã21

:

Ã2n

Each column sent

to an output client

Each column with

an input client

MPC for Linear Functions:

Using Linear Secret-Sharing
View of the adversary (corrupt parties)View of the adversary (corrupt parties)View of the adversary (corrupt parties)

Security
Adversary allowed to corrupt any set of input and output clients

and any subset T of servers s.t. T is not a privileged set (i.e., not

in the access structure) for the secret-sharing scheme

View of adversary should reveal nothing beyond the inputs and

outputs of the corrupted clients

Claim: Consider any input y of corrupt clients. If x, x’ of

uncorrupted clients such that for each corrupt output client i

fi(x,y)=fi(x’,y), then the view of the adversary in the two cases

are identically distributed

Because for any given view of the adversary, in each of the

two cases (x and x’), the solution space of randomness is

non-empty and then it has the same dimension

Exercise

So far: a 2-round protocol for any linear function

Could use additive secret-sharing

How about other functions?

Any function over a finite field can be computed using addition

and multiplication

Interested in functions which are efficiently computable

Arithmetic circuit: representation of the computation using

addition and multiplication

Goal: MPC Protocol for f, which is efficient if we are given an

efficient arithmetic circuit for f

MPC for General Functions?

MPC from Shamir Secret-Sharing:
Overview

Locally multiplying degree d shares of M1 and M2 gives a degree 2d

share of M1çM2 . Then securely switch back to a degree d share

(involves communicating degree d shares of degree 2d shares)

A function f given as a program with linear steps and multiplications:

arithmetic circuit (over a finite field)

Share

Linear
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d parties.

Security against d

colluding parties

Shamir

Involves

rerandomisation for

“refreshing” shares

