Advanced Tools from
Modern Cryptography

Lecture 5
Secure Multi-Party Computation:
Passive Corruption, Honest-Majority, All Functions

MPC: Honest-Majority +
Passive-Corruption

@ Today: information-theoretically secure MPC for any function
@ The "BGW protocol” (passive-corruption version)
@ N servers such that adversary can corrupt only < N/2

@ Function should be given as an arithmetic circuit over a large
enough field (IF| > #parties)

@ Gate-by-gate evaluation, under Shamir secret-sharing of wires

Functions as Circuits

@ Directed acyclic graph

@ Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

@ Edges: wires carrying values
from F

@ Each wire comes out of a unique
gate, but a wire might fan-out

@ Can evaluate wires according to
a topologically sorted order of
gates they come out of

Functions as Circuits

@ e.g., Boolean logic as a circuit over GF(2)
@ False = 0, True =1, XAY = XY, X®Y = X+VY

oojor1jio|u

@ X =l+x, Xvy =X + Y + XY ololololo
@ e.g.: X >Y for two bit inputs X=x1xo, Y=Y1Yo: or|1]ofo]o
a (X1 A ay1) vV (A(x1 @ y1) A (Xo A 2Y0)) o1t)tjo]o
mjprj1]111o0

= x1(1+y1) + (L+x1+y1)(1+Y0) %o

@ Can directly convert a truth-table into a circuit, but circuit size
exponential in input size

@ Can convert any (“efficient”) program into a (“small”) circuit

@ Interesting problems already given as succinct programs/circuits

Gate-by-Gate Evaluation

Wire values will be kept linearly secret-
shared among all servers

Each input value is secret-shared among
the servers by the input client “owning” the
input gate

Linear operations computed by each server
on its shares, locally (no communication)

@ Shares of x, y — Shares of ax+by
Multiplication will involve communication

@ Coming up

Output gate evaluation: servers send their
shares to the output client owning the gate

Passive-Secure BGW

@ Question: How to go from shares(x), shares(y) to shares(x-y) securely?

@ Idea: Use multiplicative structure of Shamir secret-sharing

@ For polynomials, multiplication commutes with evaluation:
(F-g)(x) = f(x)-g(x)

@ In particular, to get a polynomial h with h(0)= f(0)-g(0),
simply define h = f-g. Shares h(x) can be computed as f(x)-g(x)

@ But note: h has a higher degree!

@ Problem 1: If original degree > N/2, cant reconstruct the
product even if all servers reveal their new shares

@ Solution: Use degree d < N/2 (limits to d < N/2 corruption)

@ Problem 2: Cant continue protocol after one multiplication

Passive-Secure BGW

@ Problem: If x, y shared using a degree d polynomial, x-y is shared
using a degree 2d polynomial

@ Solution: Bring it back to the original secret-sharing scheme!

@ Recall share switching: can switch from degree-2d shares to
(fresh) degree-d shares

@ Note: All N servers fogether should be able to linearly reconstruct
the degree-2d sharing

a Start with N > 2d J < (N-1)/2]

@ Can tolerate only up to d (< N/2) corrupt servers (and any
number of corrupt clients)

o o

Degree Reduction

High-degree shares,
each with one server

[High-degree reconstruction

Low-degree sharing J

Each row made available
with one server

I #

B ry (X} 7]
WL .. Wn =m { Fresh” randomness

Passive-Secure BGW:
Security

@ First consider the protocol till just before output reconstruction

® We want that the adversary learns nothing about the honest
parties’ inputs

@ The only messages received are from fresh degree d secret
sharings (even in the multiplication step), even though the
messages being shared are not uniform

@ To the adversary, this appears as uniform random shares

Passive-Secure BGW:
Security

@ First consider the protocol till just before output reconstruction
@ Adversary learns nothing about the honest parties’ inputs
@ Now consider the output reconstruction step as well

@ Observation: Enough fo show security against an adversary who
actually corrupts the maximum allowed number of servers, d

@ Consider the messages received by the adversary for each
output wire it owns

® Fully determined by the d shares it already has and the
output value (which it is allowed to learn)

@ So entire view determined by own inputs, the random values
from the computation phase, and own outputs

Passive-Secure BGW: Summary

@ A function f given as a program with linear steps and multiplications:

arithmetic circuit (over a finite field)
Clients with inputs

s e P BB

Linear
Need n > 2d servers. steps Servers
Security against d
colluding server Mult. Mult. Mult.

| Involves
rerandomisation for
“refreshing” shares

Reconstruct

Client with output
3 Htocally multiplying degree d shares of M, M a degree 2d
share of M;-M; . Then securely switch back to a degree d share

(involves communicating degree d shares of degree 2d shares)

MPC: Honest-Majority +
Passive-Corruption

@ Typically we consider N parties that can all communicate directly
with each other and may have inputs and outputs

@ Each party runs a server (and at most one input and one
output client)

@ Can compute any N-party function, tolerating corruption of
strictly less than N/2 parties

@ e.g., 1 party out of 3, or 2 parties out of 5
@ No security in a 2-party setting!

@ Q: For which functions can we obtain information-theoretic
security against N/2 (or more) corruption?

@ Not all functions!
@ Exactly known for N=2 (later)
@ General case is still an open problem!

Information-Theoretic MPC
Without Honest-Majority?

® Need honest majority for computing AND

@ Enough to show that 2 parties cannot compute AND securely

@ Because, if there were an N-party AND protfocol tolerating
N/2 corrupt parties, we can convert it into a 2-party
protocol for AND as follows:

@ Alice runs Pi,...Pns2 "in her head”, with her input as Pis
input and 1 as input for the others. Bob runs the
remaining parties similarly.

@ View of the parties in Alice's head dont reveal anything
about Bob’s input, other than what the AND reveals

Information-Theoretic MPC
Without Honest-Majority?

® Need honest majority for computing AND

@ Enough to show that 2 parties cannot compute AND securely

@ Suppose there is a 2-party protocol for AND. Consider a
transcript m such that Pr[m|x=0,y=0] = p > O.

@ By (perfect) security against Alice, Pr[m|x=0,y=1] = p.
And by (perfect) security against Bob, Pr[ml|x=1,y=0] = p.

@ How about Pr[mlx=1,y=1]? Should be O, for (perfect) correctness

® Suppose m=mimz..mi, with Alice sending the first message.
Alice with x=1 will send m; with positive probability because
Pr[mlx=1,y=0] > 0. Bob with y=1, and given m; will send m.
with positive probability, etc.
Hence Pr[mlx=1,y=1] > O !

Today

@ Any N-party function can be perfectly securely computed
against passive corruption of < N/2 parties

@ Linear functions can be perfectly securely computed against
the corruption of any number of parties

@ There are many functions (e.g., AND) which cannot be
information-theoretically securely computed if N/2 parties can
be corrupted

@ We argued this for perfect security, but holds for statistical
security as well

@ Next: How to go beyond honest-majority (hint: not information-
theoretically)

