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Secure Multi-Party Computation: 

Passive Corruption, Honest-Majority, All Functions



MPC: Honest-Majority + 
Passive-Corruption

Today: information-theoretically secure MPC for any function


The “BGW protocol” (passive-corruption version)


N servers such that adversary can corrupt only < N/2


Function should be given as an arithmetic circuit over a large 
enough field (|F| > #parties)


Gate-by-gate evaluation, under Shamir secret-sharing of wires



Functions as Circuits
Directed acyclic graph


Nodes: multiplication and addition 
gates, constant gates, inputs, 
output(s)


Edges: wires carrying values 
from F 


Each wire comes out of a unique 
gate, but a wire might fan-out


Can evaluate wires according to 
a topologically sorted order of 
gates they come out of
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Functions as Circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

e.g., Boolean logic as a circuit over GF(2)

False = 0, True = 1, x'y = xy, x·y = x+y


¬x = 1+x, x*y = x + y + xy


e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:

(x1 ' ¬y1) * (¬(x1 · y1) ' (x0 ' ¬y0) ) 

= x1(1+y1) + (1+x1+y1)(1+y0)x0


Can directly convert a truth-table into a circuit, but circuit size 
exponential in input size


Can convert any (“efficient”) program into a (“small”) circuit


Interesting problems already given as succinct programs/circuits



Gate-by-Gate Evaluation
Wire values will be kept linearly secret-
shared among all servers


Each input value is secret-shared among 
the servers by the input client “owning” the 
input gate


Linear operations computed by each server 
on its shares, locally (no communication)


Shares of x, y ³ Shares of ax+by


Multiplication will involve communication


Coming up


Output gate evaluation: servers send their 
shares to the output client owning the gate
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Question: How to go from shares(x), shares(y) to shares(xçy) securely?


Idea: Use multiplicative structure of Shamir secret-sharing


For polynomials, multiplication commutes with evaluation: 
(fçg)(x) = f(x)çg(x)


In particular, to get a polynomial h with h(0)= f(0)çg(0),  

simply define h = fçg. Shares h(x) can be computed as f(x)çg(x)


But note: h has a higher degree!


Problem 1: If original degree g N/2, can’t reconstruct the 
product even if all servers reveal their new shares


Solution: Use degree d < N/2 (limits to d < N/2 corruption)


Problem 2: Can’t continue protocol after one multiplication

Passive-Secure BGW



Problem: If x, y shared using a degree d polynomial, xçy is shared 

using a degree 2d polynomial


Solution: Bring it back to the original secret-sharing scheme!


Recall share switching:  can switch from degree-2d shares to 
(fresh) degree-d shares


Note: All N servers together should be able to linearly reconstruct 
the degree-2d sharing


Start with N > 2d


Can tolerate only up to d ( < N/2) corrupt servers (and any 
number of corrupt clients)

Passive-Secure BGW

f (N-1)/2



Degree Reduction

“Fresh” randomness
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High-degree shares, 
each with one server

Low-degree sharing

High-degree reconstruction

Each column with one server



We want that the adversary learns nothing about the honest 
parties’ inputs


The only messages received are from fresh degree d secret 
sharings (even in the multiplication step), even though the 
messages being shared are not uniform


To the adversary, this appears as uniform random shares

Passive-Secure BGW: 
Security

First consider the protocol till just before output reconstruction 



Adversary learns nothing about the honest parties’ inputs


Now consider the output reconstruction step as well


Observation: Enough to show security against an adversary who 
actually corrupts the maximum allowed number of servers, d


Consider the messages received by the adversary for each 
output wire it owns


Fully determined by the d shares it already has and the 
output value (which it is allowed to learn)


So entire view determined by own inputs, the random values 
from the computation phase, and own outputs

Passive-Secure BGW: 
Security

First consider the protocol till just before output reconstruction 



Passive-Secure BGW: Summary

Locally multiplying degree d shares of M1 and M2 gives a degree 2d 

share of M1çM2 . Then securely switch back to a degree d share 

(involves communicating degree d shares of degree 2d shares)

A function f given as a program with linear steps and multiplications: 

arithmetic circuit (over a finite field)

Share

Linear  
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d servers. 

Security against d 

colluding server

Shamir

Involves 

rerandomisation for 

“refreshing” shares



MPC: Honest-Majority + 
Passive-Corruption

Typically we consider N parties that can all communicate directly 
with each other and may have inputs and outputs


Each party runs a server (and at most one input and one 
output client)


Can compute any N-party function, tolerating corruption of  
strictly less than N/2 parties


e.g., 1 party out of 3, or 2 parties out of 5


No security in a 2-party setting!


Q: For which functions can we obtain information-theoretic 
security against N/2 (or more) corruption?


Not all functions!


Exactly known for N=2  (later)


General case is still an open problem!



Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC 
Without Honest-Majority?

Because, if there were an N-party AND protocol tolerating 
N/2 corrupt parties, we can convert it into a 2-party 
protocol for AND as follows:


Alice runs P1,…,PN/2 “in her head”, with her input as P1’s 
input and 1 as input for the others. Bob runs the 
remaining parties similarly.


View of the parties in Alice's head don’t reveal anything 
about Bob’s input, other than what the AND reveals



Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC 
Without Honest-Majority?

Suppose there is a 2-party protocol for AND. Consider a 
transcript m such that Pr[m|x=0,y=0] = p > 0.


By (perfect) security against Alice, Pr[m|x=0,y=1] = p.  
And by (perfect) security against Bob, Pr[m|x=1,y=0] = p.


How about Pr[m|x=1,y=1]? Should be 0, for (perfect) correctness


Suppose m=m1m2…mt, with Alice sending the first message. 
Alice with x=1 will send m1 with positive probability because 
Pr[m|x=1,y=0] > 0. Bob with y=1, and given m1 will send m2 
with positive probability, etc.  
Hence Pr[m|x=1,y=1] > 0 !



Today
Any N-party function can be perfectly securely computed 
against passive corruption of < N/2 parties


Linear functions can be perfectly securely computed against 
the corruption of any number of parties


There are many functions (e.g., AND) which cannot be 
information-theoretically securely computed if N/2 parties can 
be corrupted


We argued this for perfect security, but holds for statistical 
security as well


Next: How to go beyond honest-majority (hint: not information-
theoretically)


