
Advanced Tools from
 Modern Cryptography

Lecture 5

Secure Multi-Party Computation:

Passive Corruption, Honest-Majority, All Functions

MPC: Honest-Majority +
Passive-Corruption

Today: information-theoretically secure MPC for any function

The “BGW protocol” (passive-corruption version)

N servers such that adversary can corrupt only < N/2

Function should be given as an arithmetic circuit over a large
enough field (|F| > #parties)

Gate-by-gate evaluation, under Shamir secret-sharing of wires

Functions as Circuits
Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values
from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to
a topologically sorted order of
gates they come out of

10

-1

Functions as Circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

e.g., Boolean logic as a circuit over GF(2)

False = 0, True = 1, x'y = xy, x·y = x+y

¬x = 1+x, x*y = x + y + xy

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:

(x1 ' ¬y1) * (¬(x1 · y1) ' (x0 ' ¬y0))

= x1(1+y1) + (1+x1+y1)(1+y0)x0

Can directly convert a truth-table into a circuit, but circuit size
exponential in input size

Can convert any (“efficient”) program into a (“small”) circuit

Interesting problems already given as succinct programs/circuits

Gate-by-Gate Evaluation
Wire values will be kept linearly secret-
shared among all servers

Each input value is secret-shared among
the servers by the input client “owning” the
input gate

Linear operations computed by each server
on its shares, locally (no communication)

Shares of x, y ³ Shares of ax+by

Multiplication will involve communication

Coming up

Output gate evaluation: servers send their
shares to the output client owning the gate

10

-1

Question: How to go from shares(x), shares(y) to shares(xçy) securely?

Idea: Use multiplicative structure of Shamir secret-sharing

For polynomials, multiplication commutes with evaluation:
(fçg)(x) = f(x)çg(x)

In particular, to get a polynomial h with h(0)= f(0)çg(0),

simply define h = fçg. Shares h(x) can be computed as f(x)çg(x)

But note: h has a higher degree!

Problem 1: If original degree g N/2, can’t reconstruct the
product even if all servers reveal their new shares

Solution: Use degree d < N/2 (limits to d < N/2 corruption)

Problem 2: Can’t continue protocol after one multiplication

Passive-Secure BGW

Problem: If x, y shared using a degree d polynomial, xçy is shared

using a degree 2d polynomial

Solution: Bring it back to the original secret-sharing scheme!

Recall share switching: can switch from degree-2d shares to
(fresh) degree-d shares

Note: All N servers together should be able to linearly reconstruct
the degree-2d sharing

Start with N > 2d

Can tolerate only up to d (< N/2) corrupt servers (and any
number of corrupt clients)

Passive-Secure BGW

f (N-1)/2

Degree Reduction

“Fresh” randomness

Z

 w1

 c11

 c12 …

 :

 c1,u’

 w2

 c21

 c22

 :

 c2,u’

 wn

 cv1

 cv2

 :

 cv,u’

=
 …

:

Ã1n

Ã11

:

Ãvn

Ãv1

:

Ã2n

Ã21

Each row made available
with one server

R R
=

:

zn

z1

 m

r1

r2

:

ru’

w1 … wn R = m

High-degree shares,
each with one server

Low-degree sharing

High-degree reconstruction

Each column with one server

We want that the adversary learns nothing about the honest
parties’ inputs

The only messages received are from fresh degree d secret
sharings (even in the multiplication step), even though the
messages being shared are not uniform

To the adversary, this appears as uniform random shares

Passive-Secure BGW:
Security

First consider the protocol till just before output reconstruction

Adversary learns nothing about the honest parties’ inputs

Now consider the output reconstruction step as well

Observation: Enough to show security against an adversary who
actually corrupts the maximum allowed number of servers, d

Consider the messages received by the adversary for each
output wire it owns

Fully determined by the d shares it already has and the
output value (which it is allowed to learn)

So entire view determined by own inputs, the random values
from the computation phase, and own outputs

Passive-Secure BGW:
Security

First consider the protocol till just before output reconstruction

Passive-Secure BGW: Summary

Locally multiplying degree d shares of M1 and M2 gives a degree 2d

share of M1çM2 . Then securely switch back to a degree d share

(involves communicating degree d shares of degree 2d shares)

A function f given as a program with linear steps and multiplications:

arithmetic circuit (over a finite field)

Share

Linear
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d servers.

Security against d

colluding server

Shamir

Involves

rerandomisation for

“refreshing” shares

MPC: Honest-Majority +
Passive-Corruption

Typically we consider N parties that can all communicate directly
with each other and may have inputs and outputs

Each party runs a server (and at most one input and one
output client)

Can compute any N-party function, tolerating corruption of
strictly less than N/2 parties

e.g., 1 party out of 3, or 2 parties out of 5

No security in a 2-party setting!

Q: For which functions can we obtain information-theoretic
security against N/2 (or more) corruption?

Not all functions!

Exactly known for N=2 (later)

General case is still an open problem!

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC
Without Honest-Majority?

Because, if there were an N-party AND protocol tolerating
N/2 corrupt parties, we can convert it into a 2-party
protocol for AND as follows:

Alice runs P1,…,PN/2 “in her head”, with her input as P1’s
input and 1 as input for the others. Bob runs the
remaining parties similarly.

View of the parties in Alice's head don’t reveal anything
about Bob’s input, other than what the AND reveals

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC
Without Honest-Majority?

Suppose there is a 2-party protocol for AND. Consider a
transcript m such that Pr[m|x=0,y=0] = p > 0.

By (perfect) security against Alice, Pr[m|x=0,y=1] = p.
And by (perfect) security against Bob, Pr[m|x=1,y=0] = p.

How about Pr[m|x=1,y=1]? Should be 0, for (perfect) correctness

Suppose m=m1m2…mt, with Alice sending the first message.
Alice with x=1 will send m1 with positive probability because
Pr[m|x=1,y=0] > 0. Bob with y=1, and given m1 will send m2
with positive probability, etc.
Hence Pr[m|x=1,y=1] > 0 !

Today
Any N-party function can be perfectly securely computed
against passive corruption of < N/2 parties

Linear functions can be perfectly securely computed against
the corruption of any number of parties

There are many functions (e.g., AND) which cannot be
information-theoretically securely computed if N/2 parties can
be corrupted

We argued this for perfect security, but holds for statistical
security as well

Next: How to go beyond honest-majority (hint: not information-
theoretically)

