
Advanced Tools from
 Modern Cryptography

Lecture 6
Secure Multi-Party Computation without Honest Majority:

“GMW” Protocol

Plan (Still sticking with passive corruption):

Two protocols, that are secure computationally

The “passive-GMW” protocol for any number of parties

A 2-party protocol using Yao’s Garbled Circuits

Both rely on a computational primitive called Oblivious Transfer

Today: OT and Passive-GMW

MPC without Honest-Majority

All 2 of
them!

Oblivious Transfer
Pick one out of two,
without revealing
which

Intuitive property:
transfer partial
information
“obliviously”

FOT

We Predict

STOCKS!!

AA:up, B:down
I need
just one

x0 x1

F

b

xb

But can’t
tell you
which

up

Sure

If we had a
trusted third party

Is OT Possible?

No information theoretically secure 2-party protocol for OT

Because OT can be used to carry out information-
theoretically secure 2-party AND (coming up)

Computationally secure OT protocols exist under various
computational hardness assumptions

Will define computational security of MPC later, comparing
the protocol to the ideal functionality

Using (a special) public-key
encryption

In which one can sample a
public-key without knowing
secret-key

c1-b inscrutable to a
passive corrupt receiver

Sender learns
nothing about b

An OT Protocol
(against passive corruption)

x0 x1

F

(SKb, PKb) ± KeyGen
Sample PK1-b

b

xb

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1

xb

xb=Dec(cb;SKb)

b

Why is OT Useful?
Naïve 2PC from OT

Say Alice’s input x, Bob’s input y, and only Bob should learn f(x,y)

Alice (who knows x, but not y) prepares a table for f(x,ç) with

D = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick up using
1-out-of-D OT (without learning the other entries)

Bob learns only f(x,y) (in addition to y). Alice learns nothing
beyond x.

OT captures the essence of MPC:
Secure computation of any function f can be reduced to OT

Problem: D is exponentially large in |y|

Plan: somehow exploit efficient computation (e.g., circuit) of f

Secure protocol for f using
access to ideal OT

Passive GMW

Passive secure MPC based on OT, without any other computational
assumptions

Will assume that a trusted party is available to carry out OT
between any pair of parties (replaced by a cryptographic
protocol, later)

Tolerates any number of corrupt parties

Idea: Computing on additively secret-shared values

For a variable (wire value) s, will write [s]i to denote its share
held by the ith party

Goldreich-Micali-Wigderson (1987).
As simplified in later work.

Computing on Shares: 2 Parties

Let gates be + & + (XOR & AND for Boolean circuits)

Plan: Similar to BGW: shares of each wire value will be
computed, with Alice holding one share and Bob the other.
At the end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [v]1 [u]2 [v]2u v

[w]1 [w]2

+

w

+ +

What about w = u + v ?

[w]1 + [w]2 = ([u]1 + [u]2) + ([v]1 + [v]2)

Alice picks [w]1 and lets Bob compute [w]2 using the naive
(proof-of-concept) protocol

Note: Bob’s input is ([u]2,[v]2). Over the binary field, this
requires a single 1-out-of-4 OT.

w

u v

+

[u]1 [v]1 [u]2 [v]2

FOT

[w]1 [w]2

Computing on Shares: 2 Parties

Passive GMW
Secure?

View of Alice:

Input x and random values it picks through out the protocol 7

View of Bob:

Input y and random values it picks through out the protocol

A random value (picked via OT) for each wire out of a × gate

f(x,y) - own share, for the output wire

This distribution is the same for x, x’ if f(x,y)=f(x’,y) 7

Exercise: What goes wrong in the above claim if Alice reuses [w]1
for two × gates?

m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u + v

[w]1 +..+ [w]m = ([u]1 +..+ [u]m) + ([v]1 +..+ [v]m)

Party i computes [u]i[v]i

For every pair (i,j), ibj, Party i picks random aij and lets
Party j securely compute bij s.t. aij + bij = [u]i[v]j using the
naive protocol (a single 1-out-of-2 OT)

Party i sets [w]i = [u]i[v]i + £j (aij + bji)

Computing on Shares: m Parties

m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u + v

[w]1 +..+ [w]m = ([u]1 +..+ [u]m) + ([v]1 +..+ [v]m)

Party i computes [u]i[v]i

For every pair (i,j), ibj, Party i picks random aij and lets
Party j securely compute bij s.t. aij + bij = [u]i[v]j using
Oblivious Linear-function Evaluation (OLE)

Party i sets [w]i = [u]i[v]i + £j (aij + bji)

Computing on Shares: m Parties
Arithmetic Version

a,u
F

v

b
s.t. a+b=uv

OLE

Story so far:

For honest-majority: Information-theoretically secure protocol,
using Shamir secret-sharing [BGW]

Without honest-majority: Using Oblivious Transfer (OT), using
additive secret-sharing [GMW]

Up next

A 2-party protocol (so no honest-majority) using Oblivious
Transfer and Yao’s Garbled Circuits

Uses additional computational primitives and is limited to
arithmetic circuits over small fields (e.g., boolean circuits)

Needs just one round of interaction

MPC for Passive Corruption

Oblivious Linear-function Evaluation
(OLE) for arithmetic over larger fields

