
Advanced Tools from
 Modern Cryptography

Lecture 9
Zero-Knowledge Proofs

Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the fact
that a=b+c ?

Zero-Knowledge Proof!

Important application to secure multi-party computation: to upgrade the
security of MPC protocols from security against passive corruption to
security against active corruption

(Next time)

An Example
Soft-drink in bottle or can

Prover claims: a soft-drink in
bottle in a can tastes different
from the same in a bottle

An interactive proof:
prover tells whether
the cup was filled
from can or bottle

repeat till verifier
is convinced

can/bottle

Pour into
from can
or bottle

Interactive Proofs

Graph Non-Isomorphism
Prover claims:
G0 not isomorphic to G1

An interactive proof:
prover tells whether
G* is an isomorphism
of G0 or G1

repeat till verifier
is convinced

G0/G1

G*

Set G* to be
Ã(G0) or Ã(G1)
(Ã random)

Isomorphism: Same graph can be represented
as a matrix in different ways:

e.g.

both are isomorphic to the graph

represented by the drawing

G0 =

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

 and G1 =

0 1 0 1

1 0 1 1

0 1 0 0

1 1 0 0

An Example
Interactive Proofs

G0 G1

x * L

Interactive Proofs
Prover wants to convince verifier
that x has some property

i.e. x belongs to some set L
(<language= L)

All powerful prover
(for now), and a
computationally
bounded verifier Prove to me!

OK

Completeness

If x in L, honest Prover will
convince honest Verifier

Soundness

If x not in L, honest
Verifier won9t
accept any
purported proof

Interactive Proofs

x * L
yeah right! OKReject!

NP language L

x * L iff #w R(x,w)=1
(for R in P)

e.g. Graph Isomorphism

IP protocol

prover just sends w

But what if prover
doesn9t want to
reveal w? w

Proofs for an NP Language

x * L Prove to me!

R(x,w)=1?

 OK

NP is the class of
languages which have
non-interactive and

deterministic
proof-systems

w

Prove to me!

Zero-Knowledge Proofs

Verifier should not gain
any knowledge from the
honest prover

except whether x is in L

How to formalise this?

Simulation!
 wonder what

f(w) is...
x * L

OK

G* := Ã(G1)
(random Ã)

Graph Isomorphism

(G0,G1) in L iff there
exists an isomorphism
Ã such that Ã(G0)=G1

IP protocol: send Ã

ZK protocol?

G*

random bit
 bb

if b=1, Ã* := Ã
if b=0, Ã* := ÃoÃ G*=Ã*(Gb)?Ã*

An Example

G* := Ã(G1)
(random Ã)

An Example
Why is this convincing?

If prover can answer both b9s for
the same G* then G0~G1

Otherwise, testing on a
random b will leave
prover stuck w.p. 1/2

Why ZK?
Verifier9s view: random
b and Ã* s.t. G*=Ã*(Gb)

Which he could have
generated by himself
(whether G0~G1 or not)

G*

random bit
 bb

if b=1, Ã* := Ã
if b=0, Ã* := ÃoÃ G*=Ã*(Gb)?Ã*

Bob: William Tell is a great

marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple

placed on his son’s head! See this!

Charlie: That apple convinced you?

Anyone could have made it up!

Bob: But I saw him shoot it...

The Legend of William Tell
A Side Story

Bob: G0 and G1 are isomorphic!

Charlie: How do you know?

Bob: Alice just proved it to me!
See this:

 G*, b, Ã* s.t. G*=Ã*(Gb)

Charlie: That convinced you?
Anyone could have made it up!

Bob: But I picked b at random and
she had no trouble answering
me...

The Legend of William Tell
A Side Story

Bob: William Tell is a great

marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple

placed on his son’s head! See this!

Charlie: That apple convinced you?

Anyone could have made it up!

Bob: But I saw him shoot it...

Simulation
Another Analogy

Shooting arrows at targets
drawn randomly on a wall
 vs.

Drawing targets around
arrows shot randomly on
to the wall

Both produce identical views,
but one of them is convincing
of marksmanship

by CHARLIE HANKIN New Yorker
Cartoons

https://condenaststore.com/art/charlie+hankin?searchType=artistname
https://condenaststore.com/collections/new+yorker+cartoons
https://condenaststore.com/collections/new+yorker+cartoons

Commitment
Recall the functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can’t
influence the message that Bob will get on opening the box.

Example implementation in the Random Oracle Model: Commit(x) = H(x,r)
where r is a long enough random string, and H is a random hash function
(available as an oracle) with a long enough output. To reveal, send (x,r).

¦ ROM is a heuristic model: Can do provably impossible tasks in this

model!

An Example: To prove that the nodes of a graph can
be coloured with at most 3 colours, so that adjacent
nodes have different colours

commit
COMMIT:

F

m
m

reveal mREVEAL:
Fm

Next Day

A ZK Proof for Graph
Colourability

Uses commitment functionality

At least 1/#edges probability
of catching a wrong proof

Soundness amplification:
Repeat many times
with independent colour
permutations

pick random
edge

distinct
colours?

Use
ran

dom

col
our

s
edge

G,colourin
g

OK

rev
ea

l e
dg

e

committed

ZK Proofs Vocabulary
Statements: Of the form “#w s.t. relation R(x,w) holds”, where R defines a class of

statements, and x specifies the particular statement (which is a common input to

prover and verifier)

e.g., Given a graph G, # a colouring Ç s.t. Valid(G,Ç) holds

The relation R can be efficiently verified (polynomial time in size of x)

Set L = { x | #w R(x,w) holds } is a language in NP

w is called a “witness” for x*L

Completeness: If prover & verifier are honest, for all x*L, and prover given a

valid witness w, verifier will always accept

Soundness: If x+L, no matter what a cheating prover does, an honest verifier will

reject (except with negligible probability)

Proof-of-Knowledge: A stronger soundness notion

Zero-Knowledge: A (corrupt) verifier’s view can be simulated (honest prover, x*L)

Soundness can be required to hold even against computationally unbounded

provers

ZK Argument system: Like a ZK proof system, but soundness only against

PPT adversaries

ZK Property

proto proto

Env
REAL

i’face

Env

IDEAL

FR

Classical definition uses simulation
only for corrupt receiver;

and uses only standalone security:
Environment gets only a transcript at
the end

x,w x

Secure (and
correct) if:

" PPT

PPT s.t.

" PPT

output of
in REAL and
IDEAL are
almost identical

x

Statistical
ZK: Allow
unbounded
environment

—

Ah, got it!
42

In Other Pictures&
Simulation only for corruption of
verifier and stand-alone security

ZK Property: A corrupt verifier9s
view (i.e., transcript + randomness)
could have been <simulated=

" adversarial strategy,
a simulation strategy
which, "x * L, produces
an indistinguishable view

Completeness and
soundness defined
separately

x in L

Ah, got it!
42

Two-Sided Simulation

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor

• Adding this (in standalone setting) makes it an Argument of Knowledge

x

Secure (and
correct) if:

" PPT

PPT s.t.

" PPT

output of
in REAL and
IDEAL are
almost identical

Proof of Knowledge:
unbounded prover &

simulator, but
require sim to run
in comparable time

—
—

