Advanced Tools from Modern Cryptography

Lecture 9 Zero-Knowledge Proofs

Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

- e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c
- Proof 1: Reveal a,b,c and how they get encrypted into A,B,C
- Proof 2: Without revealing anything at all about a,b,c except the fact that a=b+c ?
 - Zero-Knowledge Proof!
- Important application to secure multi-party computation: to upgrade the security of MPC protocols from security against passive corruption to security against active corruption
 - Ø (Next time)

Interactive Proofs An Example

- Soft-drink in bottle or can
 - Prover claims: a soft-drink in bottle in a can tastes different from the same in a bottle
- An interactive proof:
 - prover tells whether the cup was filled from can or bottle
 repeat till verifier is convinced

Pour into

Interactive Proofs An Example

Graph Non-Isomorphism

Prover claims: Go not isomorphic to G1 An interactive proof: prover tells whether G* is an isomorphism of Go or G1 repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

 $\mathbf{e.g.} \ \mathbf{G}_{0} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \mathbf{G}_{1} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$

both are isomorphic to the graph represented by the drawing

Set G* to be $\pi(G_0)$ or $\pi(G_1)$ (π random)

 G_0/G_1

G*

Interactive Proofs

Prover wants to convince verifier that x has some property i.e. x belongs to some set L ("language" L) All powerful prover (for now), and a computationally bounded verifier Prove to me! $x \in L$

OK

Interactive Proofs

Completeness

If x in L, honest Prover will convince honest Verifier

Soundness

If x not in L, honest
 Verifier won't
 accept any
 purported proof

yeah right! Reject!

 \in

Proofs for an NP Language

NP language L \bigcirc x \in L iff $\exists w R(x,w)=1$ (for R in P) e.g. Graph Isomorphism IP protocol prover just sends w But what if prover doesn't want to reveal w?

NP is the class of languages which have <u>non-interactive</u> and <u>deterministic</u> proof-systems

 $x \in L$ Prove to me! W R(x,w)=1?OK OK

Zero-Knowledge Proofs

x ∈ L

Prove to me!

OK

wonder what)

f(w) is.

Verifier should not gain any knowledge from the honest prover

except whether x is in L
How to formalise this?

Simulation!

An Example

Graph Isomorphism \bigcirc (G₀,G₁) in L iff there **G*** exists an isomorphism $G^* := \pi(G_1)$ (random π) σ such that $\sigma(G_0)=G_1$ random bit b IP protocol: send o b ZK protocol? if b=1, π* := π $-G^* = \pi^*(G_b)?$ if b=0, $\pi^* := \pi_0 \sigma^*$ π*

An Example

Why is this convincing?

If prover can answer both b's for the same G* then G₀~G₁

Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?

Verifier's view: random
 b and π* s.t. G*=π*(G_b)

Which he could have generated by himself (whether G₀~G₁ or not)

The Legend of William Tell A Side Story

Bob: William Tell is a great marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple placed on his son's head! See this!

Charlie: That apple convinced you? Anyone could have made it up! Bob: But I saw him shoot it...

The Legend of William Tell A Side Story

Bob: William Tell is a great marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple placed on his son's head! See this!

Charlie: That apple convinced you? Anyone could have made it up! Bob: But I saw him shoot it... Bob: G₀ and G₁ are isomorphic!
Charlie: How do you know?
Bob: Alice just proved it to me! See this:

G*, b, π* s.t. G*=π*(G_b)

Charlie: That convinced you? Anyone could have made it up!

Bob: But I picked b at random and she had no trouble answering me...

Simulation

Another Analogy

Shooting arrows at targets drawn randomly on a wall vs.

Drawing targets around arrows shot randomly on to the wall

 Both produce identical views, but one of them is convincing of marksmanship

by **charlie hankin <u>New Yorker</u> <u>Cartoons</u>**

Commitment

Recall the functionality of Commitment:

- Committing to a value: Alice puts the message in a box, locks it, and sends the locked box to Bob, who learns nothing about the message
- Revealing a value: Alice sends the key to Bob. At this point she can't influence the message that Bob will get on opening the box.
- Example implementation in the <u>Random Oracle Model</u>: Commit(x) = H(x,r) where r is a long enough random string, and H is a <u>random</u> hash function (available as an oracle) with a long enough output. To reveal, send (x,r).
 - ROM is a <u>heuristic</u> model: Can do provably impossible tasks in this model!
- An Example: To prove that the nodes of a graph can be <u>coloured</u> with at most 3 colours, so that adjacent nodes have different colours

m

m

COMMIT:

REVEAL

A ZK Proof for Graph Colourability

colours

G,colouring

Uses commitment functionality At least 1/#edges probability of catching a wrong proof Soundness amplification: Repeat many times with independent colour permutations Use random

edge

revealedge

pick random edge

mixted

distinct colours?

OK

ZK Proofs Vocabulary

- Statements: Of the form "∃w s.t. relation R(x,w) holds", where R defines a class of statements, and x specifies the particular statement (which is a common input to prover and verifier)
 - e.g., Given a graph G, \exists a colouring ϕ s.t. Valid(G, ϕ) holds
 - The relation R can be efficiently verified (polynomial time in size of x)
 - Set L = $\{x \mid \exists w \ R(x,w) \ holds \}$ is a language in NP
 - w is called a "witness" for x∈L
- Completeness: If prover & verifier are honest, for all x∈L, and prover given a valid witness w, verifier will always accept
- Soundness: If x \no L, no matter what a cheating prover does, an honest verifier will reject (except with negligible probability)
 - Proof-of-Knowledge: A stronger soundness notion
- **Zero-Knowledge:** A (corrupt) verifier's view can be simulated (honest prover, $x \in L$)
- Soundness can be required to hold even against computationally unbounded provers
 - ZK Argument system: Like a ZK proof system, but soundness only against PPT adversaries

ZK Property

x,w

i'face

IDEAL

R

Env

Classical definition uses simulation only for corrupt receiver; and uses only standalone security: Environment gets only a transcript at the end

proto

Statistical ZK: Allow unbounded environment

Secure (and correct) if: ∀ PPT ↓ ∃ PPT ↓ s.t. ∀ PPT ↓ output of ↓ in REAL and IDEAL are

almost identical

Env

REAL

proto

In Other Pictures…

xinL

Ah, got it!

Ah, got it!

42

42

Simulation only for corruption of verifier and stand-alone security
 ZK Property: A corrupt verifier's view (i.e., transcript + randomness) could have been "simulated"

♥ adversarial strategy,
 ∃ a simulation strategy
 which, ∀x ∈ L, produces
 an indistinguishable view

Completeness and soundness defined separately

Two-Sided Simulation

Require simulation also when prover is corrupt

• Then simulator is a witness extractor

'face

• Adding this (in standalone setting) makes it an Argument of Knowledge

proto

proto

REAL

Env

Proof of Knowledge: unbounded prover & simulator, but require sim to run in comparable time

> Secure (and correct if: ∀ PPT ↓ ∃ PPT ↓ s.t. ∀ PPT ● output of ● in REAL and IDEAL are almost identical

IDEAL

x,w

X

R

X

Env