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Zero-Knowledge Proofs



Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the fact 
that a=b+c ?

Zero-Knowledge Proof!

Important application to secure multi-party computation: to upgrade the 
security of MPC protocols from security against passive corruption to 
security against active corruption

(Next time)



An Example
Soft-drink in bottle or can 

Prover claims: a soft-drink in 
bottle in a can tastes different 
from the same in a bottle 

An interactive proof: 
prover tells whether 
the cup was filled  
from can or bottle 

repeat till verifier 
is convinced

can/bottle 

Pour into       
from can 
or  bottle

Interactive Proofs



Graph Non-Isomorphism 
Prover claims:  
G0 not isomorphic to G1 

An interactive proof: 
prover tells whether 
G* is an isomorphism 
of G0  or G1 

repeat till verifier 
is convinced

G0/G1

G*

Set G* to be  
Ã(G0) or Ã(G1) 
(Ã random)

Isomorphism: Same graph can be represented  
as a matrix in different ways: 

e.g.  

 
both are isomorphic to the graph  

represented by the drawing 

G0 =

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

 and G1 =

0 1 0 1

1 0 1 1

0 1 0 0

1 1 0 0

An Example
Interactive Proofs

G0 G1



x * L

Interactive Proofs
Prover wants to convince verifier 
that x has some property  

i.e. x belongs to some set L 
(<language= L) 

All powerful prover  
(for now), and a  
computationally  
bounded verifier Prove to me!

OK



Completeness 

If x in L, honest Prover will 
convince honest Verifier 

Soundness 

If x not in L, honest 
Verifier won9t  
accept any 
purported proof

Interactive Proofs

x * L
yeah right! OKReject!



NP language L 

x * L iff #w R(x,w)=1 
(for R in P)  

e.g. Graph Isomorphism 

IP protocol 

prover just sends w 

But what if prover  
doesn9t want to  
reveal w? w

Proofs for an NP Language

x * L Prove to me!

R(x,w)=1? 

     OK

NP is the class of 
languages which have 
non-interactive and 

deterministic 
proof-systems

w



Prove to me!

Zero-Knowledge Proofs

Verifier should not gain 
any knowledge from the 
honest prover 

except whether x is in L 

How to formalise this? 

Simulation!
  wonder what 

f(w) is...
x * L

OK



G* := Ã(G1) 
(random Ã)

Graph Isomorphism 

(G0,G1) in L iff there 
exists an isomorphism 
Ã such that Ã(G0)=G1 

IP protocol: send Ã 

ZK protocol?

G*

random bit 
        bb

if b=1, Ã* := Ã 
if b=0, Ã* := ÃoÃ G*=Ã*(Gb)?Ã*

An Example



G* := Ã(G1) 
(random Ã)

An Example
Why is this convincing? 

If prover can answer both b9s for 
the same G* then G0~G1 

Otherwise, testing on a  
random b will leave 
prover stuck w.p. 1/2 

Why ZK? 
Verifier9s view: random 
b and Ã* s.t. G*=Ã*(Gb) 

Which he could have  
generated by himself 
(whether G0~G1 or not)

G*

random bit 
        bb

if b=1, Ã* := Ã 
if b=0, Ã* := ÃoÃ G*=Ã*(Gb)?Ã*



Bob: William Tell is a great 

marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple 

placed on his son’s head! See this!

Charlie: That apple convinced you? 

Anyone could have made it up!

Bob: But I saw him shoot it...

The Legend of William Tell 
A Side Story



Bob: G0 and G1 are isomorphic! 

Charlie: How do you know? 

Bob: Alice just proved it to me! 
See this:  

       G*, b, Ã* s.t. G*=Ã*(Gb) 

Charlie: That convinced you? 
Anyone could have made it up! 

Bob: But I picked b at random and 
she had no trouble answering 
me...

The Legend of William Tell 
A Side Story

Bob: William Tell is a great 

marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple 

placed on his son’s head! See this!

Charlie: That apple convinced you? 

Anyone could have made it up!

Bob: But I saw him shoot it...



Simulation 
Another Analogy

Shooting arrows at targets 
drawn randomly on a wall 
                  vs. 

Drawing targets around  
arrows shot randomly on 
to the wall 

Both produce identical views, 
but one of them is convincing 
of marksmanship

by CHARLIE HANKIN New Yorker 
Cartoons

https://condenaststore.com/art/charlie+hankin?searchType=artistname
https://condenaststore.com/collections/new+yorker+cartoons
https://condenaststore.com/collections/new+yorker+cartoons


Commitment
Recall the functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, and 
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can’t 
influence the message that Bob will get on opening the box.

Example implementation in the Random Oracle Model: Commit(x) = H(x,r) 
where r is a long enough random string, and H is a random hash function 
(available as an oracle) with a long enough output. To reveal, send (x,r).

¦ ROM is a heuristic model: Can do provably impossible tasks in this 

model!

An Example: To prove that the nodes of a graph can 
be coloured with at most 3 colours, so that adjacent 
nodes have different colours

commit
COMMIT:

F

m
m

reveal mREVEAL:
Fm

Next Day



A ZK Proof for Graph 
Colourability

Uses commitment functionality 

At least 1/#edges probability 
of catching a wrong proof 

Soundness amplification: 
Repeat many times  
with independent colour 
permutations

pick random 
edge

distinct 
colours?

Use 
ran

dom
 

col
our

s
edge

G,colourin
g

OK

rev
ea

l e
dg

e

committed



ZK Proofs Vocabulary
Statements: Of the form “#w s.t. relation R(x,w) holds”, where R defines a class of 

statements, and x specifies the particular statement (which is a common input to 

prover and verifier)

e.g., Given a graph G, # a colouring Ç s.t. Valid(G,Ç) holds

The relation R can be efficiently verified (polynomial time in size of x)

Set L =  { x | #w R(x,w) holds } is a language in NP

w is called a “witness” for x*L

Completeness: If prover & verifier are honest, for all x*L, and prover given a 

valid witness w, verifier will always accept

Soundness: If x+L, no matter what a cheating prover does, an honest verifier will 

reject (except with negligible probability)

Proof-of-Knowledge: A stronger soundness notion

Zero-Knowledge: A (corrupt) verifier’s view can be simulated (honest prover,  x*L)

Soundness can be required to hold even against computationally unbounded 

provers

ZK Argument system: Like a ZK proof system, but soundness only against 

PPT adversaries



ZK Property

proto proto

Env
REAL

i’face

Env

IDEAL

FR

Classical definition uses simulation 
only for corrupt receiver;

and uses only standalone security: 
Environment gets only a transcript at 
the end

x,w x

Secure (and 
correct) if: 


" PPT    


# PPT     s.t.


" PPT 

output of        
in REAL and 
IDEAL are 
almost identical

x

Statistical 
ZK: Allow 
unbounded  
environment

—



Ah, got it!
42

In Other Pictures&
Simulation only for corruption of 
verifier and stand-alone security 

ZK Property:  A corrupt verifier9s 
view (i.e., transcript + randomness) 
could have been <simulated= 

" adversarial strategy,  
# a simulation strategy  
which, "x * L, produces  
an indistinguishable view  

Completeness and  
soundness defined  
separately

x in L

Ah, got it!
42



Two-Sided Simulation

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor


• Adding this (in standalone setting) makes it an Argument of Knowledge

x

Secure (and 
correct) if: 


" PPT    


# PPT     s.t.


" PPT 

output of        
in REAL and 
IDEAL are 
almost identical

Proof of Knowledge: 
unbounded prover & 

simulator, but 
require sim to run 
in comparable time

—
—


