Advanced Tools from Modern Cryptography

Lecture 15
MPC: Complexity of Functions

Feasibility of General MPC

- Given honest majority, or given OT as a setup:
 - General MPC is possible with the highest security guarantee (information-theoretic, UC security)
 - Variations: t<n/3 vs. t<n/2+broadcast. Perfect vs. Statistical. Guaranteed output delivery vs. unfair.</p>

3	Otherwise:	Passive	Stand-alone	UC
	PPT	✓	✓	×
	Info. Th.	X	×	×

- Impossibility of general MPC reveals "Cryptographic Complexity" of functions: some are more "complex" than the others
- In each security model, functionalities that admit MPC protocols without a setup form the least complex a.k.a. trivial functionalities in that model

Trivial Functionalities: PPT Setting

Trivial Functionalities: Information-Theoretic

- For n-party information-theoretic passive security, for each corruption threshold t: the Privacy Hierarchy
 - All n-party functions appear till level [(n-1)/2] in this hierarchy (e.g., by Passive-BGW). Some reach level n: e.g., XOR or more generally, group addition. Level n-1 is same as level n.
 - At all intermediate levels t, examples known to exist which are not in level t+1
 - Open problem: For all n, t, <u>characterise</u> the functions level t of the n-party privacy hierarchy (or do it just for t=n)

Trivial <u>2-Party</u> Functionalities: Information-Theoretic

	Passive	Stand-alone	UC
PPT	✓ ·	✓	X
Info. Th.	X	×	X

For deterministic SFE: Trivial ⇔ <u>Decomposable</u>

Decomposable Function

(For simplicity will restrict to symmetric SFE)

Examples of Decomposable Functions

Examples of Undecomposable Functions

"Spiral"

		4	2
4	3	3	2
4	2	I	d

Decomposable Function

Trivial 2-Party Functionalities: Information-Theoretic

	Passive	Stand-alone	UC
PPT	V	✓	×
Info. Th.	×	×	×

Trivial ⇔ Decomposable

Open for For deterministic SFE: randomized For deterministic SFE: Trivial ⇔ Uniquely Decomposable & Saturated

Decomposable Function

Examples of Decomposable Functions

Not Uniquely Decomposable

Not Saturated

This strategy doesn't correspond to an input

Trivial 2-Party Functionalities: Information-Theoretic

Completeness

- We saw OT can be used to (passive- or UC-) securely realise any functionality
 - i.e., any other functionality can be reduced to OT
- The Cryptographic Complexity question:
 - Can F be reduced to G (for different reductions)?
- G complete if everything reduces to G
- F trivial if F reduces to everything (in particular, to "null")

PPT Setting: Completeness

- PPT Passive security and PPT Standalone security
 - Under sh-OT assumption, all functions are trivial and hence all are complete too!
- PPT UC security, n=2:
 - Recall, only a few (splittable) functionalities are trivial
 - Under sh-OT, turns out that in fact, every non-trivial functionality is complete

IT Setting: Completeness

- Information-Theoretic Passive security

 - What is Simple?

Simple vs. Non-Simple

Simple:
Each connected
component is a
biclique

0

$$(0,0)$$
 $(0,0)$

$$(1,1) \qquad \bullet \qquad (1,1)$$

IT Setting: Completeness

- Information-Theoretic Passive security

 - What is Simple?
 - In the characteristic bipartite graph, each connected component is a biclique
 - If randomized, within each connected component $w(u,v) = w_A(u) \times w_B(v)$, where u=(x,a), v=(y,b) and w(u,v) = Pr[out=(a,b) | in=(x,y)]

Simple vs. Non-Simple (Randomized)

Edge ((x,a),(y,b))
weighted with
Pr[(a,b) | (x,y)]
where x,y
inputs and a,b
outputs

(1,1) 1/2

Simple: within connected component w(u,v) = w_A(u)·w_B(v)

$$(0,\pm) \qquad \frac{3/4}{1/4} \qquad (\pm,0)$$

$$(1,\pm) \qquad \frac{3/4}{1/4} \qquad (\pm,1)$$

$$(\pm,\pm) \qquad (\pm,\pm)$$

Rabin-OT

IT Setting: Completeness

- Information-Theoretic Passive security
- Information-Theoretic Standalone & UC security

 - What is the core of an SFE?
 - SFE obtained by removing "redundancies" in the input and output space
 - E.g., AND with one-sided output is not simple, but its core is

A Map of 2-Party Functions

