Succinct Proofs

Lecture 17
Different Approaches

GKR Protocol

@ Verifying outsourced computation (in the form of an arithmetic

circuit C) efficiently

@ Algebraic circuit: gates are addition or multiplication gates

@ Verifier knows the inputs to C

@ Computer/Provers cost: proportional to the size of the circuit |IC|

@ Verifiers cost: O(d log ICl) where d = depth of Cs

+ cost of evaluating

of input and wiring

\

\

multi-linear extensions

J

@ Verifier has the multi-linear extension of the “wiringApredicaTes"

for each level of C

7

\

What if Verifier doesnt need
to know the entire input?

D

J

SNARKS

Succinct Non-Interactive Arguments of Knowledge

@ Recall an NP language: { x | aw s.t. (x,w) € R} where R is in P
(i.e., a deterministic polynomial time computable language)

@ NP languages have a ftrivial non-interactive proof of
knowledge: prover sends w and let verifier check if (x,w)eR

@ Suppose the verifier is only interested in x, not w, and |wl| >> Ix|
@ Succinct: the entire proof is shorter than the witness

@ Argument: soundness needs to hold only against polynomial time
adversaries

@ Knowledge-soundess: For every PPT malicious prover P*, there is
an extractor E s.t. for any x for which P* has a non-negligible
probability p of convincing an honest verifier, E has close to 1
probability of outputting w s.t. (x,w)eR, in poly(1/p) time

d

d

d

{a

SNARKS

from Outsourced Computation

NP languages have a trivial non-interactive proof of knowledge:
prover sends w and let verifier check if (x,w)eR

Use GKR to oufsource the computation of R back to prover?
@ w still needs fo be sent, and proof becomes interactive
® Need to add knowledge-soundness

Avoiding sending w: Polynomial Commitment scheme

@ (x,w) is encoded as a multilinear polynomial Xo-P(Xi,..., Xk) + (1-
Xo)-P(X1,....Xk) where P, P’ are multi-linear polynomials that
encode x, w respectively. P’ is sent as a commitment.

Avoiding interaction: Fiat-Shamir Transformation

The above two need to also provide Knowledge Soundness

Polynomial Commitment

@ Prover wants to (succinctly) commit to a polynomial oand later let
the verifier (interactively) evaluate it on points of its choice

@ Generally, a multi-variate polynomial with a known number of
variables and known degree

@ e.g., a mulfi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

@ Trivial solution: send the coefficients of the polynomial
@ But not succinct and evaluating the polynomial is expensive

@ Want verifiers computation/communication to be sub-linear in
the size of the polynomial

@ Non-trivial solutions: Using Merkle hashes and low-degree tests;

from hardness of discrete logarithm; from bilinear pairings; using
"IOPs”; ... [Laterl

Removing Interaction

Fiat-Shamir Transformation

@ Recall GKR verifier sends random evaluation points as challenges
@ Can be sent by a trusted third party

@ Must be unpredictable for the adversary before sending (or
committing) to the polynomial

@ OK fo allow the adversary to try a polynomial number of
times

@ Recall Random Oracle Model
@ Can use Hash(transcript) as the public random coin
@ Transcript includes the statement x

® Otherwise, adversary can choose the statement to be one
that passes the (already fixed) checks at the end

SNARKS

from Outsourced Computation

@ Interactive public-coin version:

@ Prover sends a polynomial commitment to P* which is a multi-
linear extension of the witness

@ Prover and Verifier run GKR, till the last step when verifier
wants to evaluate Xo-P(Xi,...,Xk) + (1-Xo0)-P’(Xy,...,Xk’) on a random
point. Verifier knows P, and uses the polynomial commitment fo
evaluate P’

@ Even if the polynomial commitment scheme allows a fraction
of the committed points fo not match the committed
polynomial, this fraction just adds to the soundness error

@ Can reduce the error by independent parallel repetitions

@ If the polynomial commitment is knowledge-sound the
interactive proof is knowledge-sound

SNARKS

from Outsourced Computation

@ Interactive public-coin version:

@ Prover sends a polynomial commitment to P* which is a multi-
linear extension of the witness

@ Prover and Verifier run GKR, till the last step when verifier
wants to evaluate Xo-P(Xi,...,Xk) + (1-Xo0)-P’(Xy,...,Xk’) on a random
point. Verifier knows P, and uses the polynomial commitment fo
evaluate P’

@ If the polynomial commitment is knowledge-sound the
interactive proof is knowledge-sound

@ Non-interactive version: Using Fiat-Shamir Transformation

@ Fact: Fiat-Shamir transformation retfains knowledge-soundness of
the interactive version (in the Random Oracle Model)

d

6

SNARKS

from PCPs

PCP allows verifying a proof by reading a few positions

@ A proof 1, which the verifier queries on a few places chosen
probabilistically and checks a predicate of the statement and
the query/answers. Perfect completeness, and soundness error
at most 1/2 (say).

PCP Theorem: Every NP language L has a PCP in which the proof
for xeL is poly(Ixl) long, the verifier queries a constant number

of positions chosen using O(log |xI) bits

PCP + Merkle free commitments gives a succinct interactive proof

@ 1 is committed, and queries are answered by opening bits of
Queries by the PCP verifier are public-coin
® So can make it non-interactive by Fiat-Shamir heuristic

PCPs are not very concretely efficient: too much work for prover

SNARKS

from Linear PCPs

@ PCP with a very long (super-polynomial) but more structured proof

@ Proof m is the evaluation of a multi-linear polynomial with O as
the constant term

a mlax+by] = an[x] + brm[y] for x,y € Fk and a,b € F

@ Idea: can commit to such a multi-linear polynomial efficiently
[Later]

@ Linear PCPs + non-infteractive multi-linear polynomial commitment
schemes vyield practical SNARKs

@ e.g., Grothlé”

SNARKS

from MIPs

@ MIP in which one prover is asked fo evaluate a polynomial at one
point and the other is asked to evaluate it in a line passing
through that point (without revealing the point)

® The second prover is used to prevent the first prover from
adaptively choosing how to answer

@ Use a polynomial commitment scheme instead of the second

prover: the single prover must now evaluate the polynomial at
the random point

SNARKS

from IOPs

@ Interactive version of PCP: Allow committing fo multiple strings
over multiple rounds

@ Can be made into a proof system using Merkle hashes
@ Polynomial IOP: the strings are polynomial evaluations
@ Can be implemented using any polynomial commitment scheme

@ In particular, there are polynomial commitment schemes which
are derived from “standard” IOPs (in turn implemented using
Merkle hashes)

@ Public coin

@ So that it can be made non-interactive

