
Succinct Proofs
Lecture 17

Different Approaches

GKR Protocol

Verifying outsourced computation (in the form of an arithmetic
circuit C) efficiently

Algebraic circuit: gates are addition or multiplication gates

Verifier knows the inputs to C

Computer/Prover’s cost: proportional to the size of the circuit |C|

Verifier’s cost: O(d log |C|) where d = depth of C

Verifier has the multi-linear extension of the “wiring predicates”
for each level of C

+ cost of evaluating
multi-linear extensions

of input and wiring

What if Verifier doesn’t need
to know the entire input?

SNARKs

Recall an NP language: { x | #w s.t. (x,w) * R} where R is in P
(i.e., a deterministic polynomial time computable language)

NP languages have a trivial non-interactive proof of
knowledge: prover sends w and let verifier check if (x,w)*R

Suppose the verifier is only interested in x, not w, and |w| >> |x|

Succinct: the entire proof is shorter than the witness

Argument: soundness needs to hold only against polynomial time
adversaries

Knowledge-soundess: For every PPT malicious prover P*, there is
an extractor E s.t. for any x for which P* has a non-negligible
probability p of convincing an honest verifier, E has close to 1
probability of outputting w s.t. (x,w)*R, in poly(1/p) time

Succinct Non-Interactive Arguments of Knowledge

SNARKs

NP languages have a trivial non-interactive proof of knowledge:
prover sends w and let verifier check if (x,w)*R

Use GKR to outsource the computation of R back to prover?

w still needs to be sent, and proof becomes interactive

Need to add knowledge-soundness

Avoiding sending w: Polynomial Commitment scheme

(x,w) is encoded as a multilinear polynomial X0·P(X1,…,Xk) + (1-
X0)·P’(X1,…,Xk’) where P, P’ are multi-linear polynomials that
encode x, w respectively. P’ is sent as a commitment.

Avoiding interaction: Fiat-Shamir Transformation

The above two need to also provide Knowledge Soundness

from Outsourced Computation

Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial oand later let
the verifier (interactively) evaluate it on points of its choice

Generally, a multi-variate polynomial with a known number of
variables and known degree

e.g., a multi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

Trivial solution: send the coefficients of the polynomial

But not succinct and evaluating the polynomial is expensive

Want verifier’s computation/communication to be sub-linear in
the size of the polynomial

Non-trivial solutions: Using Merkle hashes and low-degree tests;
from hardness of discrete logarithm; from bilinear pairings; using
“IOPs”; … [Later]

Removing Interaction

Recall GKR verifier sends random evaluation points as challenges

Can be sent by a trusted third party

Must be unpredictable for the adversary before sending (or
committing) to the polynomial

OK to allow the adversary to try a polynomial number of
times

Recall Random Oracle Model

Can use Hash(transcript) as the public random coin

Transcript includes the statement x

Otherwise, adversary can choose the statement to be one
that passes the (already fixed) checks at the end

Fiat-Shamir Transformation

SNARKs

Interactive public-coin version:

Prover sends a polynomial commitment to P’ which is a multi-
linear extension of the witness

Prover and Verifier run GKR, till the last step when verifier
wants to evaluate X0·P(X1,…,Xk) + (1-X0)·P’(X1,…,Xk’) on a random
point. Verifier knows P, and uses the polynomial commitment to
evaluate P’

Even if the polynomial commitment scheme allows a fraction
of the committed points to not match the committed
polynomial, this fraction just adds to the soundness error

Can reduce the error by independent parallel repetitions

If the polynomial commitment is knowledge-sound the
interactive proof is knowledge-sound

from Outsourced Computation

SNARKs

Interactive public-coin version:

Prover sends a polynomial commitment to P’ which is a multi-
linear extension of the witness

Prover and Verifier run GKR, till the last step when verifier
wants to evaluate X0·P(X1,…,Xk) + (1-X0)·P’(X1,…,Xk’) on a random
point. Verifier knows P, and uses the polynomial commitment to
evaluate P’

If the polynomial commitment is knowledge-sound the
interactive proof is knowledge-sound

Non-interactive version: Using Fiat-Shamir Transformation

Fact: Fiat-Shamir transformation retains knowledge-soundness of
the interactive version (in the Random Oracle Model)

from Outsourced Computation

SNARKs
PCP allows verifying a proof by reading a few positions

A proof Ã, which the verifier queries on a few places chosen
probabilistically and checks a predicate of the statement and
the query/answers. Perfect completeness, and soundness error
at most 1/2 (say).

PCP Theorem: Every NP language L has a PCP in which the proof
for x*L is poly(|x|) long, the verifier queries a constant number
of positions chosen using O(log |x|) bits

PCP + Merkle tree commitments gives a succinct interactive proof

Ã is committed, and queries are answered by opening bits of Ã

Queries by the PCP verifier are public-coin

So can make it non-interactive by Fiat-Shamir heuristic

PCPs are not very concretely efficient: too much work for prover

from PCPs

SNARKs

PCP with a very long (super-polynomial) but more structured proof

Proof Ã is the evaluation of a multi-linear polynomial with 0 as
the constant term

Ã[ax+by] = aÃ[x] + bÃ[y] for x,y * Fk and a,b * F

Idea: can commit to such a multi-linear polynomial efficiently
[Later]

Linear PCPs + non-interactive multi-linear polynomial commitment
schemes yield practical SNARKs

e.g., “Groth16”

from Linear PCPs

SNARKs

MIP in which one prover is asked to evaluate a polynomial at one
point and the other is asked to evaluate it in a line passing
through that point (without revealing the point)

The second prover is used to prevent the first prover from
adaptively choosing how to answer

Use a polynomial commitment scheme instead of the second
prover: the single prover must now evaluate the polynomial at
the random point

from MIPs

SNARKs

Interactive version of PCP: Allow committing to multiple strings
over multiple rounds

Can be made into a proof system using Merkle hashes

Polynomial IOP: the strings are polynomial evaluations

Can be implemented using any polynomial commitment scheme

In particular, there are polynomial commitment schemes which
are derived from “standard” IOPs (in turn implemented using
Merkle hashes)

Public coin

So that it can be made non-interactive

from IOPs

