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Different Approaches



GKR Protocol

Verifying outsourced computation (in the form of an arithmetic 
circuit C) efficiently


Algebraic circuit: gates are addition or multiplication gates


Verifier knows the inputs to C


Computer/Prover’s cost: proportional to the size of the circuit |C|


Verifier’s cost: O(d log |C|) where d = depth of C


Verifier has the multi-linear extension of the “wiring predicates” 
for each level of C

+ cost of evaluating  
multi-linear extensions 

of input and wiring

What if Verifier doesn’t need 
to  know the entire input?



SNARKs

Recall an NP language: { x | #w s.t. (x,w) * R} where R is in P 
(i.e., a deterministic polynomial time computable language)


NP languages have a trivial non-interactive proof of 
knowledge: prover sends w and let verifier check if (x,w)*R


Suppose the verifier is only interested in x, not w, and |w| >> |x|


Succinct: the entire proof is shorter than the witness


Argument: soundness needs to hold only against polynomial time 
adversaries


Knowledge-soundess: For every PPT malicious prover P*, there is 
an extractor E s.t. for any x for which P* has a non-negligible 
probability p of convincing an honest verifier, E has close to 1 
probability of outputting w s.t. (x,w)*R, in poly(1/p) time

Succinct Non-Interactive Arguments of Knowledge



SNARKs

NP languages have a trivial non-interactive proof of knowledge: 
prover sends w and let verifier check if (x,w)*R


Use GKR to outsource the computation of R back to prover?


w still needs to be sent, and proof becomes interactive


Need to add knowledge-soundness


Avoiding sending w: Polynomial Commitment scheme


(x,w) is encoded as a multilinear polynomial X0·P(X1,…,Xk) +  (1-
X0)·P’(X1,…,Xk’) where P, P’ are multi-linear polynomials that 
encode x, w respectively. P’ is sent as a commitment.


Avoiding interaction: Fiat-Shamir Transformation


The above two need to also provide Knowledge Soundness

from Outsourced Computation



Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial oand later let 
the verifier (interactively) evaluate it on points of its choice


Generally, a multi-variate polynomial with a known number of 
variables and known degree 


e.g., a multi-linear polynomial in GKR. In some other 
applications, univariate polynomial of a known degree


Trivial solution: send the coefficients of the polynomial


But not succinct and evaluating the polynomial is expensive


Want verifier’s computation/communication to be sub-linear in 
the size of the polynomial


Non-trivial solutions: Using Merkle hashes and low-degree tests; 
from hardness of discrete logarithm; from bilinear pairings; using 
“IOPs”; …  [Later]



Removing Interaction

Recall GKR verifier sends random evaluation points as challenges


Can be sent by a trusted third party


Must be unpredictable for the adversary before sending (or 
committing) to the polynomial


OK to allow the adversary to try a polynomial number of 
times


Recall Random Oracle Model


Can use Hash(transcript) as the public random coin


Transcript includes the statement x


Otherwise, adversary can choose the statement to be one 
that passes the (already fixed) checks at the end

Fiat-Shamir Transformation



SNARKs

Interactive public-coin version:


Prover sends a polynomial commitment to P’ which is a multi-
linear extension of the witness 


Prover and Verifier run GKR, till the last step when verifier 
wants to evaluate X0·P(X1,…,Xk) + (1-X0)·P’(X1,…,Xk’) on a random 
point. Verifier knows P, and uses the polynomial commitment to 
evaluate P’


Even if the polynomial commitment scheme allows a fraction 
of the committed points to not match the committed 
polynomial, this fraction just adds to the soundness error


Can reduce the error by independent parallel repetitions


If the polynomial commitment is knowledge-sound the 
interactive proof is knowledge-sound

from Outsourced Computation



SNARKs

Interactive public-coin version:


Prover sends a polynomial commitment to P’ which is a multi-
linear extension of the witness 


Prover and Verifier run GKR, till the last step when verifier 
wants to evaluate X0·P(X1,…,Xk) + (1-X0)·P’(X1,…,Xk’) on a random 
point. Verifier knows P, and uses the polynomial commitment to 
evaluate P’


If the polynomial commitment is knowledge-sound the 
interactive proof is knowledge-sound


Non-interactive version: Using Fiat-Shamir Transformation


Fact: Fiat-Shamir transformation retains knowledge-soundness of 
the interactive version (in the Random Oracle Model)

from Outsourced Computation



SNARKs
PCP allows verifying a proof by reading a few positions


A proof Ã, which the verifier queries on a few places chosen 
probabilistically and checks a predicate of the statement and 
the query/answers. Perfect completeness, and soundness error 
at most 1/2 (say). 


PCP Theorem: Every NP language L has a PCP in which the proof 
for x*L is poly(|x|) long, the verifier queries a constant number 
of positions chosen using O(log |x|) bits


PCP + Merkle tree commitments gives a succinct interactive proof


Ã is committed, and queries are answered by opening bits of Ã


Queries by the PCP verifier are public-coin


So can make it non-interactive by Fiat-Shamir heuristic


PCPs are not very concretely efficient: too much work for prover

from PCPs



SNARKs

PCP with a very long (super-polynomial) but more structured proof


Proof Ã is the evaluation of a multi-linear polynomial with 0 as 
the constant term


Ã[ax+by] = aÃ[x] + bÃ[y] for x,y * Fk and a,b * F


Idea: can commit to such a multi-linear polynomial efficiently 
[Later]


Linear PCPs + non-interactive multi-linear polynomial commitment 
schemes yield practical SNARKs


e.g., “Groth16”

from Linear PCPs



SNARKs

MIP in which one prover is asked to evaluate a polynomial at one 
point and the other is asked to evaluate it in a line passing 
through that point (without revealing the point)


The second prover is used to prevent the first prover from 
adaptively choosing how to answer


Use a polynomial commitment scheme instead of the second 
prover: the single prover must now evaluate the polynomial at 
the random point 

from MIPs



SNARKs

Interactive version of PCP: Allow committing to multiple strings 
over multiple rounds


Can be made into a proof system using Merkle hashes


Polynomial IOP: the strings are polynomial evaluations


Can be implemented using any polynomial commitment scheme


In particular, there are polynomial commitment schemes which 
are derived from “standard” IOPs (in turn implemented using 
Merkle hashes)


Public coin


So that it can be made non-interactive

from IOPs


