Polynomial Commitments

Lecture 19
Discrete Log-based Approaches

ypolynomial Commitment

@ Prover wants to (succinctly) commit to a polynomial oand later let
the verifier (interactively) evaluate it on points of its choice

@ Generally, a multi-variate polynomial with a known number of
variables and known degree

@ e.g., a mulfi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

@ Trivial solution: send the coefficients of the polynomial
@ But not succinct and evaluating the polynomial is expensive

@ Want verifiers computation/communication to be sub-linear in
the size of the polynomial

@ Non-trivial solutions: Using Merkle hashes and low-degree tests;

from hardness of discrete logarithm; from bilinear pairings; using
"IOPs”; ...

Polynomial Commitment

@ Today: Discrete Log based approaches
@ Based on homomorphic commitment
@ First scheme: short commitments, long proofs

@ Second scheme: Bulletproofs: short commitments and proofs, but
verification ftime is still linear

@ Using bilinear pairings (later), can reduce the verification time
as well

@ Tools: homomorphic commitments and Sigma protocols (3-message,

public-coin, honest verifier ZK proofs with “special soundness”)
A

Not important for (non-zZK) SNARKs.

HVZK Proof of Knowledge

@ Proof of Knowledge: If an adversary can give valid proofs (with
significant probability), then there is an efficient way to extract a
witness from that adversary

@ A ZK Proof of knowledge of discrete log of Y=gY

Will require p to be a prime.
Operations in the exponents are in I}

@ P>V: R:=gqg
V—P: X ¥
P—V: s :=xy + r (modulo order of the group, p)
V checks: g¢ = YxR

@ Proof of Knowledge:

@ Firstly, g =YXR = s = xy+r, where R = gr

@ If after sending R, P could respond to two different
challenges x; and Xz as s;1 = X1y + r and sz = X2y + T,
then can solve for y (in [,)

@ HVZK: simulation picks s, x first and sets R = gs/Yx

HVZK and Special Soundness

® HVZK: Simulation for honest (passively corrupt) verifier

@ e.g. in PoK of discrete log, simulator picks (x,s) first and
computes R (without knowing r). Relies on verifier to pick x
independent of R.

® Special soundness: If given (R,x,s) and (R,x’,s") s.t. x#x and both
accepted by verifier, then can derive a valid witness

@ e.g. solve y from s=xy+r and s'=x"y+r (given x,s,x’,s’)

® Implies soundness: for each R s.t. prover has significant
probability of being able to convince, can extract y from the
prover with comparable probability (using “rewinding”, in a
stand-alone setting)

Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y).(h,Z2)),
i.,e., Y = g” and Z = hy [Chaum-Pederson]

a P—-V: (RW) := (gr') Two parallel executions of the previous proof,
VP x with same x and s (forcing same r, v)

P—V: s :=xy + r (modulo order of the group, p)
V checks: g¢ =Y*R and hs = ZxW
Special Soundness:
@ g=YRand hs = ZXW = s = Xy+r = Xy +r’
where R=gr, Y=g” and W=hr, Z=hY’
o If two accepting transcripts (R,W,x1,s1) and (RW,X2,52) (xi#x2), then
Si=Xiy +r=xiy+r and sz = Xzy + r = X2y + r. Then can find
Y = y,= (51—52)/(X1—X2) (il‘l Fp).
HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

A Commitment Scheme

@ Pedersen commitment: public parameters of the scheme encode a

prime-order group from a family where discrete log is assumed to be
hard

@ Commit(x;r) = hrgx where g,h are generators of the group, which
are also included in the public parameters

@ Hiding is information-theoretic: Writing g=he, r+ax is

Not needed | uniformly distributed when r is uniformly random
for (non-zK)

SNARKs. can | Binding is based on discrete log: Giving (x,r), (x',r’) s.t. x#x’
take r=0 (i.e.| and r+ax = r'+ax’ allows for solving a=(r-r’)/(x’-x). Breaks
omit) the discrete log assumption

@ Vector variant=ta_commit to a vector x = (xi,...,xn) € Fy

@ Public params: generaters gi,....gn,h (and the group parameters)

@ Commit(xy,..,xn;r) = hr+ T g*i. Hiding as before. Binding by a
similar reduction but it guesses i s.t. xi # x; .

A Commitment Scheme

@ Pedersen commitment is homomorphic

@ Given commitments Commit(x;r) = hrgx and Commit(x’;r’) = hr'gx’
can compute Commit(x+x';r”) as (hrgx) (hr'gx) = hr+'gx+x, where
r=r+r’

@ In the vector variant as well

a From Commit(x,..,Xn;)=hrTl; gxi and Commit(x'y,..,X n;r")=hr"-Tl; gi¥’
can compute Commit(Xi+X'1,.., Xn+X n;T+T")

Polynomial Commitment

Will support committing to a vector x = (xy,....xn) € F§ and showing that

for another known vector ¥y = (yy,...¥n) € 7, <X,y> = u

@ Enough for polynomial commitment: P(«) = <X,y>, where x are the

coefficients of the polynomial P in an appropriate basis, and y has
the corresponding basis polynomials evaluated at «

@ For univariate polynomials in standard basis: y = (1, «, «2, ..., an-1)

Will commit to X using Pedersen vector commitment. Also commit fo an
auxiliary vector d € Ip

To evaluate <x,y>, send z = <X,y> and s = «d,y>
Short commitment ’

Verifier sends B < Fp. Also computes Commit(3x+d) Long proof |

Prover opens this commitment fo w. Verifier checks the opening and

that <w,y> = 3z+s

Bulletproofs

@ Goal: To reduce the proof size
@ Proof verification will still be linear time
@ High level idea: Divide, combine and conquer
o Divide: Split the vector into two vectors of half the length

@ Combine: A single problem obtained by merging the two sub-
problems with a random weight

@ Conquer: Recurse

Q 0

Bulletproofs

Proof of Knowledge of Commitment

erhng g = gGi, elals| G:(G1,---,Gn), COmmi’r(x;o) = g<x,G>
A short proof for knowledge of X, given G and gx.&
Let x = x. || Xz where x(, xr € F§’2. Similarly G = G_ || Gg

Then <xX,G> = <X.,GL> + <Xr,Gr>

Idea: come up with randomly combined vectors x’, G’ such that verifying

knowledge of x’ given g«'6> is enough to verify knowledge of x

o Try X' = ax.L + BXr, G’ = BGL + aGr so that
<x’,G'> = aB <%X,G> + a2 <X.,Gr> + B2 <Xr,GL>

o Will take B = ! : <x’,G"> = <X,G> + o2 <XL,Gr> + a2 <Xr,GL>

@ Prover will send g*.6r>, g*r6.> (before seeing «). After seeing «,
they recurse on gx&[gxL6r]** [g*r6L]** for gx'6>.

@ Base case: send X

Special soundness: From x’ for two values of «, can compute x. and Xr
Turns out, extraction works recursively

Bulletproofs

Polynomial Commitment

@ Recall: To support committing to a vector x = (xi,...,.xn) € Iy and showing
that for another known vector y = (yi,..,.yn) € Fp, <X,y> = u
@ Idea: In addition to proving knowledge of x given g*&>, also need to
show <X,y> = u. Two parallel executions for <x,G> and <X,y>.
@ Verifier already has g*& and <x,y>
@ Prover sends gxu6r>, g*REL>, <X, YL>, <Xr,Yr>. Verifier sends a<I,
o <X',G'> = <X,G> + a2 <XL,GL> + a2 <Xg,Gr>
<X’V = <X, + a2 <XLYL> + a2 <XR,YR>
@ They recurse on gx'6> and <x’,y’>

@ Base case: Send x. Verifier checks g*&> and <X,y>
@ Note: This is not hiding, but can be upgraded to be so
@ Is public coin: Can apply Fiat-Shamir

