Polynomial Commitments

Lecture 19 Discrete Log-based Approaches

Polynomial Commitment

Recall

- Prover wants to (succinctly) commit to a polynomial oand later let the verifier (interactively) evaluate it on points of its choice
 - Generally, a multi-variate polynomial with a known number of variables and known degree
 - e.g., a multi-linear polynomial in GKR. In some other applications, univariate polynomial of a known degree
- Trivial solution: send the coefficients of the polynomial
 - But not succinct and evaluating the polynomial is expensive
 - Want verifier's computation/communication to be sub-linear in the size of the polynomial
- Non-trivial solutions: Using Merkle hashes and low-degree tests; from hardness of discrete logarithm; from bilinear pairings; using "IOPs"; ...

Polynomial Commitment

- Today: Discrete Log based approaches
 - Based on homomorphic commitment
- First scheme: short commitments, long proofs
- Second scheme: Bulletproofs: short commitments and proofs, but verification time is still linear
 - Using bilinear pairings (later), can reduce the verification time as well
- Tools: homomorphic commitments and Sigma protocols (3-message, public-coin, honest verifier ZK proofs with "special soundness")

Not important for (non-ZK) SNARKs.

HVZK Proof of Knowledge

- Proof of Knowledge: If an adversary can give valid proofs (with significant probability), then there is an efficient way to extract a witness from that adversary
- A ZK Proof of knowledge of discrete log of Y=g^y

 - Proof of Knowledge:
 - $\textcircled{Firstly, g^s = Y^{\times}R} \Rightarrow s = xy+r, where R = g^r$
 - If after sending R, P <u>could</u> respond to two different challenges x_1 and x_2 as $s_1 = x_1y + r$ and $s_2 = x_2y + r$, then can solve for y (in \mathbb{F}_p)
 - HVZK: simulation picks s, x first and sets R = g^s/Y[×]

HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks (x,s) first and computes R (without knowing r). Relies on verifier to pick x independent of R.
- Special soundness: If given (R,x,s) and (R,x',s') s.t. x≠x' and both accepted by verifier, then can derive a valid witness
 - e.g. solve y from s=xy+r and s'=x'y+r (given x,s,x',s')
 - Implies soundness: for each R s.t. prover has significant probability of being able to convince, can extract y from the prover with comparable probability (using "rewinding", in a stand-alone setting)

Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)),
 i.e., Y = g^y and Z = h^y [Chaum-Pederson]

P \rightarrow V: (R,W) := (g^r, h^r)
V \rightarrow P: x
P \rightarrow V: s := xy + r (modulo order of the group, p)
V checks: g^s = Y × R and h^s = Z × W

Special Soundness:

- $g^s = Y^*R$ and $h^s = Z^*W \implies s = xy+r = xy'+r'$ where $R=g^r$, $Y=g^y$ and $W=h^{r'}$, $Z=h^{y'}$
- If two accepting transcripts (R,W,x_1,s_1) and (R,W,x_2,s_2) $(x_1\neq x_2)$, then $s_1 = x_1y + r = x_1y' + r'$ and $s_2 = x_2y + r = x_2y' + r'$. Then can find $y = y' = (s_1-s_2)/(x_1-x_2)$ (in \mathbb{F}_p).

HVZK: simulation picks x, s first and sets R=g^s/Y^x, W=h^s/Z^x

A Commitment Scheme

- Pedersen commitment: <u>public parameters</u> of the scheme encode a <u>prime-order</u> group from a family where discrete log is assumed to be hard
 - Commit(x;r) = h^rg^x where g,h are generators of the group, which are also included in the public parameters

Not needed for (non-ZK) SNARKs. Can take r=0 (i.e., omit h)

3

Hiding is information-theoretic: Writing $g=h^a$, r+ax is uniformly distributed when r is uniformly random Binding is based on discrete log: Giving (x,r), (x',r') s.t. $x\neq x'$ and r+ax = r'+ax' allows for solving a=(r-r')/(x'-x). Breaks the discrete log assumption

• Vector variant: to commit to a vector $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_p^n$

- Public params: generators g_1, \dots, g_n , h (and the group parameters)
- Commit(x₁,..,x_n;r) = h^r · Π_i g_i×ⁱ. Hiding as before. Binding by a similar reduction but it guesses i s.t. x_i ≠ x_i'.

A Commitment Scheme

Pedersen commitment is homomorphic

- Given commitments Commit(x;r) = h^rg[×] and Commit(x';r') = h^rg^{×'} can compute Commit(x+x';r") as (h^rg[×]) (h^{r'}g^{×'}) = h^{r+r'}g^{×+×'}, where r"=r+r'
- In the vector variant as well
 - From Commit(x₁,..,x_n;r)= $h^r \cdot \Pi_i g_i^{x_i}$ and Commit(x'₁,..,x'_n;r')= $h^{r'} \cdot \Pi_i g_i^{x'_i}$ can compute Commit(x₁+x'₁,..,x_n+x'_n;r+r')

Polynomial Commitment

• Will support committing to a vector $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_p^n$ and showing that for another known vector $\mathbf{y} = (y_1, ..., y_n) \in \mathbb{F}_p^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = u$

• Enough for polynomial commitment: $P(\alpha) = \langle \mathbf{x}, \mathbf{y} \rangle$, where \mathbf{x} are the coefficients of the polynomial P in an appropriate basis, and \mathbf{y} has the corresponding basis polynomials evaluated at α

• For univariate polynomials in standard basis: $\mathbf{y} = (1, \alpha, \alpha^2, ..., \alpha^{n-1})$ Will commit to \mathbf{x} using Pedersen vector commitment. Also commit to an auxiliary vector $\mathbf{d} \in \mathbb{F}_p^n$

- To evaluate $\langle \mathbf{x}, \mathbf{y} \rangle$, send $z = \langle \mathbf{x}, \mathbf{y} \rangle$ and $s = \langle \mathbf{d}, \mathbf{y} \rangle$
- Verifier sends $\beta \leftarrow \mathbb{F}_p$. Also computes Commit($\beta \mathbf{x} + \mathbf{d}$)

Short commitment

Long proof

 Prover opens this commitment to w. Verifier checks the opening and that <w,y> = βz+s

Bulletproofs

- Goal: To reduce the proof size
 - Proof verification will still be linear time
- High level idea: Divide, combine and conquer
 - Divide: Split the vector into two vectors of half the length
 - Combine: A single problem obtained by merging the two subproblems with a random weight
 - Conquer: Recurse

Bulletproofs Proof of Knowledge of Commitment

- Writing $g_i = g^{G_i}$, and $G=(G_1,...,G_n)$, Commit(\mathbf{x} ;0) = $g^{\langle \mathbf{x}, G \rangle}$
- A short proof for knowledge of x, given G and g^{x,G}
- Let $\mathbf{x} = \mathbf{x}_L \parallel \mathbf{x}_R$ where $\mathbf{x}_L, \mathbf{x}_R \in \mathbb{F}_p^{n/2}$. Similarly $\mathbf{G} = \mathbf{G}_L \parallel \mathbf{G}_R$

Then $\langle \mathbf{x}, \mathbf{G} \rangle = \langle \mathbf{x}_L, \mathbf{G}_L \rangle + \langle \mathbf{x}_R, \mathbf{G}_R \rangle$

- Idea: come up with randomly combined vectors x', G' such that verifying knowledge of x' given g^{<x',G'>} is enough to verify knowledge of x
 - Try $\mathbf{x}' = \alpha \mathbf{x}_{L} + \beta \mathbf{x}_{R}$, $\mathbf{G}' = \beta \mathbf{G}_{L} + \alpha \mathbf{G}_{R}$ so that $\langle \mathbf{x}', \mathbf{G}' \rangle = \alpha \beta \langle \mathbf{x}, \mathbf{G} \rangle + \alpha^{2} \langle \mathbf{x}_{L}, \mathbf{G}_{R} \rangle + \beta^{2} \langle \mathbf{x}_{R}, \mathbf{G}_{L} \rangle$
 - Will take $\beta = \alpha^{-1} : \langle \mathbf{x}', \mathbf{G}' \rangle = \langle \mathbf{x}, \mathbf{G} \rangle + \alpha^2 \langle \mathbf{x}_L, \mathbf{G}_R \rangle + \alpha^{-2} \langle \mathbf{x}_R, \mathbf{G}_L \rangle$
 - Prover will send g^{<x}_L,^G_R>, g^{<x}_R,^G_L> (before seeing α). After seeing α, they recurse on g^{<x},^G>[g^{<x}_L,^G_R>]^{α²} [g^{<x}_R,^G_L>]^{α⁻²} for g^{<x'},^{G'}>.
 - Base case: send x

• Special soundness: From \mathbf{x}' for two values of α , can compute \mathbf{x}_{L} and \mathbf{x}_{R} • Turns out, extraction works recursively Bulletproofs
 Polynomial Commitment
 Recall: To support committing to a vector x = (x₁,...,x_n) ∈ Fⁿ_p and showing that for another known vector y = (y₁,...,y_n) ∈ Fⁿ_p, <x,y> = u

Idea: In addition to proving knowledge of x given g^{<x,G>}, also need to show <x,y> = u. Two parallel executions for <x,G> and <x,y>.

Verifier already has g^{<x,G>} and <x,y>

• Prover sends $g^{(x_L,G_R)}$, $g^{(x_R,G_L)}$, (x_L,y_L) , (x_R,y_R) . Verifier sends $\alpha \leftarrow \mathbb{F}_p$

• $\langle \mathbf{x}', \mathbf{G}' \rangle = \langle \mathbf{x}, \mathbf{G} \rangle + \alpha^2 \langle \mathbf{x}_L, \mathbf{G}_L \rangle + \alpha^{-2} \langle \mathbf{x}_R, \mathbf{G}_R \rangle$ $\langle \mathbf{x}', \mathbf{y}' \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \alpha^2 \langle \mathbf{x}_L, \mathbf{y}_L \rangle + \alpha^{-2} \langle \mathbf{x}_R, \mathbf{y}_R \rangle$

• They recurse on g^{<x',G'>} and <x',y'>

Base case: Send x. Verifier checks g^{<x,G>} and <x,y>
 Note: This is not hiding, but can be upgraded to be so
 Is public coin: Can apply Fiat-Shamir