Polynomial Commitments

Lecture 19
Discrete Log-based Approaches
Polynomial Commitment

- Prover wants to (succinctly) commit to a polynomial and later let the verifier (interactively) evaluate it on points of its choice.

- Generally, a multi-variate polynomial with a known number of variables and known degree.
 - e.g., a multi-linear polynomial in GKR. In some other applications, univariate polynomial of a known degree.

- Trivial solution: send the coefficients of the polynomial.
 - But not succinct and evaluating the polynomial is expensive.
 - Want verifier’s computation/communication to be sub-linear in the size of the polynomial.

- Non-trivial solutions: Using Merkle hashes and low-degree tests; from hardness of discrete logarithm; from bilinear pairings; using “IOPs”; ...
Today: Discrete Log based approaches

Based on homomorphic commitment

First scheme: short commitments, long proofs

Second scheme: Bulletproofs: short commitments and proofs, but verification time is still linear

Using bilinear pairings (later), can reduce the verification time as well

Tools: homomorphic commitments and Sigma protocols (3-message, public-coin, honest verifier ZK proofs with “special soundness”)

Not important for (non-ZK) SNARKs.
HVZK Proof of Knowledge

Proof of Knowledge: If an adversary can give valid proofs (with significant probability), then there is an efficient way to extract a witness from that adversary.

A ZK Proof of knowledge of discrete log of $Y = g^y$

- $P \rightarrow V: R := g^r$
- $V \rightarrow P: x$
- $P \rightarrow V: s := xy + r \pmod{\text{order of the group, } p}$
- V checks: $g^s = Y^x R$

Proof of Knowledge:
- Firstly, $g^s = Y^x R \Rightarrow s = xy + r$, where $R = g^r$
- If after sending R, P could respond to two different challenges x_1 and x_2 as $s_1 = x_1 y + r$ and $s_2 = x_2 y + r$, then can solve for $y \pmod{F_p}$

HVZK: simulation picks s, x first and sets $R = g^s / Y^x$
HVZK and Special Soundness

- **HVZK**: Simulation for honest (passively corrupt) verifier
 - e.g. in PoK of discrete log, simulator picks \((x, s)\) first and computes \(R\) (without knowing \(r\)). Relies on verifier to pick \(x\) independent of \(R\).

- **Special soundness**: If given \((R, x, s)\) and \((R, x', s')\) s.t. \(x \neq x'\) and both accepted by verifier, then can derive a valid witness
 - e.g. solve \(y\) from \(s = xy + r\) and \(s' = x'y + r\) (given \(x, s, x', s'\))

- **Implies soundness**: for each \(R\) s.t. prover has significant probability of being able to convince, can extract \(y\) from the prover with comparable probability (using “rewinding”, in a stand-alone setting)
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for \(((g,Y),(h,Z))\), i.e., \(Y = g^y\) and \(Z = h^y\) [Chaum-Pederson]

- **P→V:** \((R,W) := (g^r, h^r)\)
- **V→P:** \(x\)
- **P→V:** \(s := xy + r \mod \text{order of the group, } p\)
- **V checks:** \(g^s = Y^x R\) and \(h^s = Z^x W\)

Special Soundness:
- \(g^s = Y^x R\) and \(h^s = Z^x W\) \(\Rightarrow\) \(s = xy + r = xy' + r'\)
 - where \(R = g^r, Y = g^y\) and \(W = h^r, Z = h^{y'}\)
- If two accepting transcripts \((R,W,x_1,s_1)\) and \((R,W,x_2,s_2)\) \((x_1 \neq x_2)\), then \(s_1 = x_1y + r = x_1y' + r'\) and \(s_2 = x_2y + r = x_2y' + r'\). Then can find \(y = y' = (s_1 - s_2)/(x_1 - x_2)\) (in \(F_p\)).

HVZK: simulation picks \(x, s\) first and sets \(R = g^s/Y^x, W = h^s/Z^x\)
A Commitment Scheme

- Pedersen commitment: public parameters of the scheme encode a prime-order group from a family where discrete log is assumed to be hard

 \[\text{Commit}(x; r) = h^r g^x \]
 where \(g, h \) are generators of the group, which are also included in the public parameters

- Hiding is information-theoretic: Writing \(g = h^a \), \(r + ax \) is uniformly distributed when \(r \) is uniformly random

- Binding is based on discrete log: Giving \((x, r), (x', r') \) s.t. \(x \neq x' \) and \(r + ax = r' + ax' \) allows for solving \(a = (r - r')/(x' - x) \). Breaks the discrete log assumption

- Vector variant: to commit to a vector \(x = (x_1, \ldots, x_n) \in \mathbb{F}_p^n \)

 \[\text{Commit}(x_1, \ldots, x_n; r) = h^r \cdot \prod_i g_i^{x_i} \]
 Hiding as before. Binding by a similar reduction but it guesses \(i \) s.t. \(x_i \neq x_i' \).
A Commitment Scheme

- Pedersen commitment is homomorphic
 - Given commitments \(\text{Commit}(x; r) = h^r g^x \) and \(\text{Commit}(x'; r') = h^{r'} g^{x'} \)
 can compute \(\text{Commit}(x + x'; r'') = (h^r g^x) (h^{r'} g^{x'}) = h^{r + r'} g^{x + x'} \), where \(r'' = r + r' \)

- In the vector variant as well
 - From \(\text{Commit}(x_1, \ldots, x_n; r) = h^r \prod_i g^{x_i} \) and \(\text{Commit}(x'_1, \ldots, x'_n; r') = h^{r'} \prod_i g^{x'_i} \)
 can compute \(\text{Commit}(x_1 + x'_1, \ldots, x_n + x'_n; r + r') \)
Polynomial Commitment

Will support committing to a vector \(\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_p^n \) and showing that for another known vector \(\mathbf{y} = (y_1, ..., y_n) \in \mathbb{F}_p^n, \langle \mathbf{x}, \mathbf{y} \rangle = u \)

Enough for polynomial commitment: \(P(\alpha) = \langle \mathbf{x}, \mathbf{y} \rangle \), where \(\mathbf{x} \) are the coefficients of the polynomial \(P \) in an appropriate basis, and \(\mathbf{y} \) has the corresponding basis polynomials evaluated at \(\alpha \)

For univariate polynomials in standard basis: \(\mathbf{y} = (1, \alpha, \alpha^2, ..., \alpha^{n-1}) \)

Will commit to \(\mathbf{x} \) using Pedersen vector commitment. Also commit to an auxiliary vector \(\mathbf{d} \in \mathbb{F}_p^n \)

To evaluate \(\langle \mathbf{x}, \mathbf{y} \rangle \), send \(z = \langle \mathbf{x}, \mathbf{y} \rangle \) and \(s = \langle \mathbf{d}, \mathbf{y} \rangle \)

Verifier sends \(\beta \in \mathbb{F}_p \). Also computes \(\text{Commit}(\beta \mathbf{x} + \mathbf{d}) \)

Prover opens this commitment to \(w \). Verifier checks the opening and that \(\langle w, \mathbf{y} \rangle = \beta z + s \)
Bulletproofs

- Goal: To reduce the proof size
 - Proof verification will still be linear time
- High level idea: Divide, combine and conquer
 - Divide: Split the vector into two vectors of half the length
 - Combine: A single problem obtained by merging the two sub-problems with a random weight
 - Conquer: Recurse
Bulletproofs

Proof of Knowledge of Commitment

Writing $g_i = g^{G_i}$, and $G = (G_1, \ldots, G_n)$, $\text{Commit}(x; 0) = g^{<x, G>}$

A short proof for knowledge of x, given G and $g^{<x, G>}$

Let $x = x_L \parallel x_R$ where $x_L, x_R \in \mathbb{F}_p^{n/2}$. Similarly $G = G_L \parallel G_R$

Then $<x, G> = <x_L, G_L> + <x_R, G_R>$

Idea: come up with randomly combined vectors x', G' such that verifying knowledge of x' given $g^{<x', G>}$ is enough to verify knowledge of x

Try $x' = \alpha x_L + \beta x_R$, $G' = \beta G_L + \alpha G_R$ so that

$<x', G'> = \alpha \beta <x, G> + \alpha^2 <x_L, G_R> + \beta^2 <x_R, G_L>$

Will take $\beta = \alpha^{-1}: <x', G'> = <x, G> + \alpha^2 <x_L, G_R> + \alpha^{-2} <x_R, G_L>$

Prover will send $g^{<x_L, G_R>}$, $g^{<x_R, G_L>}$ (before seeing α). After seeing α, they recurse on $g^{<x, G>[g^{<x_L, G_R>}]^{2 \alpha} [g^{<x_R, G_L>}]^{-2 \alpha}}$ for $g^{<x', G'>}$.

Base case: send x

Special soundness: From x' for two values of α, can compute x_L and x_R

Turns out, extraction works recursively
Bulletproofs

Polynomial Commitment

Recall: To support committing to a vector \(\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_p^n \) and showing that for another known vector \(\mathbf{y} = (y_1, ..., y_n) \in \mathbb{F}_p^n \), \(\langle \mathbf{x}, \mathbf{y} \rangle = u \).

Idea: In addition to proving knowledge of \(\mathbf{x} \) given \(g^{\langle \mathbf{x}, \mathbf{G} \rangle} \), also need to show \(\langle \mathbf{x}, \mathbf{y} \rangle = u \). Two parallel executions for \(\langle \mathbf{x}, \mathbf{G} \rangle \) and \(\langle \mathbf{x}, \mathbf{y} \rangle \).

Verifier already has \(g^{\langle \mathbf{x}, \mathbf{G} \rangle} \) and \(\langle \mathbf{x}, \mathbf{y} \rangle \).

Prover sends \(g^{\langle \mathbf{x}_L, \mathbf{G}_R \rangle} \), \(g^{\langle \mathbf{x}_R, \mathbf{G}_L \rangle} \), \(\langle \mathbf{x}_L, \mathbf{y}_L \rangle \), \(\langle \mathbf{x}_R, \mathbf{y}_R \rangle \). Verifier sends \(\alpha \leftarrow \mathbb{F}_p \).

\[
\langle \mathbf{x}', \mathbf{G}' \rangle = \langle \mathbf{x}, \mathbf{G} \rangle + \alpha^2 \langle \mathbf{x}_L, \mathbf{G}_L \rangle + \alpha^{-2} \langle \mathbf{x}_R, \mathbf{G}_R \rangle
\]

\[
\langle \mathbf{x}', \mathbf{y}' \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \alpha^2 \langle \mathbf{x}_L, \mathbf{y}_L \rangle + \alpha^{-2} \langle \mathbf{x}_R, \mathbf{y}_R \rangle
\]

They recurse on \(g^{\langle \mathbf{x}', \mathbf{G}' \rangle} \) and \(\langle \mathbf{x}', \mathbf{y}' \rangle \).

Base case: Send \(\mathbf{x} \). Verifier checks \(g^{\langle \mathbf{x}, \mathbf{G} \rangle} \) and \(\langle \mathbf{x}, \mathbf{y} \rangle \).

Note: This is not hiding, but can be upgraded to be so.

Is public coin: Can apply Fiat–Shamir.