
Polynomial Commitments
Lecture 19

Discrete Log-based Approaches

Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial oand later let
the verifier (interactively) evaluate it on points of its choice

Generally, a multi-variate polynomial with a known number of
variables and known degree

e.g., a multi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

Trivial solution: send the coefficients of the polynomial

But not succinct and evaluating the polynomial is expensive

Want verifier’s computation/communication to be sub-linear in
the size of the polynomial

Non-trivial solutions: Using Merkle hashes and low-degree tests;
from hardness of discrete logarithm; from bilinear pairings; using
“IOPs”; …

Re
ca
ll

Polynomial Commitment

Today: Discrete Log based approaches

Based on homomorphic commitment

First scheme: short commitments, long proofs

Second scheme: Bulletproofs: short commitments and proofs, but
verification time is still linear

Using bilinear pairings (later), can reduce the verification time
as well

Tools: homomorphic commitments and Sigma protocols (3-message,
public-coin, honest verifier ZK proofs with “special soundness”)

Not important for (non-ZK) SNARKs.

HVZK Proof of Knowledge
Proof of Knowledge: If an adversary can give valid proofs (with
significant probability), then there is an efficient way to extract a
witness from that adversary

A ZK Proof of knowledge of discrete log of Y=gy

P³V: R := gr
V³P: x
P³V: s := xy + r (modulo order of the group, p)
V checks: gs = Yx R

Proof of Knowledge:

Firstly, gs = Yx R ⇒ s = xy+r, where R = gr

If after sending R, P could respond to two different
challenges x1 and x2 as s1 = x1y + r and s2 = x2y + r,
then can solve for y (in Fp)

HVZK: simulation picks s, x first and sets R = gs/Yx

Will require p to be a prime.
Operations in the exponents are in Fp

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (x,s) first and
computes R (without knowing r). Relies on verifier to pick x
independent of R.

Special soundness: If given (R,x,s) and (R,x’,s’) s.t. xbx’ and both
accepted by verifier, then can derive a valid witness

e.g. solve y from s=xy+r and s’=x’y+r (given x,s,x’,s’)

Implies soundness: for each R s.t. prover has significant
probability of being able to convince, can extract y from the
prover with comparable probability (using “rewinding”, in a
stand-alone setting)

Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)),
i.e., Y = gy and Z = hy [Chaum-Pederson]

P³V: (R,W) := (gr, hr)
V³P: x
P³V: s := xy + r (modulo order of the group, p)
V checks: gs = Yx R and hs = Zx W

Special Soundness:

gs = YxR and hs = ZxW ⇒ s = xy+r = xy’+r’
where R=gr, Y=gy and W=hr’, Z=hy’

If two accepting transcripts (R,W,x1,s1) and (R,W,x2,s2) (x1bx2), then
s1 = x1y + r = x1y’+ r’ and s2 = x2y + r = x2y’+ r’. Then can find
y = y’= (s1-s2)/(x1-x2) (in Fp).

HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

Two parallel executions of the previous proof,
with same x and s (forcing same r, y)

A Commitment Scheme
Pedersen commitment: public parameters of the scheme encode a
prime-order group from a family where discrete log is assumed to be
hard

Commit(x;r) = hrgx where g,h are generators of the group, which
are also included in the public parameters

Hiding is information-theoretic: Writing g=ha, r+ax is
uniformly distributed when r is uniformly random

Binding is based on discrete log: Giving (x,r), (x’,r’) s.t. xbx’
and r+ax = r’+ax’ allows for solving a=(r-r’)/(x’-x). Breaks
the discrete log assumption

Vector variant: to commit to a vector x = (x1,…,xn) * Fp
n

Public params: generators g1,…,gn,h (and the group parameters)

Commit(x1,..,xn;r) = hr · /i gixi. Hiding as before. Binding by a
similar reduction but it guesses i s.t. xi b xi’.

Not needed
for (non-ZK)
SNARKs. Can
take r=0 (i.e.,
omit h)

A Commitment Scheme

Pedersen commitment is homomorphic

Given commitments Commit(x;r) = hrgx and Commit(x’;r’) = hr’gx’
can compute Commit(x+x’;r’’) as (hrgx) (hr’gx’) = hr+r’gx+x’, where
r’’=r+r’

In the vector variant as well

From Commit(x1,..,xn;r)=hr·/i gixi and Commit(x’1,..,x’n;r’)=hr’·/i gix’i
can compute Commit(x1+x’1,..,xn+x’n;r+r’)

Polynomial Commitment
Will support committing to a vector x = (x1,…,xn) * Fp

n and showing that

for another known vector y = (y1,…,yn) * Fp
n, <x,y> = u

Enough for polynomial commitment: P(³) = <x,y>, where x are the

coefficients of the polynomial P in an appropriate basis, and y has
the corresponding basis polynomials evaluated at ³

For univariate polynomials in standard basis: y = (1, ³, ³2, …, ³n-1)

Will commit to x using Pedersen vector commitment. Also commit to an

auxiliary vector d * Fp
n

To evaluate <x,y>, send z = <x,y> and s = <d,y>

Verifier sends ´ ± Fp. Also computes Commit(´x+d)

Prover opens this commitment to w. Verifier checks the opening and

that <w,y> = ´z+s

Short commitment

Long proof

Bulletproofs

Goal: To reduce the proof size

Proof verification will still be linear time

High level idea: Divide, combine and conquer

Divide: Split the vector into two vectors of half the length

Combine: A single problem obtained by merging the two sub-
problems with a random weight

Conquer: Recurse

Bulletproofs

Writing gi = gGi, and G=(G1,…,Gn), Commit(x;0) = g<x,G>

A short proof for knowledge of x, given G and g<x,G>

Let x = xL || xR where xL, xR * Fp
n/2. Similarly G = GL || GR

Then <x,G> = <xL,GL> + <xR,GR>

Idea: come up with randomly combined vectors x’, G’ such that verifying
knowledge of x’ given g<x’,G’> is enough to verify knowledge of x

Try x’ = ³xL + ´xR, G’ = ´GL + ³GR so that
<x’,G’> = ³´ <x,G> + ³2 <xL,GR> + ´2 <xR,GL>

Will take ´ = ³-1 : <x’,G’> = <x,G> + ³2 <xL,GR> + ³-2 <xR,GL>

Prover will send g<xL,GR>, g<xR,GL> (before seeing ³). After seeing ³,
they recurse on g<x,G>[g<xL,GR>]³2 [g<xR,GL>]³-2 for g<x’,G’>.

Base case: send x

Special soundness: From x’ for two values of ³, can compute xL and xR

Turns out, extraction works recursively

Proof of Knowledge of Commitment

Bulletproofs

Recall: To support committing to a vector x = (x1,…,xn) * Fp
n and showing

that for another known vector y = (y1,…,yn) * Fp
n, <x,y> = u

Idea: In addition to proving knowledge of x given g<x,G>, also need to

show <x,y> = u. Two parallel executions for <x,G> and <x,y>.

Verifier already has g<x,G> and <x,y>

Prover sends g<xL,GR>, g<xR,GL>, <xL,yL>, <xR,yR>. Verifier sends ³±Fp

<x’,G’> = <x,G> + ³2 <xL,GL> + ³-2 <xR,GR>

<x’,y’> = <x,y> + ³2 <xL,yL> + ³-2 <xR,yR>

They recurse on g<x’,G’> and <x’,y’>

Base case: Send x. Verifier checks g<x,G> and <x,y>

Note: This is not hiding, but can be upgraded to be so

Is public coin: Can apply Fiat-Shamir

Polynomial Commitment

