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Discrete Log-based Approaches



Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial oand later let 
the verifier (interactively) evaluate it on points of its choice


Generally, a multi-variate polynomial with a known number of 
variables and known degree 


e.g., a multi-linear polynomial in GKR. In some other 
applications, univariate polynomial of a known degree


Trivial solution: send the coefficients of the polynomial


But not succinct and evaluating the polynomial is expensive


Want verifier’s computation/communication to be sub-linear in 
the size of the polynomial


Non-trivial solutions: Using Merkle hashes and low-degree tests; 
from hardness of discrete logarithm; from bilinear pairings; using 
“IOPs”; …  
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Polynomial Commitment

Today: Discrete Log based approaches


Based on homomorphic commitment


First scheme: short commitments, long proofs


Second scheme: Bulletproofs: short commitments and proofs, but 
verification time is still linear


Using bilinear pairings (later), can reduce the verification time 
as well


Tools: homomorphic commitments and Sigma protocols (3-message, 
public-coin, honest verifier ZK proofs with “special soundness”)

Not important  for (non-ZK) SNARKs.



HVZK Proof of Knowledge
Proof of Knowledge: If an adversary can give valid proofs (with 
significant probability), then there is an efficient way to extract a 
witness from that adversary

A ZK Proof of knowledge of discrete log of Y=gy 

P³V:  R := gr  
V³P:  x  
P³V:  s := xy + r  (modulo order of the group, p) 
V checks: gs  = Yx R 

Proof of Knowledge: 

Firstly, gs = Yx R  ⇒  s = xy+r, where R = gr

If after sending R, P could respond to two different 
challenges x1 and x2 as s1 = x1y + r and s2 = x2y + r,  
then can solve for y (in Fp)

HVZK: simulation picks s, x first and sets R = gs/Yx

Will require p to be a prime. 
Operations in the exponents are in Fp



HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier


e.g. in PoK of discrete log, simulator picks (x,s) first and 
computes R (without knowing r). Relies on verifier to pick x 
independent of R.


Special soundness: If given (R,x,s) and (R,x’,s’) s.t. xbx’ and both 
accepted by verifier, then can derive a valid witness


e.g. solve y from s=xy+r and s’=x’y+r (given x,s,x’,s’)


Implies soundness: for each R s.t. prover has significant 
probability of being able to convince, can extract y from the 
prover with comparable probability (using “rewinding”, in a 
stand-alone setting)



Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)),  
i.e., Y = gy and Z = hy [Chaum-Pederson]


P³V:  (R,W) := (gr, hr)  
V³P:  x  
P³V:  s := xy + r  (modulo order of the group, p) 
V checks: gs  = Yx R and hs  = Zx W

Special Soundness:

gs = YxR and hs = ZxW  ⇒  s = xy+r = xy’+r’   
where R=gr, Y=gy and W=hr’, Z=hy’


If two accepting transcripts (R,W,x1,s1) and (R,W,x2,s2) (x1bx2), then  
s1 = x1y + r = x1y’+ r’ and s2 =  x2y + r = x2y’+ r’. Then can find  
y = y’= (s1-s2)/(x1-x2) (in Fp).


HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

Two parallel executions of the previous proof, 
with same x and s (forcing same r, y)



A Commitment Scheme
Pedersen commitment: public parameters of the scheme encode a 
prime-order group from a family where discrete log is assumed to be 
hard


Commit(x;r) = hrgx where g,h are generators of the group, which 
are  also included in the public parameters


Hiding is information-theoretic: Writing g=ha, r+ax is 
uniformly distributed when r is uniformly random


Binding is based on discrete log: Giving (x,r), (x’,r’) s.t. xbx’  
and r+ax = r’+ax’ allows for solving a=(r-r’)/(x’-x). Breaks 
the discrete log assumption


Vector variant: to commit to a vector x = (x1,…,xn) * Fp
n



Public params: generators g1,…,gn,h (and the group parameters)


Commit(x1,..,xn;r) = hr · /i gixi. Hiding as before. Binding by a 
similar reduction but it guesses i s.t. xi b xi’.

Not needed 
for (non-ZK) 
SNARKs. Can 
take r=0 (i.e., 
omit h)



A Commitment Scheme

Pedersen commitment is homomorphic


Given commitments Commit(x;r) = hrgx  and Commit(x’;r’) = hr’gx’ 
can compute Commit(x+x’;r’’) as (hrgx) (hr’gx’) = hr+r’gx+x’, where 
r’’=r+r’


In the vector variant as well


From Commit(x1,..,xn;r)=hr·/i gixi  and Commit(x’1,..,x’n;r’)=hr’·/i gix’i 
can compute Commit(x1+x’1,..,xn+x’n;r+r’)



Polynomial Commitment
Will support committing to a vector x = (x1,…,xn) * Fp

n and showing that 

for another known vector  y = (y1,…,yn) * Fp
n, <x,y> = u


Enough for polynomial commitment: P(³) = <x,y>, where x are the 

coefficients of the polynomial P in an appropriate basis, and y has 
the corresponding basis polynomials evaluated at ³


For univariate polynomials in standard basis: y = (1, ³, ³2, …, ³n-1)


Will commit to x using Pedersen vector commitment. Also commit to an 

auxiliary vector d * Fp
n



To evaluate <x,y>, send z = <x,y> and s = <d,y>


Verifier sends ´ ± Fp. Also computes Commit(´x+d)


Prover opens this commitment to w. Verifier checks the opening and 

that <w,y> = ´z+s

Short commitment

Long proof



Bulletproofs

Goal: To reduce the proof size


Proof verification will still be linear time


High level idea: Divide, combine and conquer


Divide: Split the vector into two vectors of half the length


Combine: A single problem obtained by merging the two sub-
problems with a random weight


Conquer: Recurse



Bulletproofs

Writing gi = gGi, and G=(G1,…,Gn), Commit(x;0) = g<x,G>



A short proof for knowledge of x, given G and g<x,G>


Let x = xL || xR where xL, xR * Fp
n/2. Similarly G = GL || GR 

Then <x,G> =  <xL,GL> + <xR,GR>

Idea: come up with randomly combined vectors x’, G’ such that verifying 
knowledge of x’ given g<x’,G’> is enough to verify knowledge of x


Try x’ = ³xL + ´xR, G’ = ´GL + ³GR so that 
<x’,G’> = ³´ <x,G> + ³2 <xL,GR> + ´2 <xR,GL>

Will take ´ = ³-1 : <x’,G’> = <x,G> + ³2 <xL,GR> + ³-2 <xR,GL>

Prover will send g<xL,GR>, g<xR,GL> (before seeing ³). After seeing ³, 
they recurse on g<x,G>[g<xL,GR>]³2 [g<xR,GL>]³-2 for g<x’,G’>. 


Base case: send x

Special soundness: From x’ for two values of ³, can compute xL and xR


Turns out, extraction works recursively

Proof of Knowledge of Commitment



Bulletproofs

Recall: To support committing to a vector x = (x1,…,xn) * Fp
n and showing 

that for another known vector  y = (y1,…,yn) * Fp
n, <x,y> = u


Idea: In addition to proving knowledge of x given g<x,G>, also need to 

show <x,y> = u. Two parallel executions for <x,G> and <x,y>.


Verifier already has g<x,G> and <x,y>


Prover sends g<xL,GR>, g<xR,GL>, <xL,yL>, <xR,yR>. Verifier sends ³±Fp


<x’,G’> = <x,G> + ³2 <xL,GL> + ³-2 <xR,GR> 

<x’,y’> = <x,y> + ³2 <xL,yL> + ³-2 <xR,yR>


They recurse on g<x’,G’> and <x’,y’>


Base case: Send x. Verifier checks g<x,G> and <x,y>


Note: This is not hiding, but can be upgraded to be so


Is public coin: Can apply Fiat-Shamir

Polynomial Commitment


