
Polynomial Commitments
Lecture 20


Bilinear Pairing-based Approaches



Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial and later let 
the verifier (interactively) evaluate it on points of its choice


Generally, a multi-variate polynomial with a known number of 
variables and known degree 


e.g., a multi-linear polynomial in GKR. In some other 
applications, univariate polynomial of a known degree


Trivial solution: send the coefficients of the polynomial


But not succinct and evaluating the polynomial is expensive


Want verifier’s computation/communication to be sub-linear in 
the size of the polynomial


Non-trivial solutions: Using Merkle hashes and low-degree tests; 
from hardness of discrete logarithm; from bilinear pairings; using 
“IOPs”; …  
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Polynomial Commitment

Today: Discrete Log based approaches


Based on homomorphic commitment


First scheme: short commitments, long proofs


Second scheme: Bulletproofs: short commitments and proofs, but 
verification time is still linear


Using bilinear pairings (later), can reduce the verification time 
as well


Tools: homomorphic commitments and Sigma protocols (3-message, 
public-coin, honest verifier ZK proofs with “special soundness”)

Not important  for (non-ZK) SNARKs.



Bilinear Pairings

Groups G1, G2, Gt, of prime order p

e: G1 × G2 ³ Gt, such that for generators g1,g2 of G1, G2, 

e(g1
a,g2

b) = e(g1,g2)ab

e(g1
a, /i g2

xi) = e(g1,g2)a(!i xi) = /i e(g1
a, g2

xi)

When G1 = G2, DDH cannot hold in that group

But otherwise it could hold in both: SXDH (Symmetric 
External Diffie-Hellman) assumption



KZG scheme

Recall: P(³)=v ⇔ (X-³) divides P(X)-v


i.e., # polynomial Q (of degree one less) s.t. (X-³)Q(X) = P(X)-v


Plan: Prover commits to Q(´) (as gQ(´)) . Verifier would 
homomorphically check the equation at X=´ for a secret ´±F  

Prover needs to commit to Q(´) without knowing ´. (A public 
coin Verifier also cannot know ´.)


Idea: Have a trusted party provide commitments of ´i


Problem: Need commitment to allow homomorphic 
multiplication of two committed values, namely Q(´) and ´-³ 


Possible using pairings. Will use G1 = G2 



KZG scheme
To check (X-³)Q(X) = P(X)-v


A trusted setup: prime order group G and generator g, and for a 

random ´±F, the group elements g´, g´2, … , g´d


Prover commits to P(´) where P(X) = 3d
i=0 ciXi : z = gP(´) = /d

i=0 [g´
i]ci


Verifier sends ³±F.  Prover sends w = gQ(´) where Q(X) = 


Verifier checks e(z,g-v) = e(w,g´·g-³) 


If the prover can open P(´) to two distinct values v1, v2, then can 
break “strong Diffie-Hellman assumption” (SDH)


SDH: Given g´, g´2, … , g´d it is infeasible to output (³, g1/(´-³))


If w1, w2 s.t. e(z,g-vj) = e(wj,g´·g-³) for both j=1,2 then  
(w1·w2-1)1/(v2-v1) = g1/(´-³)


Under SDH, Prover can open P(´) to at most one value, but not 
guaranteed that P is a polynomial. In the “Generic Group Model” 
becomes an extractable polynomial commitment scheme.

P(x) − v

X − ³



KZG scheme

To avoid the heuristic Generic Group Model

But will rely on a “knowledge” assumption called “Power Knowledge 
of Exponent” assumption


Idea: Given (g,g³), (g´,g³´), (g´2,g³´2),…, (g´d,g³´d), the only way to 

find a pair (h,h³) is to set h = /d
i=0 [g´

i]ci and h³ = /d
i=0 [g³´

i]ci


Only way: From any adversary which can do this, can extract 

c0,…,cd which satisfy h = /d
i=0 [g´

i]ci


Generalises earlier “knowledge” assumptions


KEA1: Given (g,g³) to output (h,h³) must know c s.t. h=gc


KEA3: Given (g,g³),(g´,g³´), to output (h,h³) must know c0, c1 

s.t. h=gc0 (g´)c1

Alternate Version



KZG scheme
Power Knowledge of Exponent assumption:  Given (g,g³), (g´,g³´), 

(g´2,g³´2),…, (g´d,g³´d), from any adversary which can find a pair 
(h,h³) with significant probability, one can extract c0,…,cd which 

satisfy h = /d
i=0 [g´

i]ci


Trusted setup has G and (g,g³), (g´,g³´), (g´2,g³´2),…, (g´d,g³´d) 


Prover sends z = gP(´) = /d
i=0 [g´

i]ci and z’ = z³ = /d
i=0 [g³´

i]ci


Verifier sends ³±F.  Prover sends w = gQ(´) where Q(X) = 


Verifier checks e(z,g-v) = e(w,g´·g-³) and that e(z,g³) = e(z’,g)


 The second check ensures that z = gP(´), and the prover knows 
P; hence it can complete the proof with v=P(´). The first check, 
as before, ensures that it can do this only for one value of v, 

without breaking SDH (given g³´i in addition, for a random ³; but 

in the SDH experiment adversary can get them from g´i)

P(x) − v

X − ³

Alternate Version



Dory
Recall Bulletproofs: 


A proof of knowledge of x*Fp
n, given G*Fp

n and g<x,G>, in parallel with a 

proof that <x,y> = v for a given y*Fp
n (using same challenges)


Prover sends g<xL,GR>, g<xR,GL>, <xL,yR>, <xR,yL>. Verifier sends ³±Fp


Recurse on g<x’,G’> and <x’,y’> computed using values sent by Prover


<x’,G’> = <x,G> + ³2 <xL,GR> + ³-2 <xR,GL> 

<x’,y’> = <x,y> + ³2 <xL,yR> + ³-2 <xR,yL> 

[ x’ = ³xL + ³-1xR,    G’ = ³-1GL + ³GR,    y’ = ³-1yL + ³yR ]


Base case when n=1: prover sends x


To compute g<x’,G’> and <x’,y’> verifier takes linear time (in the first 
iterations as well as over all)


Idea to reduce verification time: Prover carries out the computation, and 
proves to the verifier that it is consistent with a publicly pre-computed 

succinct commitment of gi, i=1 to n (and with y*Fp
n)



Dory

Vector Commitment of Group Elements


Public parameters: h * G1, and for i=1 to n, gi = gGi ± G2


For m*G1
n and Ã±G2, Com(h,g)(m;Ã) = e(h,Ã) /i e(mi,gi) = e(h,g)R+<M,G>, 

where mi = hMi


Information-theoretically hiding (can use R=0 if hiding not 
required)


Binding from an analog of Discrete Log assumption, in turn 
implied by DDH in G2 [Exercise]


Notation change: Will use additive notation for the groups 
(exponentiation replaced with multiplication by elements in Fp). 

For a*G1
n and b*G2

n let <a,b> = /i e(ai,bi) * Gt



Dory
To verify knowledge of x*G1

n s.t. a = <x,g>, b = <x,h>, given c = <z,g> 

and d = <z,h>, where z,h are setup vectors, and g is a dynamically 
determined vector (initially part of the setup)


Plan: Reduce to proof of knowledge of x**G1
n/2 s.t. a* = <x*,g*> 

where a* and g* are defined by random choices of the verifier


Base case: When n=1, h,z in the setup. Get x,g and verify a,b,c.


At each level of recursion, there will be fresh setup vectors z,h


At each level d=<z,h> made available as a pre-processed value


Also pre-processed values linking the setup vectors at adjacent 

levels: ZL = <zL,h*>, ZR = <zL,h*>, HL = <z*,hL>, HR = <z*,hR>


(ZL,ZR) work as a commitment of z w.r.t. h*. Similarly HL,HR


To change any, need to change all. But at the lowest level 
(n=1) z,h will be given in the clear



Verifier holding a = <x,g>, b = <x,h>, c = <z,g>. Also pre-processed 

values: d=<z,h>, ZL = <zL,h*>, ZR = <zL,h*>, HL = <z*,hL>, HR = <z*,hR>


To reduce verifying knowledge of x*G1
n to knowledge of x**G1

n/2



Prover sends uL = <xL,h*>, uR = <xR,h*>, vL = <z*,gL>, vR = <z*,gR>


Verifier sends ´ ± Fp. Let x’ = x + ´z, and g’ = g + ´-1 h


Prover sends wL = <x’L,g’R> and wR = <x’R,g’L>


Verifier sends ³ ± Fp. Let x* = ³x’L + ³-1x’R,  and g* = ³-1g’L + ³g’R


Verifier computes a* = <x*,g*>, b* = <x*,h*>, c* = <z*,g*> as:


a* = <x’, g’> + ³2 wL + ³-2 wR 

    = <x,g> + ´-1<x,h> + ´<z,g> + <z,h> +  ³2 wL + ³-2 wR 

    = a + ´-1b + ´c + d + ³2 wL + ³-2 wR


b* = ³<xL+´zL,h*> + ³-1<xR+´zR,h*>  = ³uL + ³´ZL + ³-1uR + ³-1´ZR


c* = ³<z*,gL+´-1hL> + ³-1<z*,gR+´-1hR>  = ³vL + ³´-1HL + ³-1vR + ³-1´-1HR

Dory



Dory

Can be extended to a proof of knowledge of x*G1
n s.t. a = <x,g> and 

u = <x,y>, as in the case of Bulletproofs


Where y = (1, r, r2, …, rn-1) for some r*Fp


In the base case of the recursion, the verifier needs to verify 

<x(log n), y(log n) > where y(i+1) = ³i yL
(i) + ³i-1yR

(i) (with y(0)=y)


Note: y(0)j = rj.  y(i+1)j = ³i y(i)j + ³i-1 y(i)j+n/2^(i+1)


Inductively for k>0, y(k)j = rj /i=0 to k-1  (³i + ³i-1 rn/2^(i+1))


Base case: k=1: y(1)j = ³0 rj + ³0-1 rj+n/2 =  (³0 + ³0-1 rn/2) rj


y(k+1)j = ³k y(k)j + ³k-1 y(k)j+n/2^(k+1) = (³k + ³k-1 rn/2^(k+1))  y(k)j 7


So, y(log n)0 = /i=0 to log n-1  (³i + ³i-1 rn/2^(i+1)), which can be computed 
in O(log n) time, keeping the overall verification time O(log n)


