
Polynomial Commitments
Lecture 20

Bilinear Pairing-based Approaches

Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial and later let
the verifier (interactively) evaluate it on points of its choice

Generally, a multi-variate polynomial with a known number of
variables and known degree

e.g., a multi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

Trivial solution: send the coefficients of the polynomial

But not succinct and evaluating the polynomial is expensive

Want verifier’s computation/communication to be sub-linear in
the size of the polynomial

Non-trivial solutions: Using Merkle hashes and low-degree tests;
from hardness of discrete logarithm; from bilinear pairings; using
“IOPs”; …

Re
ca
ll

Polynomial Commitment

Today: Discrete Log based approaches

Based on homomorphic commitment

First scheme: short commitments, long proofs

Second scheme: Bulletproofs: short commitments and proofs, but
verification time is still linear

Using bilinear pairings (later), can reduce the verification time
as well

Tools: homomorphic commitments and Sigma protocols (3-message,
public-coin, honest verifier ZK proofs with “special soundness”)

Not important for (non-ZK) SNARKs.

Bilinear Pairings

Groups G1, G2, Gt, of prime order p

e: G1 × G2 ³ Gt, such that for generators g1,g2 of G1, G2,

e(g1
a,g2

b) = e(g1,g2)ab

e(g1
a, /i g2

xi) = e(g1,g2)a(!i xi) = /i e(g1
a, g2

xi)

When G1 = G2, DDH cannot hold in that group

But otherwise it could hold in both: SXDH (Symmetric
External Diffie-Hellman) assumption

KZG scheme

Recall: P(³)=v ⇔ (X-³) divides P(X)-v

i.e., # polynomial Q (of degree one less) s.t. (X-³)Q(X) = P(X)-v

Plan: Prover commits to Q(´) (as gQ(´)) . Verifier would
homomorphically check the equation at X=´ for a secret ´±F

Prover needs to commit to Q(´) without knowing ´. (A public
coin Verifier also cannot know ´.)

Idea: Have a trusted party provide commitments of ´i

Problem: Need commitment to allow homomorphic
multiplication of two committed values, namely Q(´) and ´-³

Possible using pairings. Will use G1 = G2

KZG scheme
To check (X-³)Q(X) = P(X)-v

A trusted setup: prime order group G and generator g, and for a

random ´±F, the group elements g´, g´2, … , g´d

Prover commits to P(´) where P(X) = 3d
i=0 ciXi : z = gP(´) = /d

i=0 [g´
i]ci

Verifier sends ³±F. Prover sends w = gQ(´) where Q(X) =

Verifier checks e(z,g-v) = e(w,g´·g-³)

If the prover can open P(´) to two distinct values v1, v2, then can
break “strong Diffie-Hellman assumption” (SDH)

SDH: Given g´, g´2, … , g´d it is infeasible to output (³, g1/(´-³))

If w1, w2 s.t. e(z,g-vj) = e(wj,g´·g-³) for both j=1,2 then
(w1·w2-1)1/(v2-v1) = g1/(´-³)

Under SDH, Prover can open P(´) to at most one value, but not
guaranteed that P is a polynomial. In the “Generic Group Model”
becomes an extractable polynomial commitment scheme.

P(x) − v

X − ³

KZG scheme

To avoid the heuristic Generic Group Model

But will rely on a “knowledge” assumption called “Power Knowledge
of Exponent” assumption

Idea: Given (g,g³), (g´,g³´), (g´2,g³´2),…, (g´d,g³´d), the only way to

find a pair (h,h³) is to set h = /d
i=0 [g´

i]ci and h³ = /d
i=0 [g³´

i]ci

Only way: From any adversary which can do this, can extract

c0,…,cd which satisfy h = /d
i=0 [g´

i]ci

Generalises earlier “knowledge” assumptions

KEA1: Given (g,g³) to output (h,h³) must know c s.t. h=gc

KEA3: Given (g,g³),(g´,g³´), to output (h,h³) must know c0, c1

s.t. h=gc0 (g´)c1

Alternate Version

KZG scheme
Power Knowledge of Exponent assumption: Given (g,g³), (g´,g³´),

(g´2,g³´2),…, (g´d,g³´d), from any adversary which can find a pair
(h,h³) with significant probability, one can extract c0,…,cd which

satisfy h = /d
i=0 [g´

i]ci

Trusted setup has G and (g,g³), (g´,g³´), (g´2,g³´2),…, (g´d,g³´d)

Prover sends z = gP(´) = /d
i=0 [g´

i]ci and z’ = z³ = /d
i=0 [g³´

i]ci

Verifier sends ³±F. Prover sends w = gQ(´) where Q(X) =

Verifier checks e(z,g-v) = e(w,g´·g-³) and that e(z,g³) = e(z’,g)

 The second check ensures that z = gP(´), and the prover knows
P; hence it can complete the proof with v=P(´). The first check,
as before, ensures that it can do this only for one value of v,

without breaking SDH (given g³´i in addition, for a random ³; but

in the SDH experiment adversary can get them from g´i)

P(x) − v

X − ³

Alternate Version

Dory
Recall Bulletproofs:

A proof of knowledge of x*Fp
n, given G*Fp

n and g<x,G>, in parallel with a

proof that <x,y> = v for a given y*Fp
n (using same challenges)

Prover sends g<xL,GR>, g<xR,GL>, <xL,yR>, <xR,yL>. Verifier sends ³±Fp

Recurse on g<x’,G’> and <x’,y’> computed using values sent by Prover

<x’,G’> = <x,G> + ³2 <xL,GR> + ³-2 <xR,GL>

<x’,y’> = <x,y> + ³2 <xL,yR> + ³-2 <xR,yL>

[x’ = ³xL + ³-1xR, G’ = ³-1GL + ³GR, y’ = ³-1yL + ³yR]

Base case when n=1: prover sends x

To compute g<x’,G’> and <x’,y’> verifier takes linear time (in the first
iterations as well as over all)

Idea to reduce verification time: Prover carries out the computation, and
proves to the verifier that it is consistent with a publicly pre-computed

succinct commitment of gi, i=1 to n (and with y*Fp
n)

Dory

Vector Commitment of Group Elements

Public parameters: h * G1, and for i=1 to n, gi = gGi ± G2

For m*G1
n and Ã±G2, Com(h,g)(m;Ã) = e(h,Ã) /i e(mi,gi) = e(h,g)R+<M,G>,

where mi = hMi

Information-theoretically hiding (can use R=0 if hiding not
required)

Binding from an analog of Discrete Log assumption, in turn
implied by DDH in G2 [Exercise]

Notation change: Will use additive notation for the groups
(exponentiation replaced with multiplication by elements in Fp).

For a*G1
n and b*G2

n let <a,b> = /i e(ai,bi) * Gt

Dory
To verify knowledge of x*G1

n s.t. a = <x,g>, b = <x,h>, given c = <z,g>

and d = <z,h>, where z,h are setup vectors, and g is a dynamically
determined vector (initially part of the setup)

Plan: Reduce to proof of knowledge of x**G1
n/2 s.t. a* = <x*,g*>

where a* and g* are defined by random choices of the verifier

Base case: When n=1, h,z in the setup. Get x,g and verify a,b,c.

At each level of recursion, there will be fresh setup vectors z,h

At each level d=<z,h> made available as a pre-processed value

Also pre-processed values linking the setup vectors at adjacent

levels: ZL = <zL,h*>, ZR = <zL,h*>, HL = <z*,hL>, HR = <z*,hR>

(ZL,ZR) work as a commitment of z w.r.t. h*. Similarly HL,HR

To change any, need to change all. But at the lowest level
(n=1) z,h will be given in the clear

Verifier holding a = <x,g>, b = <x,h>, c = <z,g>. Also pre-processed

values: d=<z,h>, ZL = <zL,h*>, ZR = <zL,h*>, HL = <z*,hL>, HR = <z*,hR>

To reduce verifying knowledge of x*G1
n to knowledge of x**G1

n/2

Prover sends uL = <xL,h*>, uR = <xR,h*>, vL = <z*,gL>, vR = <z*,gR>

Verifier sends ´ ± Fp. Let x’ = x + ´z, and g’ = g + ´-1 h

Prover sends wL = <x’L,g’R> and wR = <x’R,g’L>

Verifier sends ³ ± Fp. Let x* = ³x’L + ³-1x’R, and g* = ³-1g’L + ³g’R

Verifier computes a* = <x*,g*>, b* = <x*,h*>, c* = <z*,g*> as:

a* = <x’, g’> + ³2 wL + ³-2 wR

 = <x,g> + ´-1<x,h> + ´<z,g> + <z,h> + ³2 wL + ³-2 wR

 = a + ´-1b + ´c + d + ³2 wL + ³-2 wR

b* = ³<xL+´zL,h*> + ³-1<xR+´zR,h*> = ³uL + ³´ZL + ³-1uR + ³-1´ZR

c* = ³<z*,gL+´-1hL> + ³-1<z*,gR+´-1hR> = ³vL + ³´-1HL + ³-1vR + ³-1´-1HR

Dory

Dory

Can be extended to a proof of knowledge of x*G1
n s.t. a = <x,g> and

u = <x,y>, as in the case of Bulletproofs

Where y = (1, r, r2, …, rn-1) for some r*Fp

In the base case of the recursion, the verifier needs to verify

<x(log n), y(log n) > where y(i+1) = ³i yL
(i) + ³i-1yR

(i) (with y(0)=y)

Note: y(0)j = rj. y(i+1)j = ³i y(i)j + ³i-1 y(i)j+n/2^(i+1)

Inductively for k>0, y(k)j = rj /i=0 to k-1 (³i + ³i-1 rn/2^(i+1))

Base case: k=1: y(1)j = ³0 rj + ³0-1 rj+n/2 = (³0 + ³0-1 rn/2) rj

y(k+1)j = ³k y(k)j + ³k-1 y(k)j+n/2^(k+1) = (³k + ³k-1 rn/2^(k+1)) y(k)j 7

So, y(log n)0 = /i=0 to log n-1 (³i + ³i-1 rn/2^(i+1)), which can be computed
in O(log n) time, keeping the overall verification time O(log n)

