Polynomial Commitments

Lecture 20 Bilinear Pairing-based Approaches

Polynomial Commitment

Recall

- Prover wants to (succinctly) commit to a polynomial and later let the verifier (interactively) evaluate it on points of its choice
 - Generally, a multi-variate polynomial with a known number of variables and known degree
 - e.g., a multi-linear polynomial in GKR. In some other applications, univariate polynomial of a known degree
- Trivial solution: send the coefficients of the polynomial
 - But not succinct and evaluating the polynomial is expensive
 - Want verifier's computation/communication to be sub-linear in the size of the polynomial
- Non-trivial solutions: Using Merkle hashes and low-degree tests; from hardness of discrete logarithm; from bilinear pairings; using "IOPs"; ...

Polynomial Commitment

- Today: Discrete Log based approaches
 - Based on homomorphic commitment
- First scheme: short commitments, long proofs
- Second scheme: Bulletproofs: short commitments and proofs, but verification time is still linear
 - Using bilinear pairings (later), can reduce the verification time as well
- Tools: homomorphic commitments and Sigma protocols (3-message, public-coin, honest verifier ZK proofs with "special soundness")

Not important for (non-ZK) SNARKs.

Bilinear Pairings

- \odot Groups G_1 , G_2 , G_t , of prime order p
- e: G₁ × G₂ → G_t, such that for generators g₁,g₂ of G₁, G₂,
 $e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$
- When $G_1 = G_2$, DDH cannot hold in that group
 - But otherwise it could hold in both: SXDH (Symmetric External Diffie-Hellman) assumption

KZG scheme

- Recall: $P(\alpha)=v \Leftrightarrow (X-\alpha)$ divides P(X)-v
 - I.e., ∃ polynomial Q (of degree one less) s.t. (X-α)Q(X) = P(X)-v
 - Plan: Prover commits to $Q(\beta)$ (as $g^{Q(\beta)}$). Verifier would homomorphically check the equation at X= β for a secret $\beta \leftarrow \mathbb{F}$
 - Prover needs to commit to Q(β) without knowing β. (A public coin Verifier also cannot know β.)
 - Idea: Have a trusted party provide commitments of βⁱ
 - Problem: Need commitment to allow homomorphic multiplication of two committed values, namely Q(β) and $\beta-\alpha$
 - Possible using pairings. Will use $G_1 = G_2$

KZG scheme

• To check $(X-\alpha)Q(X) = P(X)-v$

- A trusted setup: prime order group G and generator g, and for a random $\beta \leftarrow \mathbb{F}$, the group elements g^{β} , g^{β^2} , ..., g^{β^d}
- Prover commits to $P(\beta)$ where $P(X) = \sum_{i=0}^{d} c_i X^i : z = g^{P(\beta)} = \prod_{i=0}^{d} [g^{\beta^i}]^{c_i}$

✓ Verifier sends $\alpha \leftarrow \mathbb{F}$. Prover sends w = $g^{Q(\beta)}$ where $Q(X) = \frac{P(x) - v}{X - \alpha}$

- Verifier checks $e(z,g^{-v}) = e(w,g^{\beta}\cdot g^{-\alpha})$
- If the prover can open P(β) to two distinct values v₁, v₂, then can break "strong Diffie-Hellman assumption" (SDH)
 - SDH: Given g^{β} , g^{β^2} , ..., g^{β^d} it is infeasible to output (α , $g^{1/(\beta-\alpha)}$)
 - If w₁, w₂ s.t. e(z,g^{-v}_j) = e(w_j,g^β·g^{-α}) for both j=1,2 then
 (w₁·w₂⁻¹)<sup>1/(v₂-v₁) = g^{1/(β-α)}
 </sup>
- Under SDH, Prover can open P(β) to at most one value, but not guaranteed that P is a polynomial. In the "Generic Group Model" becomes an extractable polynomial commitment scheme.

KZG scheme Alternate Version

To avoid the heuristic Generic Group Model

But will rely on a "knowledge" assumption called "Power Knowledge of Exponent" assumption

Idea: Given (g,g^γ), (g^β,g^{γβ}), (g^{β²},g^{γβ²}),..., (g^{β^d},g^{γβ^d}), the only way to find a pair (h,h^γ) is to set h = Π^d_{i=0} [g^{βⁱ}]^{c_i} and h^γ = Π^d_{i=0} [g^{γβⁱ}]^{c_i}
Only way: From any adversary which can do this, can extract c₀,...,c_d which satisfy h = Π^d_{i=0} [g^{βⁱ}]^{c_i}
Generalises earlier "knowledge" assumptions
KEA1: Given (g,g^γ) to output (h,h^γ) must know c s.t. h=g^c
KEA3: Given (g,g^γ),(g^β,g^{γβ}), to output (h,h^γ) must know c₀, c₁ s.t. h=g^c (q^β)^{c₁}

KZG scheme Alternate Version

- Power Knowledge of Exponent assumption: Given (g,g^{γ}) , $(g^{\beta},g^{\gamma\beta})$, $(g^{\beta^2},g^{\gamma\beta^2})$,..., $(g^{\beta^d},g^{\gamma\beta^d})$, from any adversary which can find a pair (h,h^{γ}) with significant probability, one can extract $c_0,...,c_d$ which satisfy $h = \prod_{i=0}^{d} [g^{\beta^i}]^{c_i}$
- Trusted setup has G and (g,g^{γ}), (g^{β},g^{$\gamma\beta$}), (g^{β^2},g^{$\gamma\beta^2$}),..., (g^{β^d},g^{$\gamma\beta^d$})
- Prover sends $z = g^{p(\beta)} = \prod_{i=0}^{d} [g^{\beta^i}]^{c_i}$ and $z' = z^{\gamma} = \prod_{i=0}^{d} [g^{\gamma\beta^i}]^{c_i}$
- ✓ Verifier sends $\alpha \leftarrow \mathbb{F}$. Prover sends w = g^{Q(β)} where Q(X) = $\frac{P(x) v}{X \alpha}$
- Verifier checks $e(z,g^{-v}) = e(w,g^{\beta}\cdot g^{-\alpha})$ and that $e(z,g^{\gamma}) = e(z',g)$
 - The second check ensures that $z = g^{P(\beta)}$, and the prover knows P; hence it <u>can</u> complete the proof with $v=P(\beta)$. The first check, as before, ensures that it can do this only for one value of v, without breaking SDH (given $g^{\gamma\beta^i}$ in addition, for a random γ ; but in the SDH experiment adversary can get them from g^{β^i})

Recall Bulletproofs:

- A proof of knowledge of $\mathbf{x} \in \mathbb{F}_p^n$, given $\mathbf{G} \in \mathbb{F}_p^n$ and $g^{\langle \mathbf{x}, \mathbf{G} \rangle}$, in parallel with a proof that $\langle \mathbf{x}, \mathbf{y} \rangle = v$ for a given $\mathbf{y} \in \mathbb{F}_p^n$ (using same challenges)
- Prover sends $g^{\langle \mathbf{x}_L, \mathbf{G}_R \rangle}$, $g^{\langle \mathbf{x}_R, \mathbf{G}_L \rangle}$, $\langle \mathbf{x}_L, \mathbf{y}_R \rangle$, $\langle \mathbf{x}_R, \mathbf{y}_L \rangle$. Verifier sends $\alpha \leftarrow \mathbb{F}_p$
 - Recurse on $g^{(x',G')}$ and (x',y') computed using values sent by Prover • $(x',G') = (x,G) + \alpha^2 (x_L,G_R) + \alpha^{-2} (x_R,G_L)$

 $\langle x', y' \rangle = \langle x, y \rangle + \alpha^2 \langle x_L, y_R \rangle + \alpha^{-2} \langle x_R, y_L \rangle$

 $[\mathbf{x'} = \alpha \mathbf{x}_{L} + \alpha^{-1} \mathbf{x}_{R}, \quad \mathbf{G'} = \alpha^{-1} \mathbf{G}_{L} + \alpha \mathbf{G}_{R}, \quad \mathbf{y'} = \alpha^{-1} \mathbf{y}_{L} + \alpha \mathbf{y}_{R}]$

Base case when n=1: prover sends x

- To compute g^{<x',G'>} and <x',y'> verifier takes linear time (in the first iterations as well as over all)
- Idea to reduce verification time: Prover carries out the computation, and proves to the verifier that it is consistent with a <u>publicly pre-computed</u> <u>succinct commitment</u> of g_i , i=1 to n (and with $\mathbf{y} \in \mathbb{F}_p^n$)

Vector Commitment of Group Elements

- One of the set of the s
- For $\mathbf{m} \in \mathbb{G}_1^n$ and $\rho \leftarrow \mathbb{G}_2$, $Com_{(h,g)}(\mathbf{m};\rho) = e(h,\rho) \prod_i e(m_i,g_i) = e(h,g)^{R+<M,G>}$, where $m_i = h^{M_i}$
- Information-theoretically hiding (can use R=0 if hiding not required)
- Binding from an analog of Discrete Log assumption, in turn implied by DDH in G₂ [Exercise]

• Notation change: Will use additive notation for the groups (exponentiation replaced with multiplication by elements in \mathbb{F}_p). For $\mathbf{a} \in \mathbb{G}_1^n$ and $\mathbf{b} \in \mathbb{G}_2^n$ let $\langle \mathbf{a}, \mathbf{b} \rangle = \Pi_i e(a_i, b_i) \in \mathbb{G}_t$

 To verify knowledge of x∈Gⁿ₁ s.t. a = <x,g>, b = <x,h>, given c = <z,g>
 and $d = \langle \mathbf{z}, \mathbf{h} \rangle$, where \mathbf{z}, \mathbf{h} are setup vectors, and \mathbf{g} is a dynamically determined vector (initially part of the setup) • Plan: Reduce to proof of knowledge of $\mathbf{x}^* \in \mathbb{G}_1^{n/2}$ s.t. $a^* = \langle \mathbf{x}^*, \mathbf{g}^* \rangle$ where a* and g* are defined by random choices of the verifier Base case: When n=1, h,z in the setup. Get x,g and verify a,b,c. At each level of recursion, there will be fresh setup vectors z,h At each level d=<z,h> made available as a pre-processed value Also pre-processed values linking the setup vectors at adjacent levels: $Z_L = \langle z_L, h^* \rangle$, $Z_R = \langle z_L, h^* \rangle$, $H_L = \langle z^*, h_L \rangle$, $H_R = \langle z^*, h_R \rangle$ (Z_L, Z_R) work as a commitment of **z** w.r.t. **h**^{*}. Similarly H_L, H_R To change any, need to change all. But at the lowest level (n=1) z,h will be given in the clear

Verifier holding a = <x,g>, b = <x,h>, c = <z,g>. Also pre-processed values: $d = \langle z, h \rangle$, $Z_L = \langle z_L, h^* \rangle$, $Z_R = \langle z_L, h^* \rangle$, $H_L = \langle z^*, h_L \rangle$, $H_R = \langle z^*, h_R \rangle$ • To reduce verifying knowledge of $\mathbf{x} \in \mathbb{G}_1^n$ to knowledge of $\mathbf{x}^* \in \mathbb{G}_1^{n/2}$ Prover sends $u_L = \langle \mathbf{x}_L, \mathbf{h}^* \rangle$, $u_R = \langle \mathbf{x}_R, \mathbf{h}^* \rangle$, $v_L = \langle \mathbf{z}^*, \mathbf{g}_L \rangle$, $v_R = \langle \mathbf{z}^*, \mathbf{g}_R \rangle$ • Verifier sends $\beta \leftarrow \mathbb{F}_p$. Let $\mathbf{x}' = \mathbf{x} + \beta \mathbf{z}$, and $\mathbf{g}' = \mathbf{g} + \beta^{-1} \mathbf{h}$ \oslash Prover sends $w_L = \langle \mathbf{x'}_L, \mathbf{g'}_R \rangle$ and $w_R = \langle \mathbf{x'}_R, \mathbf{g'}_L \rangle$ • Verifier sends $\alpha \leftarrow \mathbb{F}_p$. Let $\mathbf{x}^* = \alpha \mathbf{x'}_L + \alpha^{-1} \mathbf{x'}_R$, and $\mathbf{g}^* = \alpha^{-1} \mathbf{g'}_L + \alpha \mathbf{g'}_R$ Verifier computes a* = <x*,g*>, b* = <x*,h*>, c* = <z*,g*> as: $a^* = \langle x', g' \rangle + \alpha^2 W_L + \alpha^{-2} W_R$ = $\langle \mathbf{x}, \mathbf{g} \rangle$ + $\beta^{-1} \langle \mathbf{x}, \mathbf{h} \rangle$ + $\beta \langle \mathbf{z}, \mathbf{g} \rangle$ + $\langle \mathbf{z}, \mathbf{h} \rangle$ + $\alpha^2 W_L$ + $\alpha^{-2} W_R$ = $a + \beta^{-1}b + \beta c + d + \alpha^2 W_L + \alpha^{-2} W_R$

• Can be extended to a proof of knowledge of $\mathbf{x} \in \mathbb{G}_1^n$ s.t. $a = \langle \mathbf{x}, \mathbf{g} \rangle$ and $u = \langle x, y \rangle$, as in the case of Bulletproofs Where $y = (1, r, r^2, ..., r^{n-1})$ for some r∈F_p In the base case of the recursion, the verifier needs to verify (log n), y(log n) > where y(i+1) = $\alpha_i y_i^{(i)} + \alpha_i^{-1} y_p^{(i)}$ (with y(0)=y) • Note: $y^{(0)}_{j} = r^{j}$. $y^{(i+1)}_{j} = \alpha_{i} y^{(i)}_{j} + \alpha_{i}^{-1} y^{(i)}_{j+n/2}(i+1)$ Inductively for k>0, $y^{(k)}_{j} = r^{j} \prod_{i=0 \text{ to } k-1} (\alpha_{i} + \alpha_{i}^{-1} r^{n/2}(i+1))$ **a Base case:** $k=1: y^{(1)}_{j} = \alpha_0 r^{j} + \alpha_0^{-1} r^{j+n/2} = (\alpha_0 + \alpha_0^{-1} r^{n/2}) r^{j}$ • $y^{(k+1)}_{j} = \alpha_k y^{(k)}_{j} + \alpha_k^{-1} y^{(k)}_{j+n/2}(k+1) = (\alpha_k + \alpha_k^{-1} r^{n/2}(k+1)) y^{(k)}_{j}$ So, $y(\log n)_0 = \prod_{i=0} t_0 \log n-1$ ($\alpha_i + \alpha_i^{-1} r^{n/2(i+1)}$), which can be computed in O(log n) time, keeping the overall verification time O(log n)