Polynomial Commitments

W=Tod (V1 -0
Bilinear Pairing-based Approaches



ypolynomial Commitment

@ Prover wants to (succinctly) commit to a polynomial and later let
the verifier (interactively) evaluate it on points of its choice

@ Generally, a multi-variate polynomial with a known number of
variables and known degree

@ e.g., a mulfi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

@ Trivial solution: send the coefficients of the polynomial
@ But not succinct and evaluating the polynomial is expensive

@ Want verifiers computation/communication to be sub-linear in
the size of the polynomial

@ Non-trivial solutions: Using Merkle hashes and low-degree tests;

from hardness of discrete logarithm; from bilinear pairings; using
"IOPs”; ...



Polynomial Commitment

@ Today: Discrete Log based approaches
@ Based on homomorphic commitment
@ First scheme: short commitments, long proofs

@ Second scheme: Bulletproofs: short commitments and proofs, but
verification ftime is still linear

@ Using bilinear pairings (later), can reduce the verification time
as well

@ Tools: homomorphic commitments and Sigma protocols (3-message,

public-coin, honest verifier ZK proofs with “special soundness”)
A

Not important for (non-zZK) SNARKs.




Bilinear Pairings

@ Groups Gi, Gz, Gy, of prime order p

@ e: Gi x Gz — Gy, such that for generators gi,g2 of Gy, Go,
e(gf.92) = e(g1.gz)®

o e(gg Tigx) = e(gi,g2)ei %) = i e(gg, gxi)

@ When G; = Gz, DDH cannot hold in that group

@ But otherwise it could hold in both: SXDH (Symmetric
External Diffie-Hellman) assumption



KZG scheme

@ Recall: P(a)=v & (X-a) divides P(X)-v

@ i.e., 3 polynomial Q (of degree one less) s.t. (X-a)Q(X) = P(X)-v

@ Plan: Prover commits to Q(3) (as g&®) . Verifier would
homomorphically check the equation at X=3 for a secret <[

@ Prover needs to commit to Q(8) without knowing 8. (A public
coin Verifier also cannot know B.)

® Idea: Have a frusted party provide commitments of 3

@ Problem: Need commitment to allow homomorphic
multiplication of two committed values, namely Q(3) and 8-«

@ Possible using pairings. Will use G; = G2



KZG scheme

To check (X-a)Q(X) = P(X)-v

A trusted setup: prime order group G and generator g, and for a
random 3<F, the group elements g¢, g%, .. , g*°

Prover commits to P(8) where P(X) = 3% ¢iXi : z = gP®) = i, [g°]¢
P(x) — v

X — «

Verifier sends a<—I. Prover sends w = g@) where Q(X) =

Verifier checks e(z,g) = e(w,g°-g-*)

If the prover can open P(B) to two distinct values vi, vz, then can
break “strong Diffie-Hellman assumption” (SDH)
@ SDH: Given ¢, g¢°, .. , g¥° it is infeasible to output («, gl/(s-2)
o If wi, wz s.t. e(z,gVi) = e(wj,g°-g=) for both j=1,2 then

(Wiwa 1)/ (vevy) = gl/(B-o)
Under SDH, Prover can open P(3) to at most one value, but not

guaranteed that P is a polynomial. In the "Generic Group Model”
becomes an extractable polynomial commitment scheme.




KZG scheme

Alternate Version

@ To avoid the heuristic Generic Group Model

@ But will rely on a "knowledge” assumption called “"Power Knowledge
of Exponent” assumption

@ Idea: Given (g,97), (g%,9%%), (g*,g7*"),..., (g%,9¢9), the only way to
find a pair (h,h7) is to set h = Lo [g¢]% and hv = T, [gr?]"
@ Only way: From any adversary which can do this, can extract
Co,...,Cd Which satisfy h = %o [g?]"
@ Generalises earlier "knowledge” assumptions
@ KEAIL: Given (g,gv) to output (h,hv) must know c s.t. h=g°
@ KEA3: Given (g,g7).(g%.g"*), to output (h,hv) must know co, ¢
s.t. h=g“0 (g8)“



KZG scheme

Alternate Version
@ Power Knowledge of Exponent assumption: Given (g,gv), (g°,gr®),

(g°%,9), ..., (g*°,gv¥°), from any adversary which can find a pair
(h,hv) with significant probability, one can extract co,...,ca which

satisfy h = o [g7]°

@ Trusted setup has G and (g,9v), (g%.97), (g°°,g7%%),..., (g°,gv*")

® Prover sends z = g°® = Mo [g°]% and 2’ = zv = %o [gve]"
P(x) — v

X — «

@ Verifier checks e(z,gV) = e(w,g¢-g*) and that e(z,g7) = e(z’,g)

@ Verifier sends a<—F. Prover sends w = g where Q(X) =

® The second check ensures that z = gP(®), and the prover knows
P; hence it can complete the proof with v=P(3). The first check,
as before, ensures that it can do this only for one value of v,

without breaking SDH (given gr® in addition, for a random v; but
in the SDH experiment adversary can get them from g




Dory

@ Recall Bulletproofs:

@ A proof of knowledge of xelp, given Gel'ly and g6, in parallel with a
proof that <x,y> = v for a given yely (using same challenges)

@ Prover sends g*u6r>, g*R6L>, <XL,Yr>, <Xr,YL>. Verifier sends a<I,

@ Recurse on g«*'6> and <x’,y’> computed using values sent by Prover
@ <X',G'> = <X,G> + a2 <XL,Gr> + a2 <Xg,GL>

<X Y'> = <X, Y> + a2 <XLYR> + a2 <XR,YL>

[ X = aXL + a!Xr, G = «”'GL + aGr, Y’ = a’lyL + ayr]
@ Base case when n=1: prover sends X

o To compute g'6> and <x’,y’> verifier takes linear time (in the first
iterations as well as over all)

@ Idea to reduce verification time: Prover carries out the computation, and
proves fo the verifier that it is consistent with a publicly pre-computed

succinct commitment of gj, i=1 to n (and with yeky)




Dory

@ Vector Commitment of Group Elements
@ Public parameters: h € Gy, and for i=l to n, g = g% < G2

@ For meGl and p<—Gz, Compng(m;p) = e(h,p) i e(mi,g) = e(h,g)R+<M&>,
where m; = hMi

@ Information-theoretically hiding (can use R=0 if hiding not
required)

@ Binding from an analog of Discrete Log assumption, in turn
implied by DDH in G [Exercise]

@ Notation change: Will use additive notation for the groups
(exponentiation replaced with multiplication by elements in I,).

For acGl and beG? let <a,b> = T e(ai,bi) € Gt



Dory

@ To verify knowledge of xeGf s.t. a = <x,g>, b = <x,h>, given ¢ = <z,g>

and d = <z,h>, where z,h are setup vectors, and g is a dynamically
determined vector (initially part of the setup)

& Plan: Reduce to proof of knowledge of x*cG{’? s.t. a* = <x*,g*>

where a* and g* are defined by random choices of the verifier
@ Base case: When n=1, h,z in the setup. Get x,g and verify a,b,c.
@ At each level of recursion, there will be fresh setup vectors z,h

@ At each level d=<z,h> made available as a pre-processed value
@ Also pre-processed values linking the setup vectors at adjacent
levels: Z. = <z, h*>, Zr = <z, ,h*>, H = <2* hy>, Hr = <2* he>
@ (Z.,Zr) work as a commitment of z w.r.t. h*. Similarly H_Hg

@ To change any, need to change all. But at the lowest level
(n=1) z,h will be given in the clear



e © © @ @ o

Dory

Verifier holding a = <x,g>, b = <x,h>, ¢ = <2,g>. Also pre-processed
values: d=<z,h>, Z| = <z, ,h*>, Zr = <z, h*>, H = <2* hy>, Hr = <2*,hp>
To reduce verifying knowledge of xeGf{ to knowledge of x*<cG{/?

Prover sends u. = <X_,h*>, ur = <xg,h*>, v = <2*,g1>, vr = <2*,gr>
Verifier sends 8 < Fp. Let X" =x + 82z, and g =g + 3lh

Prover sends w. = <x'L,g'r> and wr = <x'r,g'L>
Verifier sends o« < Fp. Let x* = ax'L + «-x'r, and g* = «-!g@’L + «g'r

Verifier computes a* = <x*,g%>, b* = <x* h*>, c* = <z*,g*> as:

o a*

8 b*

@ C

<x’, g"> + a2 wL + a2 wp

<X,g> + Bkx,h> + $<z,g> + <z h> + o2 WL + a2 wp

a+ B+ Bc+d+ a2w+ a2 wg

a<XL+02ZL,h*> + o l<Xr+BZr,h*> = aul + aBZL + a-lug + «1BZR

oc<Z*,g|_+B'1h|_> + oc*1<z*,gR+B‘1hR> = aVL + a3 1HL + alvg + a1B-1HR



Dory

@ Can be extended fo a proof of knowledge of xeGf s.t. a = <x,g> and

u = <X,y¥>, as in the case of Bulletproofs

@ Wherey = (1, r, rg, ..., r-1) for some rel,

@ In the base case of the recursion, the verifier needs to verify
<x(leg n), yllog ) > where y(i+!) = aj y® + oy () (with y(O)=y)

@ Note: yO); = ri. yi+l)j = o Y0 + o~ Y0 jun/27G41)

@ Inductively for k>0, y®; = ri Tico to k-1 (i + ot rn/27(i+1))
@ Base case: K=1: yO; = o 1 + ap! ri*n/2 = (oo + ap! rn/2) ri
8 v = o YR + ot YR jnaen) = (o + ol P27k g9 o/

@ So, Ylognly = Ticp to log n-1 (i + ot Pn/2°(+1), which can be computed
in O(log n) time, keeping the overall verification time O(log n)



